1
|
Wang L, Bharti, Kumar R, Pavlov PF, Winblad B. Small molecule therapeutics for tauopathy in Alzheimer's disease: Walking on the path of most resistance. Eur J Med Chem 2020; 209:112915. [PMID: 33139110 DOI: 10.1016/j.ejmech.2020.112915] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by presence of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of tau protein. Currently there are close to 50 million people living with dementia and this figure is expected to increase to 75 million by 2030 putting a huge burden on the economy due to the health care cost. Considering the effects on quality of life of patients and the increasing burden on the economy, there is an enormous need of new disease modifying therapies to tackle this disease. The current therapies are dominated by only symptomatic treatments including cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers but no disease modifying treatments exist so far. After several failed attempts to develop drugs against amyloidopathy, tau targeting approaches have been in the main focus of drug development against AD. After an overview of the tauopathy in AD, this review summarizes recent findings on the development of small molecules as therapeutics targeting tau modification, aggregation, and degradation, and tau-oriented multi-target directed ligands. Overall, this work aims to provide a comprehensive and critical overview of small molecules which are being explored as a lead candidate for discovering drugs against tauopathy in AD.
Collapse
Affiliation(s)
- Lisha Wang
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rajnish Kumar
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Pavel F Pavlov
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Memory Clinic, Theme Aging, Karolinska University Hospital, 14186, Huddinge, Sweden
| | - Bengt Winblad
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Memory Clinic, Theme Aging, Karolinska University Hospital, 14186, Huddinge, Sweden.
| |
Collapse
|
2
|
Monroy E, Diaz A, Tendilla-Beltrán H, de la Cruz F, Flores G. Bexarotene treatment increases dendritic length in the nucleus accumbens without change in the locomotor activity and memory behaviors, in old mice. J Chem Neuroanat 2019; 104:101734. [PMID: 31887346 DOI: 10.1016/j.jchemneu.2019.101734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
The aged brain has biochemical and morphological alterations in the dendrites of the pyramidal neurons of the limbic system, which consequently trigger motor and cognitive deficits. Bexarotene 4-[1-(3,5,5,8,8-pentamethyl-6,7-dihydronaphthalen-2-yl)ethenyl]benzoic acid is a selective agonist of X-retinoid receptors which acts by binding to the intracellular retinoic acid receptors (RAR). It decreases oxidative and inflammatory activity, in addition to the transport of lipids, mechanisms that together could have a neuroprotective effect. Our objective was to evaluate the effect of bexarotene on the motor and cognitive processes, as well as its influence on the dendritic morphology of neurons in the limbic system of elderly mice. Dendritic morphology was evaluated with the Golgi-Cox staining procedure followed by the Sholl analysis. Bexarotene was administered at different doses: 0.0; 0.5; 2.5 and 5.0 mg/kg for 60 days in 18-month-old mice. After the treatment, locomotor activity in a novel environment and spatial memory in the water labyrinth were evaluated. Mice treated with bexarotene did not show significant changes in their behavior. Moreover, bexarotene-treated mice only showed a significant increase in the density of the dendritic spines and the dendritic length in the nucleus accumbens (NAcc) neurons. In conclusion, the administration of bexarotene improves the plasticity of the NAcc of aged mice, and therefore could be a pharmacological alternative to prevent or delay neuroplasticity disruptions in brain aging.
Collapse
Affiliation(s)
- Elibeth Monroy
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Alfonso Diaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN). CDMX, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. Puebla, Mexico.
| |
Collapse
|
3
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
4
|
Khanna MR, Kovalevich J, Lee VMY, Trojanowski JQ, Brunden KR. Therapeutic strategies for the treatment of tauopathies: Hopes and challenges. Alzheimers Dement 2016; 12:1051-1065. [PMID: 27751442 PMCID: PMC5116305 DOI: 10.1016/j.jalz.2016.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/09/2016] [Indexed: 01/25/2023]
Abstract
A group of neurodegenerative diseases referred to as tauopathies are characterized by the presence of brain cells harboring inclusions of pathological species of the tau protein. These disorders include Alzheimer's disease and frontotemporal lobar degeneration due to tau pathology, including progressive supranuclear palsy, corticobasal degeneration, and Pick's disease. Tau is normally a microtubule (MT)-associated protein that appears to play an important role in ensuring proper axonal transport, but in tauopathies tau becomes hyperphosphorylated and disengages from MTs, with consequent misfolding and deposition into inclusions that mainly affect neurons but also glia. A body of experimental evidence suggests that the development of tau inclusions leads to the neurodegeneration observed in tauopathies, and there is a growing interest in developing tau-directed therapeutic agents. The following review provides a summary of strategies under investigation for the potential treatment of tauopathies, highlighting both the promises and challenges associated with these various therapeutic approaches.
Collapse
Affiliation(s)
- Mansi R Khanna
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Jane Kovalevich
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Rendakov NL, Lysenko LA, Lyupina YV, Sharova NP, Sel'verova NB, Nemova NN. The role of lysosomal proteinases and estradiol in neurodegeneration induced by beta-amyloid. DOKL BIOCHEM BIOPHYS 2015; 463:209-12. [PMID: 26335813 DOI: 10.1134/s160767291504002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 11/22/2022]
Abstract
Activation of lysosomal degradation process in nervous tissue may be neuroprotective. One of the factors that may influence on expression of lysosomal proteinases is the sex hormone, estradiol (E2). In this regard the expression of lysosomal proteinases after intracerebral injection of beta-amyloid peptide (Aβ) was investigated as well as the neuroprotective effect of E2 in Aβ-induced neurodegeneration. Intracerebral injection of Aβ was shown to cause the significant increase in expression of cathepsin D in rat hippocampus and cerebral cortex. On the background of Aβ intoxication, E2 treatment resulted in further increase in cathepsin D gene expression in hippocampus region and in its lowering to the control level in cerebral cortex. It was demonstrated for the first time that neuroprotective effect of E2 may be mediated by cathepsin D up-regulation.
Collapse
Affiliation(s)
- N L Rendakov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, ul. Pushkinskaya 11, Petrozavodsk, Karelia, 185910, Russia,
| | | | | | | | | | | |
Collapse
|
6
|
Apoptosis in Alzheimer’s Disease: An Understanding of the Physiology, Pathology and Therapeutic Avenues. Neurochem Res 2014; 39:2301-12. [DOI: 10.1007/s11064-014-1454-4] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/21/2014] [Accepted: 09/28/2014] [Indexed: 12/25/2022]
|
7
|
Polajnar M, Zavašnik-Bergant T, Škerget K, Vizovišek M, Vidmar R, Fonović M, Kopitar-Jerala N, Petrovič U, Navarro S, Ventura S, Žerovnik E. Human stefin B role in cell's response to misfolded proteins and autophagy. PLoS One 2014; 9:e102500. [PMID: 25047918 PMCID: PMC4105463 DOI: 10.1371/journal.pone.0102500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/18/2014] [Indexed: 11/30/2022] Open
Abstract
Alternative functions, apart from cathepsins inhibition, are being discovered for stefin B. Here, we investigate its role in vesicular trafficking and autophagy. Astrocytes isolated from stefin B knock-out (KO) mice exhibited an increased level of protein aggregates scattered throughout the cytoplasm. Addition of stefin B monomers or small oligomers to the cell medium reverted this phenotype, as imaged by confocal microscopy. To monitor the identity of proteins embedded within aggregates in wild type (wt) and KO cells, the insoluble cell lysate fractions were isolated and analyzed by mass spectrometry. Chaperones, tubulins, dyneins, and proteosomal components were detected in the insoluble fraction of wt cells but not in KO aggregates. In contrast, the insoluble fraction of KO cells exhibited increased levels of apolipoprotein E, fibronectin, clusterin, major prion protein, and serpins H1 and I2 and some proteins of lysosomal origin, such as cathepsin D and CD63, relative to wt astrocytes. Analysis of autophagy activity demonstrated that this pathway was less functional in KO astrocytes. In addition, synthetic dosage lethality (SDL) gene interactions analysis in Saccharomyces cerevisiae expressing human stefin B suggests a role in transport of vesicles and vacuoles These activities would contribute, directly or indirectly to completion of autophagy in wt astrocytes and would account for the accumulation of protein aggregates in KO cells, since autophagy is a key pathway for the clearance of intracellular protein aggregates.
Collapse
Affiliation(s)
- Mira Polajnar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tina Zavašnik-Bergant
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Katja Škerget
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Molecular and Biomedical Science, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Nataša Kopitar-Jerala
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Uroš Petrovič
- Department of Molecular and Biomedical Science, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Susanna Navarro
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- CipKeBip - Center of Excellence for integrated approaches in chemistry and biology of proteins, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
8
|
Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M. Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice. Neuroscience 2013; 250:8-19. [PMID: 23830905 DOI: 10.1016/j.neuroscience.2013.06.049] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/11/2013] [Accepted: 06/21/2013] [Indexed: 01/12/2023]
Abstract
Progranulin (PGRN) is known to play a role in the pathogenesis of neurodegenerative diseases. Recently, it has been demonstrated that patients with the homozygous mutation in the GRN gene present with neuronal ceroid lipofuscinosis, and there is growing evidence that PGRN is related to lysosomal function. In the present study, we investigated the possible role of PGRN in the lysosomes of activated microglia in the cerebral cortex after traumatic brain injury (TBI). We showed that the mouse GRN gene has two possible coordinated lysosomal expression and regulation (CLEAR) sequences that bind to transcription factor EB (TFEB), a master regulator of lysosomal genes. PGRN was colocalized with Lamp1, a lysosomal marker, and Lamp1-positive areas in GRN-deficient (KO) mice were significantly expanded compared with wild-type (WT) mice after TBI. Expression of all the lysosome-related genes examined in KO mice was significantly higher than that in WT mice. The number of activated microglia with TFEB localized to the nucleus was also significantly increased in KO as compared with WT mice. Since the TFEB translocation is regulated by the mammalian target of rapamycin complex 1 (mTORC1) activity in the lysosome, we compared ribosomal S6 kinase 1 (S6K1) phosphorylation that reflects mTORC1 activity. S6K1 phosphorylation in KO mice was significantly lower than that in WT mice. In addition, the number of nissl-positive and fluoro-jade B-positive cells around the injury was significantly decreased and increased, respectively, in KO as compared with WT mice. These results suggest that PGRN localized in the lysosome is involved in the activation of mTORC1, and its deficiency leads to increased TFEB nuclear translocation with a resultant increase in lysosomal biogenesis in activated microglia and exacerbated neuronal damage in the cerebral cortex after TBI.
Collapse
Affiliation(s)
- Y Tanaka
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
9
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
10
|
Dong ZD, Zhang J, Ji XS, Zhou FN, Fu Y, Chen W, Zeng YQ, Li TM, Wang H. Molecular cloning, characterization and expression of cathepsin D from grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2012; 33:1207-1214. [PMID: 23009921 DOI: 10.1016/j.fsi.2012.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Cathepsin D is a lysosomal aspartic proteinase which participates in various degradation functions within the cell. In this current study, we cloned and characterized the complete cDNA of grass carp cathepsin D through 5'- and 3'-RACE. The cathepsin D contained a 56 bp 5' terminal untranslated region (5'-UTR), a 1197 bp open reading frame encoding 398 amino acids, and a 394 bp 3'-UTR. Grass carp cathepsin D shared high similarity with those from other species, and showed the highest amino acid identity of 91% to Danio rerio. Unlike many other organisms, the grass carp cathepsin D contains only one N-glycosylation site closest to the N-terminal. Real-time quantitative RT-PCR demonstrated that Cathepsin D expressed in all twelve tissues (bladder, brain, liver, heart, gill, muscle, fin, eye, intestines, spleen, gonad and head kidney). The relative expression levels of Cathepsin D in gonad and liver were 26.58 and 24.95 times as much as those in fin, respectively. The expression level of Cathepsin D in muscle approximately 16-fold higher, in intestines and spleen were 12-fold higher. The cathepsin D expression showed an upward trend during embryonic development. After challenged with Aeromonas hydrophil, the expression of grass carp cathepsin D gene showed significant changes in the four test tissues (liver, head kidney, spleen and intestines). The fact that the bacterial infection can obviously improve the cathepsin D expression in immune-related organs, may suggest that cathepsin D plays an important role in the innate immune response of grass carp.
Collapse
Affiliation(s)
- Zhong-dian Dong
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Similarities and differences in the biogenesis, processing and lysosomal targeting between zebrafish and human pro-Cathepsin D: functional implications. Int J Biochem Cell Biol 2012; 45:273-82. [PMID: 23107604 DOI: 10.1016/j.biocel.2012.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 10/20/2012] [Indexed: 12/11/2022]
Abstract
The lysosomal protease Cathepsin D (CD) plays a role in neurodegenerative diseases, cancer, and embryo-fetus abnormalities. It is therefore of interest to know how this protein is synthesized in animal species used for modeling human diseases. Zebrafish (Danio rerio) is emerging as a valuable 'in vivo' vertebrate model for several human diseases. We have characterized the biogenetic pathways of zebrafish and human CD transgenically expressed in both human SH-SY5Y cells and zebrafish PAC2 cells. Differently from human CD, zebrafish CD was synthesized as a mono-glycosylated precursor (pro-CD) that was eventually processed into a single-chain mature polypeptide. In PAC2 cells, ammonium chloride and chloroquine impaired the N-glycosylation, and greatly stimulated the secretion, of pro-CD; still, a portion of un-glycosylated pro-CD reached the lysosomes and was processed to mature CD. The treatment with tunicamycin, which abrogates N-glycosylation, resulted in a similar effect. Zebrafish pro-CD was correctly processed when expressed in human cells, and its glycosylation, transport and maturation were not impaired by ammonium chloride. On the contrary, the transport and processing of human pro-CD expressed in zebrafish cells were profoundly altered: while the intermediate single-chain was not detectable, a small amount of double-chain mature CD still formed. This fact indicates that the enzyme machinery for single- to double-chain processing of mammal CD is present in zebrafish. Our data highlight the respective impact of the information imparted by the primary sequence and of the cellular transport and processing machineries in the biogenesis of lysosomal CD.
Collapse
|