1
|
Chen T, Li Y, Ren X, Wang Y. The mGluR5-mediated Arc activation protects against experimental traumatic brain injury in rats. CNS Neurosci Ther 2024; 30:e14695. [PMID: 39107945 PMCID: PMC11303269 DOI: 10.1111/cns.14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a complex pathophysiological process, and increasing attention has been paid to the important role of post-synaptic density (PSD) proteins, such as glutamate receptors. Our previous study showed that a PSD protein Arc/Arg3.1 (Arc) regulates endoplasmic reticulum (ER) stress and neuronal necroptosis in traumatic injury in vitro. AIM In this study, we investigated the expression, regulation and biological function of Arc in both in vivo and in vitro experimental TBI models. RESULTS Traumatic neuronal injury (TNI) induced a temporal upregulation of Arc in cortical neurons, while TBI resulted in sustained increase in Arc expression up to 24 h in rats. The increased expression of Arc was mediated by the activity of metabotropic glutamate receptor 5 (mGluR5), but not dependent on the intracellular calcium (Ca2+) release. By using inhibitors and antagonists, we found that TNI regulates Arc expression via Gq protein and protein turnover. In addition, overexpression of Arc protects against TBI-induced neuronal injury and motor dysfunction both in vivo and in vitro, whereas the long-term cognitive function was not altered. To determine the role of Arc in mGluR5-induced protection, lentivirus-mediated short hairpin RNA (shRNA) transfection was performed to knockdown Arc expression. The mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG)-induced protection against TBI was partially prevented by Arc knockdown. Furthermore, the CHPG-induced attenuation of Ca2+ influx after TNI was dependent on Arc activation and followed regulation of AMPAR subunits. The results of Co-IP and Ca2+ imaging showed that the Arc-Homer1 interaction contributes to the CHPG-induced regulation of intracellular Ca2+ release. CONCLUSION In summary, the present data indicate that the mGluR5-mediated Arc activation is a protective mechanism that attenuates neurotoxicity following TBI through the regulation of intracellular Ca2+ hemostasis. The AMPAR-associated Ca2+ influx and ER Ca2+ release induced by Homer1-IP3R pathway might be involved in this protection.
Collapse
Affiliation(s)
- Tao Chen
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Yun‐Fei Li
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Xu Ren
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| | - Yu‐Hai Wang
- Department of NeurosurgeryWuxi Taihu Hospital, Wuxi Clinical Medical School of Anhui Medical UniversityWuxiChina
| |
Collapse
|
2
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
3
|
Koda S, Hu J, Ju X, Sun G, Shao S, Tang RX, Zheng KY, Yan J. The role of glutamate receptors in the regulation of the tumor microenvironment. Front Immunol 2023; 14:1123841. [PMID: 36817470 PMCID: PMC9929049 DOI: 10.3389/fimmu.2023.1123841] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Glutamate, as one of the most important carbon sources in the TCA cycle, is central in metabolic processes that will subsequently influence tumor progression. Several factors can affect the expression of glutamate receptors, playing either a tumor-promoting or tumor-suppressor role in cancer. Thus, the activation of glutamate receptors by the ligand could play a role in tumor development as ample studies have demonstrated the expression of glutamate receptors in a broad range of tumor cells. Glutamate and its receptors are involved in the regulation of different immune cells' development and function, as suggested by the receptor expression in immune cells. The activation of glutamate receptors can enhance the effectiveness of the effector's T cells, or decrease the cytokine production in immunosuppressive myeloid-derived suppressor cells, increasing the antitumor immune response. These receptors are essential for the interaction between tumor and immune cells within the tumor microenvironment (TME) and the regulation of antitumor immune responses. Although the role of glutamate in the TCA cycle has been well studied, few studies have deeply investigated the role of glutamate receptors in the regulation of cancer and immune cells within the TME. Here, by a systematic review of the available data, we will critically assess the physiopathological relevance of glutamate receptors in the regulation of cancer and immune cells in the TME and provide some unifying hypotheses for futures research on the role of glutamate receptors in the immune modulation of the tumor.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Hu
- Department of Bioinformatics, School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoman Ju
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guowei Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Simin Shao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Juming Yan, ; Kui-Yang Zheng,
| | - Juming Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Juming Yan, ; Kui-Yang Zheng,
| |
Collapse
|
4
|
Huangqi Guizhi Wuwu Decoction can prevent and treat oxaliplatin-induced neuropathic pain by TNFα/IL-1β/IL-6/MAPK/NF-kB pathway. Aging (Albany NY) 2022; 14:5013-5022. [PMID: 35759577 PMCID: PMC9271291 DOI: 10.18632/aging.203794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study explored the effects and mechanisms of Huangqi Guizhi Wuwu Decoction on chemotherapy-induced neuropathic pain (CINP). METHODS Bodyweight and related behavioral testing of the rat model were utilized to investigate the effects of Huangqi Guizhi Wuwu Decoction on CINP. ELISA was used to measure the levels of TNF-α, IL-1β, and IL-6, in the serum of chronic CINP rats. Immunohistochemistry and Western blot analysis were performed to detect the expression of MAPK pathway related-proteins namely ERK1/2, p38, and JNK, and the expression of downstream essential proteins such as c-Fos, CREB, and NF-κB. RESULTS Body weight and related behavioral testing of the rat model suggests that Huangqi Guizhi Wuwu Decoction can improve the slow weight gain of oxaliplatin-induced chronic CINP model rats and effectively prevent and treat oxaliplatin-induced regular CIPN rat model of hyperalgesia. It can also oppress the mechanical pain threshold, cold pain threshold, and heat pain threshold decreased. Furthermore, by ELISA, immunohistochemistry, and western blot analysis, we found that Huangqi Guizhi Wuwu Decoction can down-regulate the levels of TNF-α, IL-1β, and IL-6 in the serum of chronic CINP rats induced by oxaliplatin. It also suppresses the expression of MAPK pathway related-proteins ERK1/2, p38, and JNK. This results in a decrease in the expression of downstream essential proteins, c-Fos, CREB, and Nf-κB. CONCLUSIONS In conclusion, we found that Huangqi Guizhi Wuwu Decoction can combat nerve cell injury, reduce pain sensitization, and prevent and repair the damage of nerve cells in the oxaliplatin CINP model rats via TNFα/IL-1β/IL-6/MAPK/NF-kB pathway.
Collapse
|
5
|
Schroeder ME, Bassett DS, Meaney DF. A multilayer network model of neuron-astrocyte populations in vitro reveals mGluR5 inhibition is protective following traumatic injury. Netw Neurosci 2022; 6:499-527. [PMID: 35733423 PMCID: PMC9208011 DOI: 10.1162/netn_a_00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
Astrocytes communicate bidirectionally with neurons, enhancing synaptic plasticity and promoting the synchronization of neuronal microcircuits. Despite recent advances in understanding neuron-astrocyte signaling, little is known about astrocytic modulation of neuronal activity at the population level, particularly in disease or following injury. We used high-speed calcium imaging of mixed cortical cultures in vitro to determine how population activity changes after disruption of glutamatergic signaling and mechanical injury. We constructed a multilayer network model of neuron-astrocyte connectivity, which captured distinct topology and response behavior from single-cell-type networks. mGluR5 inhibition decreased neuronal activity, but did not on its own disrupt functional connectivity or network topology. In contrast, injury increased the strength, clustering, and efficiency of neuronal but not astrocytic networks, an effect that was not observed in networks pretreated with mGluR5 inhibition. Comparison of spatial and functional connectivity revealed that functional connectivity is largely independent of spatial proximity at the microscale, but mechanical injury increased the spatial-functional correlation. Finally, we found that astrocyte segments of the same cell often belong to separate functional communities based on neuronal connectivity, suggesting that astrocyte segments function as independent entities. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations. Astrocytes communicate bidirectionally with neurons, enhancing synaptic plasticity and promoting the synchronization of neuronal microcircuits. We constructed a multilayer network model of neuron-astrocyte connectivity based on calcium activity in mixed cortical cultures, and used this model to evaluate the effect of glutamatergic inhibition and mechanical injury on network topology. We found that injury increased the strength, clustering, and efficiency of neuronal but not astrocytic networks, an effect that was not observed in injured networks pretreated with a glutamate receptor antagonist. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations.
Collapse
Affiliation(s)
- Margaret E. Schroeder
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David F. Meaney
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
7
|
Neurochemical changes underlying cognitive impairment in olfactory bulbectomized rats and the impact of the mGlu 5-positive allosteric modulator CDPPB. Brain Res 2021; 1768:147577. [PMID: 34217728 DOI: 10.1016/j.brainres.2021.147577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
The olfactory bulbectomized (OBX) rat model is a well-established model of depression in which antidepressant drugs reverse deficits in the passive avoidance test 14 days after administration. Recently, the olfactory bulbectomized rat model has been proposed to be a model of Alzheimer's disease (AD), and the available data indicate similarities between the changes that typically occur in AD and those observed in OBX animals. In the present study, the occurrence of neurochemical impairments related to AD were investigated 8 months after OB ablation. The expression of the nitric oxide synthases eNOS and nNOS, receptor for advanced glycation endproducts (RAGEs) and dimethylarginine dimethylaminohydrolase (DDAH1) in the prefrontal cortices (PFCs), hippocampi and striata of olfactory bulbectomized and sham-operated rats was evaluated. Subsequently, the impact of the administration of a positive allosteric modulator of the mGlu5 receptor, CDPPB (14 days, 2.5 or 5 mg/kg), on OBX-related changes was assessed. OB ablation induced typical deficits in passive avoidance. Significant aberrations in the expression of both isoforms of NOS were observed in the hippocampus and striatum, and the expression of DDAH1 was increased in the PFCs of OBX animals. CDPPB at a dose of 5 mg/kg ameliorated cognitive impairment in the passive avoidance test and partially reversed the changes in eNOS and nNOS expression induced by the lesion. The results of this study confirm that some of the neurochemical changes observed in OBX animals may resemble those associated with AD pathology and that activation of the mGlu5 receptor may partially counteract these pathological alterations.
Collapse
|
8
|
Tan Z, Chen L, Ren Y, Jiang X, Gao W. Neuroprotective effects of FK866 against traumatic brain injury: Involvement of p38/ERK pathway. Ann Clin Transl Neurol 2020; 7:742-756. [PMID: 32302063 PMCID: PMC7261767 DOI: 10.1002/acn3.51044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/20/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE FK866 is an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), which exhibits neuroprotective effects in ischemic brain injury. However, in traumatic brain injury (TBI), the role and mechanism of FK866 remain unclear. The present research was aimed to investigate whether FK866 could attenuate TBI and clarified the underlying mechanisms. METHODS A controlled cortical impact model was established, and FK866 at a dose of 5 mg/kg was administered intraperitoneally at 1 h and 6 h, then twice per day post-TBI until sacrifice. Brain water content, Evans blue dye extravasation, modified neurological severity scores (mNSS), Morris water maze test, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and western blot were performed. RESULTS The results demonstrated that FK866 significantly mitigated the brain edema, blood-brain barrier (BBB) disruption, and ameliorated the neurological function post-TBI. Moreover, FK866 decreased the number of Iba-1-positive cells, GFAP-positive astrocytes, and AQP4-positive cells. FK866 reduced the protein levels of proinflammatory cytokines and inhibited NF-κB from translocation to the nucleus. FK866 upregulated the expression of Bcl-2, diminished the expression of Bax and caspase 3, and the number of apoptotic cells. Moreover, p38 MAPK and ERK activation were significantly inhibited by FK866. INTERPRETATION FK866 attenuated TBI-induced neuroinflammation and apoptosis, at least in part, through p38/ERK MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zhongju Tan
- Department of GeriatricsThe First Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Lili Chen
- Department of NeurologyXiasha CampusSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yucheng Ren
- Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaohang Jiang
- Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Wei Gao
- Department of NeurologyChangxing People’s HospitalThe Second Affiliated Hospital of Zhejiang University Changxing CampusChangxingZhejiangChina
| |
Collapse
|
9
|
Bhat SA, Henry RJ, Blanchard AC, Stoica BA, Loane DJ, Faden AI. Enhanced Akt/GSK-3β/CREB signaling mediates the anti-inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. J Neurochem 2020; 156:225-248. [PMID: 31926033 DOI: 10.1111/jnc.14954] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3β. GSK-3β regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3β/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3β/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3β/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.
Collapse
Affiliation(s)
- Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa C Blanchard
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
11
|
Zhu L, Zhu J, Guo SW. Homer1/mGluR1-mediated ER stress contributes to lysophosphatidic acid-induced neurotoxicity in cortical neurons. Neurochem Int 2019; 129:104515. [DOI: 10.1016/j.neuint.2019.104515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022]
|
12
|
Lan YL, Wang X, Zou YJ, Xing JS, Lou JC, Zou S, Ma BB, Ding Y, Zhang B. Bazedoxifene protects cerebral autoregulation after traumatic brain injury and attenuates impairments in blood-brain barrier damage: involvement of anti-inflammatory pathways by blocking MAPK signaling. Inflamm Res 2019; 68:311-323. [PMID: 30706110 DOI: 10.1007/s00011-019-01217-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a significant cause of death and long-term deficits in motor and cognitive functions for which there are currently no effective chemotherapeutic drugs. Bazedoxifene (BZA) is a third-generation selective estrogen receptor modulator (SERM) and has been investigated as a treatment for postmenopausal osteoporosis. It is generally safe and well tolerated, with favorable endometrial and breast safety profiles. Recent findings have shown that SERMs may have therapeutic benefits; however, the role of BZA in the treatment of TBI and its molecular and cellular mechanisms remain poorly understood. The aim of the present study was to examine the neuroprotective effects of BZA on early TBI in rats and to explore the underlying mechanisms of these effects. MATERIALS AND METHODS TBI was induced using a modified weight-drop method. Neurological deficits were evaluated according to the neurological severity score (NSS). Morris water maze and open-field behavioral tests were used to test cognitive functions. Brain edema was measured by brain water content, and impairments in the blood-brain barrier (BBB) were evaluated by expression analysis of tight junction-associated proteins, such as occludin and zonula occludens-1 (ZO-1). Neuronal injury was assessed by hematoxylin and eosin (H&E) staining. LC-MS/MS analysis was performed to determine the ability of BZA to cross the BBB. RESULTS Our results indicated that BZA attenuated the impaired cognitive functions and the increased BBB permeability of rats subjected to TBI through activation of inflammatory cascades. In vivo experiments further revealed that BZA provided this neuroprotection by suppressing TBI-induced activation of the MAPK/NF-κB signaling pathway. Thus, mechanically, the anti-inflammatory effects of BZA in TBI may be partially mediated by blocking the MAPK signaling pathway. CONCLUSIONS These findings suggest that BZA might attenuate neurological deficits and BBB damage to protect against TBI by blocking the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, China.,Department of Pharmacy, Dalian Medical University, Dalian, 116044, China.,Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, China
| | - Yu-Jie Zou
- Department of Nursing, The First Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, China
| | - Shuang Zou
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Bin-Bin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, China
| | - Yan Ding
- Department of Pediatrics, Children's Hospital of Boston, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China. .,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
13
|
Liu B, Zhao S, Qi C, Zhao X, Liu B, Hao F, Zhao Z. Inhibition of metabotropic glutamate receptor 5 facilitates hypoxia-induced glioma cell death. Brain Res 2018; 1704:241-248. [PMID: 30347216 DOI: 10.1016/j.brainres.2018.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Glioma is a primary brain tumor with high frequency and dismal prognosis. As there is no permanent cure available, identifying new therapy or mediator to augment the effectiveness of existing therapy is urgently needed. In the current study we tested the effect of group I metabotropic glutamate receptors (mGluRs): mGluR1 and mGluR5 on the viability of glioma cell lines. We analyzed cell viability using lactate dehydrogenase (LDH) release assay and evaluated apoptosis by propidium iodide (PI) staining. We used qPCR to evaluate change in mitochondrial gene expression and Western blot to evaluate the phosphorylation of Akt and ERK. Inhibition of mGluR5 by a selective antagonist MPEP under hypoxia promoted cell death, and induced expression of mitochondrial oxidative function related genes, with concurrent lowering of AKT phosphorylation level in glioma cell lines. Akt activation reversed mGluR5 inhibition on hypoxia-induced glioma cell death. These results suggest mGluR5 as a potential therapeutic target for hypoxic tumors such as malignant glioma.
Collapse
Affiliation(s)
- Bo Liu
- Department of Oncological Surgery, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Xin Hua District, Shijiazhuang City 050000, Hebei Province, PR China
| | - Shuang Zhao
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, No. 139, Zi Qiang Road, Qiao Xi District, Shijiazhuang City 050051, Hebei Province, PR China
| | - Cheng Qi
- Department of Oncological Surgery, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Xin Hua District, Shijiazhuang City 050000, Hebei Province, PR China
| | - Xiaodong Zhao
- Department of Oncological Surgery, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Xin Hua District, Shijiazhuang City 050000, Hebei Province, PR China
| | - Bin Liu
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, No. 212, East Yuhua Road, Baoding City 071000, Hebei Province, PR China
| | - Fang Hao
- Department of Oncological Surgery, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Xin Hua District, Shijiazhuang City 050000, Hebei Province, PR China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Xin Hua District, Shijiazhuang City 050000, Hebei Province, PR China.
| |
Collapse
|
14
|
Tao L, Li D, Liu H, Jiang F, Xu Y, Cao Y, Gao R, Chen G. Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Res Bull 2018; 140:154-161. [PMID: 29698747 DOI: 10.1016/j.brainresbull.2018.04.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) triggers a complex sequence of inflammatory responses that contribute to secondary injury. Metformin, a first-line drug used to treat type 2 diabetes, is reported to exhibit potent anti-inflammatory activity on diseases associated with the central nervous system (CNS). The aim of this study is to investigate the potential neuroprotective effects of metformin on acute brain injury after TBI and explore the underlying mechanisms. Male Sprague-Dawley (SD) rats were divided into four groups: sham group, TBI group, TBI + saline (NS) group and TBI + metformin group. A weight-dropping model was employed to induce TBI in rats. Modified neurological severity scores (mNSS) were employed to assess the short-term neurological deficits, neuronal degeneration and apoptosis in the brain tissues were assayed with Fluoro-Jade B and TUNEL staining, immunofluorescence was designed to investigate microglial activation. The mRNA and protein expression levels of pro-inflammatory cytokines such as necrosis factor-alpha (TNF-α), interleukin-beta (IL-1β) and nterleukin-6 (IL-6) were evaluated by real-time quantitative reverse transcriptase polymerase chain reaction (QPCR) and enzyme-linked immunosorbent assay (ELISA). Western blotting analysis was engaged to examine the expression of NF-κB p65 and phosphorylation of ERK1/2 and p38 MAPK. Our results showed that metformin significantly ameliorated neurological deficit, cerebral edema and neuronal apoptosis in rats following TBI. Moreover, metformin administration inhibited microglial activation and decreased the production of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6. In addition, metformin inhibited the translocation of NF-κB p65 from cytoplasm into the nucleus, as well as the phosphorylation of ERK1/2 and p38 MAPK. This study suggests that metformin administration inhibits microglia activation-mediated inflammation via NF-κB and MAPK signaling pathway to improve neurobehavioral function following TBI, which provide a potential therapeutic benefit in treating brain injury.
Collapse
Affiliation(s)
- Li Tao
- Department of Pharmacy and Translational Medicine Center, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Di Li
- Department of Neurosurgery and Translational Medicine Center, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Huixiang Liu
- Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Feng Jiang
- Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Yitian Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Cao
- Department of Pharmacy, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China.
| | - Rong Gao
- Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Gao F, Wang B, Chang T, Li M, Fang W, Li ZH, Gao L. The iron pro-chelator BHAPI attenuates glutamate-induced oxidative stress via Wnt-β/catenin pathway in HT22 cells. Brain Res Bull 2018; 139:285-291. [PMID: 29588166 DOI: 10.1016/j.brainresbull.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023]
Abstract
Disturbances in intracellular iron homeostasis are associated with brain damage under various neuropathological conditions. However, exposure of neuronal cells to classical iron chelators could interfere with physiological iron functions in the brain. Thus, iron pro-chelators represent a more advanced approach to exert strong free-iron binding capacity only under oxidative stress conditions. In the present study, we investigated the protective effects of an iron pro-chelator BHAPI [(E)-N'-(1-(2-((4- (4,4,5,5-tetramethyl-1,2,3-dioxoborolan-2-yl)benzyl)oxy)phenyl)ethylidene) isonicotino hydrazide] against glutamate-induced toxicity in neuronal HT22 cells. The results showed that BHAPI significantly increased cell viability, decreased lactate dehydrogenase (LDH) release, inhibited apoptotic cell death and reduced the activation of caspase-3 after glutamate treatment. This protection was accompanied by the preservation of mitochondrial function, as evidenced by reduced mitochondrial oxidative stress, attenuated lipid peroxidation and enhanced ATP generation. In addition, BHAPI promoted Wnt/β-catenin signaling, which was related to destabilization of β-catenin destruction complex. The Wnt/β-catenin signaling inhibitor JW74, but not IWP2, partially prevented the protective effects of BHAPI. In conclusion, our data suggested that BHAPI acted as a neuroprotective agent against glutamate-induced toxicity, and this protection might be mediated by preservation of mitochondrial function and regulation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Tao Chang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Min Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Wei Fang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Zhi-Hong Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
16
|
Niu HX, Wang JZ, Wang DL, Miao JJ, Li H, Liu ZG, Yuan X, Liu W, Zhou JR. The Orally Active Noncompetitive AMPAR Antagonist Perampanel Attenuates Focal Cerebral Ischemia Injury in Rats. Cell Mol Neurobiol 2018; 38:459-466. [PMID: 28401316 PMCID: PMC11481974 DOI: 10.1007/s10571-017-0489-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/24/2017] [Indexed: 02/07/2023]
Abstract
Inhibition of ionotropic glutamate receptors (iGluRs) is a potential target of therapy for ischemic stroke. Perampanel is a potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist with good oral bioavailability and favorable pharmacokinetic properties. Here, we investigated the potential protective effects of perampanel against focal cerebral ischemia in a middle cerebral artery occlusion (MCAO) model in rats. Oral administration with perampanel significantly reduced MCAO-induced brain edema, brain infarct volume, and neuronal apoptosis. These protective effects were associated with improved functional outcomes, as measured by foot-fault test, adhesive removal test, and modified neurological severity score (mNSS) test. Importantly, perampanel was effective even when the administration was delayed to 1 h after reperfusion. The results of enzyme-linked immunosorbent assay (ELISA) showed that perampanel significantly decreased the expression of pro-inflammatory cytokines IL-1β and TNF-α, whereas it increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1 after MCAO. In addition, perampanel treatment markedly decreased the expression of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), and also inhibited nitric oxide (NO) generation in MCAO-injured rats at 24 and 72 h after reperfusion. In conclusion, this study demonstrated that the orally active AMPAR antagonist perampanel protects against experimental ischemic stroke via regulating inflammatory cytokines and NOS pathways.
Collapse
Affiliation(s)
- Hong-Xia Niu
- Emergency Department, Beijing Electric Power Hospital, Beijing, 100071, China
| | - Jun-Zhe Wang
- Basic Medical Sciences Research Center, Shaanxi Fourth People's Hospital, Xi'an, 710043, Shaanxi, China
| | - Dong-Liang Wang
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, China
| | - Jun-Jie Miao
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, China
| | - Hua Li
- Department of Neurosurgery, Shaanxi Fourth People's Hospital, Xi'an, 710043, Shaanxi, China
| | - Zhi-Gang Liu
- Department of Neurosurgery, Shaanxi Fourth People's Hospital, Xi'an, 710043, Shaanxi, China
| | - Xing Yuan
- Department of Neurosurgery, Shaanxi Fourth People's Hospital, Xi'an, 710043, Shaanxi, China
| | - Wei Liu
- Basic Medical Sciences Research Center, Shaanxi Fourth People's Hospital, Xi'an, 710043, Shaanxi, China.
- Department of Neurosurgery, Shaanxi Fourth People's Hospital, Xi'an, 710043, Shaanxi, China.
| | - Jing-Ru Zhou
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
17
|
Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 2017; 115:179-191. [DOI: 10.1016/j.phrs.2016.11.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
|
18
|
Batista EML, Doria JG, Ferreira-Vieira TH, Alves-Silva J, Ferguson SSG, Moreira FA, Ribeiro FM. Orchestrated activation of mGluR5 and CB1 promotes neuroprotection. Mol Brain 2016; 9:80. [PMID: 27543109 PMCID: PMC4992217 DOI: 10.1186/s13041-016-0259-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/06/2016] [Indexed: 01/05/2023] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) and the cannabinoid receptor 1 (CB1) exhibit a functional interaction, as CB1 regulates pre-synaptic glutamate release and mGluR5 activation increases endocannabinoid synthesis at the post-synaptic site. Since both mGluR5 and CB1 promote neuroprotection, we delineated experiments to investigate a possible link between CB1 and mGluR5 activation in the induction of neuroprotection using primary cultured corticostriatal neurons. We find that either the pharmacological blockade or the genetic ablation of either mGluR5 or CB1 can abrogate both CB1- and mGluR5-mediated neuroprotection against glutamate insult. Interestingly, decreased glutamate release and diminished intracellular Ca2+ do not appear to play a role in CB1 and mGluR5-mediated neuroprotection. Rather, these two receptors work cooperatively to trigger the activation of cell signaling pathways to promote neuronal survival, which involves MEK/ERK1/2 and PI3K/AKT activation. Interestingly, although mGluR5 activation protects postsynaptic terminals and CB1 the presynaptic site, intact signaling of both receptors is required to effectively promote neuronal survival. In conclusion, mGluR5 and CB1 act in concert to activate neuroprotective cell signaling pathways and promote neuronal survival.
Collapse
Affiliation(s)
- Edleusa M L Batista
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Juliana G Doria
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Talita H Ferreira-Vieira
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Juliana Alves-Silva
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Stephen S G Ferguson
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| | - Fabricio A Moreira
- Departamento de Farmacologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Ave. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
19
|
Sato K, Yamanaka Y, Asakura Y, Nedachi T. Glutamate levels control HT22 murine hippocampal cell death by regulating biphasic patterns of Erk1/2 activation: role of metabolic glutamate receptor 5. Biosci Biotechnol Biochem 2016; 80:712-8. [DOI: 10.1080/09168451.2015.1107466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
Extracellular glutamate concentration is a critical determinant of neuronal cell fate. We recently demonstrated that HT22 murine hippocampal cell viability was reduced by exposure to high concentrations of glutamate, whereas low concentrations promoted cell survival. Extracellular signal-regulated kinase (Erk)1/2 activation by glutamate is important for both glutamate-induced cell death and survival. In this study, we investigated the role of glutamate-induced or hydrogen peroxide (H2O2)-induced Erk1/2 activation in HT22 cell fate determination. Glutamate and H2O2 treatment similarly induced early (<1 h) Erk1/2 phosphorylation regardless of concentration. On the other hand, persistent Erk1/2 phosphorylation (16–24 h) was observed only in the presence of excess glutamate. Only the latter contributed to glutamate-induced cell death, which involved metabolic glutamate receptor 5. Our findings suggest that glutamate concentration modulates two distinct phases of Erk1/2 activation, which can explain the glutamate concentration-dependent determination of HT22 cell fate.
Collapse
Affiliation(s)
- Kazunori Sato
- Department of Life Sciences, Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Yuki Yamanaka
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, Gunma, Japan
| | - Yasuharu Asakura
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, Gunma, Japan
| | - Taku Nedachi
- Department of Life Sciences, Graduate School of Life Sciences, Toyo University, Gunma, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, Gunma, Japan
| |
Collapse
|
20
|
Lucke-Wold BP, Logsdon AF, Smith KE, Turner RC, Alkon DL, Tan Z, Naser ZJ, Knotts CM, Huber JD, Rosen CL. Bryostatin-1 Restores Blood Brain Barrier Integrity following Blast-Induced Traumatic Brain Injury. Mol Neurobiol 2015; 52:1119-1134. [PMID: 25301233 PMCID: PMC5000781 DOI: 10.1007/s12035-014-8902-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/24/2014] [Indexed: 02/08/2023]
Abstract
Recent wars in Iraq and Afghanistan have accounted for an estimated 270,000 blast exposures among military personnel. Blast traumatic brain injury (TBI) is the 'signature injury' of modern warfare. Blood brain barrier (BBB) disruption following blast TBI can lead to long-term and diffuse neuroinflammation. In this study, we investigate for the first time the role of bryostatin-1, a specific protein kinase C (PKC) modulator, in ameliorating BBB breakdown. Thirty seven Sprague-Dawley rats were used for this study. We utilized a clinically relevant and validated blast model to expose animals to moderate blast exposure. Groups included: control, single blast exposure, and single blast exposure + bryostatin-1. Bryostatin-1 was administered i.p. 2.5 mg/kg after blast exposure. Evan's blue, immunohistochemistry, and western blot analysis were performed to assess injury. Evan's blue binds to albumin and is a marker for BBB disruption. The single blast exposure caused an increase in permeability compared to control (t = 4.808, p < 0.05), and a reduction back toward control levels when bryostatin-1 was administered (t = 5.113, p < 0.01). Three important PKC isozymes, PKCα, PKCδ, and PKCε, were co-localized primarily with endothelial cells but not astrocytes. Bryostatin-1 administration reduced toxic PKCα levels back toward control levels (t = 4.559, p < 0.01) and increased the neuroprotective isozyme PKCε (t = 6.102, p < 0.01). Bryostatin-1 caused a significant increase in the tight junction proteins VE-cadherin, ZO-1, and occludin through modulation of PKC activity. Bryostatin-1 ultimately decreased BBB breakdown potentially due to modulation of PKC isozymes. Future work will examine the role of bryostatin-1 in preventing chronic neurodegeneration following repetitive neurotrauma.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA
| | - Kelly E Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, 26506, USA
| | - Zhenjun Tan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Zachary J Naser
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Office of Professional Studies in Health Sciences, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Chelsea M Knotts
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Department of Neurosurgery, West Virginia University School of Medicine, One Medical Center Drive, Suite 4300, Health Sciences Center, PO Box 9183, Morgantown, WV, 26506-9183, USA.
| |
Collapse
|
21
|
Activation of large-conductance Ca(2+)-activated K(+) channels inhibits glutamate-induced oxidative stress through attenuating ER stress and mitochondrial dysfunction. Neurochem Int 2015; 90:28-35. [PMID: 26163046 DOI: 10.1016/j.neuint.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/22/2015] [Accepted: 07/02/2015] [Indexed: 12/17/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) channels (BK channels) are widely expressed throughout the vertebrate nervous system, and are involved in the regulation of neurotransmitter release and neuronal excitability. Here, the neuroprotective effects of NS11021, a selective and chemically unrelated BK channel activator, and potential molecular mechanism involved have been studied in rat cortical neurons exposed to glutamate in vitro. Pretreatment with NS11021 significantly inhibited the loss of neuronal viability, LDH release and neuronal apoptosis in a dose-dependent manner. All these protective effects were fully antagonized by the BK-channel inhibitor paxilline. NS11021-induced neuroprotection was associated with reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) generation, lipid peroxidation and preserved activity of antioxidant enzymes. Moreover, NS11021 significantly attenuated the glutamate-induced endoplasmic reticulum (ER) calcium release and activation of ER stress markers, including glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12. Pretreatment with NS11021 also mitigated the mitochondrial membrane potential (MMP) collapse, cytochrome c release, and preserved mitochondrial Ca(2+) buffering capacity and ATP synthesis after glutamate exposure. Taken together, these results suggest that activation of BK channels via NS11021 protects cortical neurons against glutamate-induced excitatory damage, which may be dependent on the inhibition of ER stress and preservation of mitochondrial dysfunction.
Collapse
|
22
|
Qiu JL, Zhu WL, Lu YJ, Bai ZF, Liu ZG, Zhao P, Sun C, Zhang YB, Li H, Liu W. The selective mGluR5 agonist CHPG attenuates SO2-induced oxidative stress and inflammation through TSG-6/NF-κB pathway in BV2 microglial cells. Neurochem Int 2015; 85-86:46-52. [PMID: 25953665 DOI: 10.1016/j.neuint.2015.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
Abstract
Sulfur dioxide (SO2) is a common air pollutant and can cause harmful insults on neurons. Microglial activation has been implicated in the signaling cascades that contribute to neuronal cell death in various neurological disorders. In the present study, we found that SO2 derivatives decreased cell viability via inducing oxidative stress, inflammatory responses and apoptotic cell death in BV2 microglial cells. Pretreatment with (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), an mGluR5 agonist, significantly attenuated the SO2-induced cytotoxicity, which was fully prevented by the mGluR5 antagonist MPEP. CHPG increased the expression of TNF-α stimulated gene/protein 6 (TSG-6), but decreased the activation of nuclear factor-κB (NF-κB) after SO2 derivatives treatment in BV2 cells. In addition, knockdown of TSG-6 expression by specific targeted short interfering RNA (siRNA) partially reversed the protection induced by CHPG. Therefore, our findings reveal a mechanistic basis for exploring the association between SO2 exposure and neurological disorders, and also for opening up therapeutic approaches of ameliorating neuronal injury resulting from exposure in atmospheric polluting environment.
Collapse
Affiliation(s)
- Jun-Ling Qiu
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Wen-Li Zhu
- Department of Neurology, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Yu-Jie Lu
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Zheng-Fa Bai
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Zhi-Gang Liu
- Department of Neurosurgery, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Pei Zhao
- Department of Neurology, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Chao Sun
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Ya-Bin Zhang
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China
| | - Hua Li
- Department of Neurosurgery, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China.
| | - Wei Liu
- Basic Medical Sciences Research Center, Shannxi Fourth People's Hospital, Xi'an, Shannxi 710043, China.
| |
Collapse
|
23
|
Guan DF, Ren PY, Hu W, Zhang YL. The mGluR5 positive allosteric modulator CDPPB inhibits SO₂-induced protein radical formation and mitochondrial dysfunction through activation of Akt in mouse hippocampal HT22 cells. Cell Mol Neurobiol 2015; 35:573-83. [PMID: 25547390 PMCID: PMC11488060 DOI: 10.1007/s10571-014-0153-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022]
Abstract
Sulfur dioxide (SO2) is a common gas pollutant that is detrimental to many organs. Previous studies have shown that SO2 exposure is involved in neurotoxicity and increased risk of many brain disorders; however, our understanding of the mechanisms underlying SO2-induced cytotoxicity on neuronal cells remains elusive. The group I metabotropic glutamate receptor 5 (mGluR5) can modulate addiction, pain, and neuronal cell death. In the present study, we showed that SO2 derivatives exposure induced protein radical formation, mitochondrial dysfunction, and apoptotic cell death in neuronal HT22 cells. Pretreatment with 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) (CDPPB), a positive allosteric modulator of mGluR5, significantly attenuated SO2-induced neurotoxicity, which was fully prevented by the mGluR5 antagonist MPEP. CDPPB reduced the protein radical formation and inducible nitric oxide synthase (iNOS)-derived generation of nitric oxide, and inhibited mitochondrial dysfunction in both HT22 cells and isolated mitochondria after SO2 treatment. Moreover, CDPPB increased the activation of Akt in the presence and absence of SO2 treatment. Blocking Akt activation using the selective inhibitor LY294002 partially reversed the CDPPB-induced protection against SO2-induced neurotoxicity. This study provides mechanistic experimental support for oxidative stress and mitochondrial dysfunction after SO2 exposure in neuronal cells, and also introduces a novel therapeutic approach for SO2-induced neurotoxicity.
Collapse
Affiliation(s)
- Dong-Feng Guan
- Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061 China
- Linfen People’s Hospital, Linfen, Shanxi 041000 China
| | - Peng-Yu Ren
- Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061 China
| | - Wei Hu
- Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068 China
| | - Yue-Lin Zhang
- Department of Neurosurgery, Shaanxi Provincial People’s Hospital, The Third Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710068 China
| |
Collapse
|
24
|
Activation of mGluR5 Attenuates Microglial Activation and Neuronal Apoptosis in Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats. Neurochem Res 2015; 40:1121-32. [DOI: 10.1007/s11064-015-1572-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/23/2022]
|
25
|
Hou PF, Liu ZH, Li N, Cheng WJ, Guo SW. Knockdown of STIM1 improves neuronal survival after traumatic neuronal injury through regulating mGluR1-dependent Ca(2+) signaling in mouse cortical neurons. Cell Mol Neurobiol 2015; 35:283-92. [PMID: 25304289 PMCID: PMC11486307 DOI: 10.1007/s10571-014-0123-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/05/2014] [Indexed: 01/05/2023]
Abstract
Activation of glutamate receptors and followed increase of intracellular calcium concentration is a key pathological mechanism involved in secondary neuronal injury after traumatic brain injury (TBI). Stromal interaction molecule (STIM) proteins are considered to be important players in regulating neuronal Ca(2+) homeostasis under normal aging and pathological conditions. Here, we investigated the role of STIM1 in regulating metabotropic glutamate receptor 1 (mGluR1)-related Ca(2+) signaling and neuronal survival by using an in vitro traumatic neuronal injury (TNI) model. The expression of STIM1 was significantly increased at both mRNA and protein levels after TNI. Down-regulation of STIM1 by specific small interfere RNA significantly preserved neuronal viability, decreased lactate dehydrogenase release, and inhibited apoptotic cell death after traumatic injury. Moreover, knockdown of STIM1 significantly alleviated the mGluR1-related increase of cytoplasmic Ca(2+) levels after TNI. By analyzing Ca(2+) imaging in Ca(2+)-free conditions, we demonstrated that the mGluR1-dependent inositol trisphosphate receptor and/or ryanodine receptor-mediated Ca(2+) release from the endoplasmic reticulum after TNI is strongly attenuated in the absence of STIM1. Together, our results demonstrate that in the mammalian nervous system, STIM1 is a key regulator of mGluR1-dependent Ca(2+) signaling and knockdown of STIM1 might be an effective intervention target in TBI.
Collapse
Affiliation(s)
- Peng-Fei Hou
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, 710061 Shaanxi China
- Department of Neurosurgery, Ninth Hospital of Xi’an, Xi’an, 710054 Shaanxi China
| | - Zhan-Hui Liu
- Department of Neurosurgery, Ninth Hospital of Xi’an, Xi’an, 710054 Shaanxi China
| | - Nan Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, 710061 Shaanxi China
- Department of Neurosurgery, Xi’an Chidren’s Hospital, Xi’an, 710043 Shaanxi China
| | - Wen-Jia Cheng
- Department of Pathology, Ninth Hospital of Xi’an, Xi’an, 710054 Shaanxi China
| | - Shi-Wen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, 710061 Shaanxi China
| |
Collapse
|
26
|
Hu W, Guan LS, Dang XB, Ren PY, Zhang YL. Small-molecule inhibitors at the PSD-95/nNOS interface attenuate MPP+-induced neuronal injury through Sirt3 mediated inhibition of mitochondrial dysfunction. Neurochem Int 2014; 79:57-64. [PMID: 25452082 DOI: 10.1016/j.neuint.2014.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/03/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022]
Abstract
Post-synaptic density protein 95 (PSD-95) links neuronal nitric oxide synthase (nNOS) with the N-methyl-D-aspartic acid (NMDA) receptor in the central nervous system, and this molecular complex has been implicated in regulating neuronal excitability in several neurological disorders. Here, small-molecule inhibitors of the PSD-95/nNOS interaction, IC87201 and ZL006 were tested for neuroprotective effects in an in vitro Parkinson's disease (PD) model. We now report that IC87201 and ZL006 reduced MPP(+)-induced neuronal injury and apoptotic cell death in a dose-dependent manner in cultured cortical neurons. These protective effects were associated with suppressed mitochondrial dysfunction, as evidenced by decreased reactive oxygen species (ROS) generation, cytochrome c release, mitochondrial membrane potential (MMP) collapse, and the preserved mitochondrial complex I activity and ATP synthesis. IC87201 and ZL006 also preserved intracellular homeostasis through mitigating mitochondrial Ca(2+) uptake and promoting mitochondrial Ca(2+) buffering capacity. Moreover, treatment with IC87201 and ZL006 significantly increased the expression of Sirt3 after MPP(+) exposure, and knockdown of Sirt3 using specific targeted small interfere RNA (siRNA) partially nullified the protective effects induced by these two inhibitors. These data strongly support the hypothesis that targeting the PSD-95/nNOS interaction produces neuroprotective effects and may represent a novel class of therapeutics for PD as well as other neurological diseases where detrimental NMDA receptor signaling plays a major role.
Collapse
Affiliation(s)
- Wei Hu
- Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shannxi 710061, China; Department of Emergency, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Lai-Shun Guan
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Xing-Bo Dang
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Peng-Yu Ren
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Yue-Lin Zhang
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China.
| |
Collapse
|
27
|
Doria JG, Silva FR, de Souza JM, Vieira LB, Carvalho TG, Reis HJ, Pereira GS, Dobransky T, Ribeiro FM. Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington's disease. Br J Pharmacol 2014; 169:909-21. [PMID: 23489026 PMCID: PMC3687670 DOI: 10.1111/bph.12164] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/31/2012] [Accepted: 02/17/2013] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. We have previously demonstrated that the cell signalling of the metabotropic glutamate receptor 5 (mGluR5) is altered in a mouse model of HD. Although mGluR5-dependent protective pathways are more activated in HD neurons, intracellular Ca2+ release is also more pronounced, which could contribute to excitotoxicity. In the present study, we aim to investigate whether mGluR5 positive allosteric modulators (PAMs) could activate protective pathways without triggering high levels of Ca2+ release and be neuroprotective in HD. Experimental Approach We performed a neuronal cell death assay to determine which drugs are neuroprotective, Western blot and Ca2+ release experiments to investigate the molecular mechanisms involved in this neuroprotection, and object recognition task to determine whether the tested drugs could ameliorate HD memory deficit. Key Results We find that mGluR5 PAMs can protect striatal neurons from the excitotoxic neuronal cell death promoted by elevated concentrations of glutamate and NMDA. mGluR5 PAMs are capable of activating Akt without triggering increased intracellular Ca2+ concentration ([Ca2+]i); and Akt blockage leads to loss of PAM-mediated neuroprotection. Importantly, PAMs' potential as drugs that may be used to treat neurodegenerative diseases is highlighted by the neuroprotection exerted by mGluR5 PAMs on striatal neurons from a mouse model of HD, BACHD. Moreover, mGluR5 PAMs can activate neuroprotective pathways more robustly in BACHD mice and ameliorate HD memory deficit. Conclusions and Implications mGluR5 PAMs are potential drugs that may be used to treat neurodegenerative diseases, especially HD.
Collapse
Affiliation(s)
- J G Doria
- Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhao Y, Li J, Tang Q, Gao J, Chen C, Jing L, Zhang P, Li S. Apolipoprotein E mimetic peptide protects against diffuse brain injury. Neural Regen Res 2014; 9:463-73. [PMID: 25206840 PMCID: PMC4153503 DOI: 10.4103/1673-5374.130060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 01/11/2023] Open
Abstract
Apolipoprotein E plays a crucial role in inhibiting chronic neurodegenerative processes. However, its impact on neurological function following diffuse brain injury is still unclear. This study was designed to evaluate the therapeutic effects and mechanisms of action of apolipoprotein E mimetic peptide on diffuse brain injury. Apolipoprotein E mimetic peptide was administered into the caudal vein of rats with diffuse brain injury before and after injury. We found that apolipoprotein E mimetic peptide significantly decreased the number of apoptotic neurons, reduced extracellular signal-regulated kinase1/2 phosphorylation, down-regulated Bax and cytochrome c expression, decreased malondialdehyde content, and increased superoxide dismutase activity in a dose-dependent manner. These experimental findings demonstrate that apolipoprotein E mimetic peptide improves learning and memory function and protects against diffuse brain injury-induced apoptosis by inhibiting the extracellular signal-regulated kinase1/2-Bax mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Yaning Zhao
- College of Rehabilitation, Hebei United University, Tangshan, Hebei Province, China
| | - Jianmin Li
- Affiliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Qiqun Tang
- College of Rehabilitation, Hebei United University, Tangshan, Hebei Province, China
| | - Junling Gao
- College of Rehabilitation, Hebei United University, Tangshan, Hebei Province, China
| | - Changxiang Chen
- College of Rehabilitation, Hebei United University, Tangshan, Hebei Province, China
| | - Liwei Jing
- College of Rehabilitation, Hebei United University, Tangshan, Hebei Province, China
| | - Pan Zhang
- College of Rehabilitation, Hebei United University, Tangshan, Hebei Province, China
| | - Shuxing Li
- College of Rehabilitation, Hebei United University, Tangshan, Hebei Province, China
| |
Collapse
|
29
|
Doria JG, de Souza JM, Andrade JN, Rodrigues HA, Guimaraes IM, Carvalho TG, Guatimosim C, Dobransky T, Ribeiro FM. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease. Neurobiol Dis 2014; 73:163-73. [PMID: 25160573 DOI: 10.1016/j.nbd.2014.08.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/01/2014] [Accepted: 08/14/2014] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin protein (htt), leading to motor dysfunction, cognitive decline, psychiatric alterations, and death. The metabotropic glutamate receptor 5 (mGluR5) has been implicated in HD and we have recently demonstrated that mGluR5 positive allosteric modulators (PAMs) are neuroprotective in vitro. In the present study we demonstrate that the mGluR5 PAM, CDPPB, is a potent neuroprotective drug, in vitro and in vivo, capable of delaying HD-related symptoms. The HD mouse model, BACHD, exhibits many HD features, including neuronal cell loss, htt aggregates, motor incoordination and memory impairment. However, chronic treatment of BACHD mice with CDPPB 1.5 mg/kg s.c. for 18 weeks increased the activation of cell signaling pathways important for neuronal survival, including increased AKT and ERK1/2 phosphorylation and augmented the BDNF mRNA expression. CDPPB chronic treatment was also able to prevent the neuronal cell loss that takes place in the striatum of BACHD mice and decrease htt aggregate formation. Moreover, CDPPB chronic treatment was efficient to partially ameliorate motor incoordination and to rescue the memory deficit exhibited by BACHD mice. Importantly, no toxic effects or stereotypical behavior were observed upon CDPPB chronic treatment. Thus, CDPPB is a potential drug to treat HD, preventing neuronal cell loss and htt aggregate formation and delaying HD symptoms.
Collapse
Affiliation(s)
- J G Doria
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - J M de Souza
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - J N Andrade
- Departamento de Morfologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - H A Rodrigues
- Departamento de Morfologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - I M Guimaraes
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - T G Carvalho
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - C Guatimosim
- Departamento de Morfologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - F M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
30
|
Activation of mGluR5 attenuates NMDA-induced neurotoxicity through disruption of the NMDAR-PSD-95 complex and preservation of mitochondrial function in differentiated PC12 cells. Int J Mol Sci 2014; 15:10892-907. [PMID: 24941251 PMCID: PMC4100187 DOI: 10.3390/ijms150610892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 01/05/2023] Open
Abstract
Glutamate-mediated toxicity is implicated in various neuropathologic conditions, and activation of ionotropic and metabotropic glutamate receptors is considered to be the most important mechanism. It has been reported that pharmacological saturation of metabotropic glutamate receptors (mGluRs) can facilitate N-methyl-d-aspartate receptor (NMDAR) related signaling cascades, but the mechanism leading to mGluR-NMDAR interactions in excitotoxic neuronal injury has remained unidentified. In the present study, we investigated the role of mGluR5 in the regulation of N-methyl-d-aspartate (NMDA)-induced excitotoxicity in differentiated PC12 cells. We found that activation of mGluR5 with the specific agonist R,S-2-chloro-5-hydroxyphenylglycine (CHPG) increased cell viability and inhibited lactate dehydrogenase (LDH) release in a dose-dependent manner. CHPG also inhibited an increase in the Bax/Bcl-2 ratio, attenuated cleavage of caspase-9 and caspase-3, and reduced apoptotic cell death after NMDA treatment. The NMDA-induced mitochondrial dysfunction, as indicated by mitochondrial reactive oxygen species (ROS) generation, collapse of mitochondrial membrane potential (MMP), and cytochrome c release, was also partly prevented by CHPG treatment. Furthermore, CHPG blocked the NMDA-induced interaction of NMDAR with postsynaptic density protein-95 (PSD-95), but had no effects on intracellular calcium concentrations. All these results indicated that activation of mGluR5 protects differentiated PC12 cells from NMDA-induced neuronal excitotoxicity by disrupting NMDAR-PSD-95 interaction, which might be an ideal target for investigating therapeutic strategies in various neurological diseases where excitotoxicity may contribute to their pathology.
Collapse
|
31
|
Ginsenoside Rd attenuates mitochondrial permeability transition and cytochrome C release in isolated spinal cord mitochondria: involvement of kinase-mediated pathways. Int J Mol Sci 2014; 15:9859-77. [PMID: 24897022 PMCID: PMC4100126 DOI: 10.3390/ijms15069859] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 12/17/2022] Open
Abstract
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. However, the effects of Rd on spinal cord mitochondrial dysfunction and underlying mechanisms are still obscure. In this study, we sought to investigate the in vitro effects of Rd on mitochondrial integrity and redox balance in isolated spinal cord mitochondria. We verified that Ca2+ dissipated the membrane potential, provoked mitochondrial swelling and decreased NAD(P)H matrix content, which were all attenuated by Rd pretreatment in a dose-dependent manner. In contrast, Rd was not able to inhibit Ca2+ induced mitochondrial hydrogen peroxide generation. The results of Western blot showed that Rd significantly increased the expression of p-Akt and p-ERK, but had no effects on phosphorylation of PKC and p38. In addition, Rd treatment significantly attenuated Ca2+ induced cytochrome c release, which was partly reversed by antagonists of Akt and ERK, but not p-38 inhibitor. The effects of bisindolylmaleimide, a PKC inhibitor, on Rd-induced inhibition of cytochrome c release seem to be at the level of its own detrimental activity on mitochondrial function. Furthermore, we also found that pretreatment with Rd in vivo (10 and 50 mg/kg) protected spinal cord mitochondria against Ca2+ induced mitochondrial membrane potential dissipation and cytochrome c release. It is concluded that Rd regulate mitochondrial permeability transition pore formation and cytochrome c release through protein kinases dependent mechanism involving activation of intramitochondrial Akt and ERK pathways.
Collapse
|
32
|
Zhao Q, Zhang ZW, Liu CY, Xiao J, Li ZB, Wu SH, Wu YJ, Yang DS, Quan LP, Lei MS. Significance of expression of PKCα, Annexin A2 and S100A10 proteins in gastric cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:1793-1800. [DOI: 10.11569/wcjd.v22.i13.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinical significance of expression of protein kinase C (PKC), Annexin A2 and S100A10 proteins in gastric cancer and provide valuable data for finding diagnosis related proteins in gastric cancer.
METHODS: The expression of PKCα, Annexin A2 and S100A10 proteins was detected by Western blot in normal gastric mucosa and gastric cancer tissues. Moreover, their expression was analyzed by immunohistochemistry in a tissue array containing normal gastric mucosa and gastric cancer tissues. The clinicopathologic significance of their expression was evaluated.
RESULTS: Western blot analysis showed that the expression of PKCα, Annexin A2 and S100A10 proteins was significantly higher in gastric cancer tissue than in normal gastric mucosa tissue (P < 0.01 for all). Immunohistochemistry analysis showed that the positive expression rates of PKCα, Annexin A2 and S100A10 proteins were significantly lower in normal gastric mucosa tissue than in gastric cancer tissue [8.82% (3/34) vs 76.54% (62/81), 5.88% (2/34) vs 79.01% (64/81), 2.94% (1/34) vs 59.26% (48/81); P < 0.01 for all].
CONCLUSION: The expression of PKCα, Annexin A2 and S100A10 proteins is up-regulated in gastric cancer tissue compared with normal gastric mucosa tissue and may be related with the occurrence and differentiation degree of gastric cancer.
Collapse
|
33
|
Luo P, Chen T, Zhao Y, Zhang L, Yang Y, Liu W, Li S, Rao W, Dai S, Yang J, Fei Z. Postsynaptic scaffold protein Homer 1a protects against traumatic brain injury via regulating group I metabotropic glutamate receptors. Cell Death Dis 2014; 5:e1174. [PMID: 24722299 PMCID: PMC5424101 DOI: 10.1038/cddis.2014.116] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) produces excessive glutamate, leading to excitotoxicity via the activation of glutamate receptors. Postsynaptic density scaffold proteins have crucial roles in mediating signal transduction from glutamate receptors to their downstream mediators. Therefore, studies on the mechanisms underlying regulation of excitotoxicity by scaffold proteins can uncover new treatments for TBI. Here, we demonstrated that the postsynaptic scaffold protein Homer 1a was neuroprotective against TBI in vitro and in vivo, and this neuroprotection was associated with its effects on group I metabotropic glutamate receptors (mGluRs). Upon further study, we found that Homer 1a mainly affected neuronal injury induced by mGluR1 activation after TBI and also influenced mGluR5 function when its activity was restored. The ability of Homer 1a to disrupt mGluR-ERK signaling contributed to its ability to regulate the functions of mGluR1 and mGluR5 after traumatic injury. Intracellular Ca(2+) and PKC were two important factors involved in the mediation of mGluR-ERK signaling by Homer 1a. These results define Homer 1a as a novel endogenous neuroprotective agent against TBI.
Collapse
Affiliation(s)
- P Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - T Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Y Zhao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - L Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Y Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - W Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - S Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - W Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - S Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - J Yang
- Department of Surgery, Boston Veterans Affairs Healthcare System, Boston University School of Medicine, Boston, MA, USA
| | - Z Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
34
|
Li B, Xiao L, Wang ZY, Zheng PS. Knockdown of STIM1 inhibits 6-hydroxydopamine-induced oxidative stress through attenuating calcium-dependent ER stress and mitochondrial dysfunction in undifferentiated PC12 cells. Free Radic Res 2014; 48:758-68. [PMID: 24720513 DOI: 10.3109/10715762.2014.905687] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stromal interaction molecule (STIM) proteins are parts of elaborate eukaryotic Ca(2+) signaling systems and are considered to be important players in regulating neuronal Ca(2+) homeostasis under normal ageing and pathological conditions. Here, we investigated the potential role of STIM1 in 6-hydroxydopamine (6-OHDA)-induced toxicity in undifferentiated PC12 cell lines. Cells exposed to 6-OHDA demonstrated alterations in the generation of reactive oxygen species (ROS) in a Ca(2+)-dependent manner. Downregulation of STIM1 expression by specific small interfering RNA (siRNA) attenuated apoptotic cell death, reduced intracellular ROS production, and partially prevented the impaired endogenous antioxidant enzyme activities after 6-OHDA treatment. Furthermore, STIM1 knockdown significantly attenuated 6-OHDA-induced intracellular Ca(2+) overload by inhibiting endogenous store-operated calcium entry (SOCE). The effect of STIM1 siNRA on SOCE was related to orai1 and L-type Ca(2+) channels, but not to transient receptor potential canonical type 1 (TRPC1) channel. In addition, silencing of STIM1 increased the Ca(2+) buffering capacity of the endoplasmic reticulum (ER) in 6-OHDA-injured cells. ER vacuoles formed from the destruction of ER structural integrity and activation of ER-related apoptotic factors (CHOP and Caspase-12) were partially prevented by STIM1 knockdown. Moreover, STIM1 knockdown attenuated 6-OHDA-induced mitochondrial Ca(2+) uptake and mitochondrial dysfunction, including the collapse of mitochondrial membrane potential (MMP) and the decrease of ATP generation. Taken together, our data provide the first evidence that inhibition of STIM1-meditated intracellular Ca(2+) dyshomeostasis protects undifferentiated PC12 cells against 6-OHDA toxicity and indicate that STIM1 may be responsible for neuronal oxidative stress induced by ER stress and mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- B Li
- Department of Reproductive Medicine, the First Affiliated Hospital of Medical School, Xi'an Jiaotong University , Xi'an, Shaanxi , The People's Republic of China
| | | | | | | |
Collapse
|
35
|
Neuroprotective effect of allicin against traumatic brain injury via Akt/endothelial nitric oxide synthase pathway-mediated anti-inflammatory and anti-oxidative activities. Neurochem Int 2014; 68:28-37. [DOI: 10.1016/j.neuint.2014.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
|
36
|
Fu J, Fan HB, Guo Z, Wang Z, Li XD, Li J, Pei GX. Salvianolic acid B attenuates spinal cord ischemia-reperfusion-induced neuronal injury and oxidative stress by activating the extracellular signal-regulated kinase pathway in rats. J Surg Res 2013; 188:222-30. [PMID: 24387840 DOI: 10.1016/j.jss.2013.11.1118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Salvianolic acid B (SalB), the main bioactive compound isolated from the traditional Chinese medicinal herb broad Radix Salviae Miltiorrhizae exerts a spectrum of pharmacologic activities. We investigated the effects of SalB treatment in a rat model of spinal cord ischemia and reperfusion (I/R) injury and the underlying mechanism. MATERIALS AND METHODS SalB was administered at 1, 10, or 50 mg/kg after spinal cord ischemia. The potential protective effects on spinal cord injury were determined by spinal cord edema, infarct volume, and motor function assessment of the hind limbs. RESULTS SalB treatment significantly decreased spinal cord edema and infarct volume and preserved motor function of the hind limbs in a dose-dependent manner. SalB administration ameliorated the generation of oxidative products and preserved antioxidant defense activities in the injured spinal cord at both 4 and 24 h after I/R injury. Moreover, SalB prolonged the I/R injury-induced activation of extracellular signal-regulated kinase (ERK), and blocking ERK activation with PD98059 partially prevented the neuroprotective effects of SalB. CONCLUSIONS These findings demonstrate the neuroprotective effects of SalB in a spinal cord I/R injury model and suggest that SalB-induced neuroprotection was mediated by ERK activation.
Collapse
Affiliation(s)
- Jun Fu
- Department of Orthopaedic Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong-bin Fan
- Department of Orthopaedic Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zheng Guo
- Department of Orthopaedic Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zhen Wang
- Department of Orthopaedic Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xiang-dong Li
- Department of Orthopaedic Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guo-xian Pei
- Department of Orthopaedic Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Ortuño-Sahagún D, González RM, Verdaguer E, Huerta VC, Torres-Mendoza BM, Lemus L, Rivera-Cervantes MC, Camins A, Zárate CB. Glutamate excitotoxicity activates the MAPK/ERK signaling pathway and induces the survival of rat hippocampal neurons in vivo. J Mol Neurosci 2013; 52:366-77. [PMID: 24190281 DOI: 10.1007/s12031-013-0157-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/18/2013] [Indexed: 11/25/2022]
Abstract
Current knowledge concerning the molecular mechanisms of the cellular response to excitotoxic insults in neurodegenerative diseases is insufficient. Although glutamate (Glu) has been widely studied as the main excitatory neurotransmitter and principal excitotoxic agent, the neuroprotective response enacted by neurons is not yet completely understood. Some of the molecular participants have been revealed, but the signaling pathways involved in this protective response are just beginning to be identified. Here, we demonstrate in vivo that, in response to the cell damage and death induced by Glu excitotoxicity, neurons orchestrate a survival response through the extracellular signal-regulated kinase (ERK) signaling pathway by increasing ERK expression in the rat hippocampal (CA1) region, allowing increased neuronal survival. In addition, this protective response is specifically reversed by U0126, an ERK inhibitor, which promotes cell death only when it is administered together with Glu. Our findings demonstrate that the ERK signaling pathway has a neuroprotective role in the response to Glu-induced excitotoxicity in hippocampal neurons. Therefore, the ERK signaling pathway may be activated as a cellular response to excitotoxic injury to prevent damage and neural loss, representing a novel therapeutic target in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel Ortuño-Sahagún
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Camino Ing. R. Padilla Sánchez, 2100, Las Agujas, Zapopan, 44600, Jalisco, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhao W, Ho L, Varghese M, Yemul S, Dams-O'Connor K, Gordon W, Knable L, Freire D, Haroutunian V, Pasinetti GM. Decreased level of olfactory receptors in blood cells following traumatic brain injury and potential association with tauopathy. J Alzheimers Dis 2013; 34:417-429. [PMID: 23241557 DOI: 10.3233/jad-121894] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability among children and young adults in the United States. In this study, we explored whether changes in the gene expression profile of peripheral blood mononuclear cells (PBMC) may provide a clinically assessable "window" into the brain, reflecting molecular alterations following TBI that might contribute to the onset and progression of TBI clinical complications. We identified three olfactory receptor (OR) TBI biomarkers that are aberrantly down-regulated in PBMC specimens from TBI subjects. Down-regulation of these OR biomarkers in PBMC was correlated with the severity of brain injury and TBI-specific symptoms. A two- biomarker panel comprised of OR11H1 and OR4M1 provided the best criterion for segregating the TBI and control cases with 90% accuracy, 83.3% sensitivity, and 100% specificity. We found that the OR biomarkers are ectopically expressed in multiple brain regions, including the entorhinal-hippocampus system known to play an important role in memory formation and consolidation. Activation of OR4M1 led to attenuation of abnormal tau phosphorylation, possibly through JNK signaling pathway. Our results suggested that addition of the two-OR biomarker model to current diagnostic criteria may lead to improved TBI detection for clinical trials, and decreased expression of OR TBI biomarkers might be associated with TBI-induced tauopathy. Future studies exploring the physiological relevance of OR TBI biomarkers in the normal brain and in the brain following TBI will provide a better understanding of the biological mechanisms underlying TBI and insights into novel therapeutic targets for TBI.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Lap Ho
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Merina Varghese
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Shrishailam Yemul
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.,GRECC, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | | | - Wayne Gordon
- Department of Rehabilitation, Mount Sinai School of Medicine, New York, NY, USA
| | - Lindsay Knable
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Daniel Freire
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.,GRECC, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
39
|
Luo CL, Li QQ, Chen XP, Zhang XM, Li LL, Li BX, Zhao ZQ, Tao LY. Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res 2013; 1502:1-10. [PMID: 23370001 DOI: 10.1016/j.brainres.2013.01.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 12/19/2022]
Abstract
The present study was designed to investigate the effects of lipoxin A4 (LXA4) on traumatic brain injury (TBI) and to analyze the possible mechanism. Outcome parameters consist of blood-brain barrier (BBB) breakdown, brain edema and lesion volume. Using western blot and quantitative real-time PCR, we examined the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and activation of mitogen-activated protein kinases (MAPKs) (including ERK, JNK, p38) following TBI. To investigate the cell types in which the LXA4 receptor (ALXR) staining was localized, brain sections pulsed with ALXR were subjected to immunofluorescence staining with antibodies against cell type-specific antigens. Our findings show that LXA4 decreases BBB permeability, attenuates brain edema, and reduces TBI-induced lesion volume. In addition, LXA4 inhibits TBI-induced elevation of mRNA and protein levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). In the injured cortex at 24h post-TBI, the phosphorylated-ERK (p-ERK) and -JNK (p-JNK), but not -p38 (p-p38) levels were increased. The p-ERK and p-JNK production were attenuated by their respective inhibitors (PD98059 and SP600125), as well as LXA4. Moreover, ALXR was found to label more GFAP positive cells, whereas few CD11b-positive cells were labeled by ALXR within the layers of the injured cortex at 24h post-TBI. The activation of ALXR in astrocytes was partially enhanced by LXA4 treatment. Taken together, these data indicate that TBI activates pro-inflammatory cytokines, the MAPK pathways together with ALXR in astrocytes, and these mechanisms may be exploited by pharmacological interventions.
Collapse
Affiliation(s)
- Cheng-Liang Luo
- Department of Forensic Medicine, Soochow University, 199 Ren'ai Road, Suzhou Dushuhu High Educational Town, Suzhou 215123, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Loane DJ, Stoica BA, Byrnes KR, Jeong W, Faden AI. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J Neurotrauma 2013. [PMID: 23199080 DOI: 10.1089/neu.2012.2589] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Traumatic brain injury (TBI) induces microglial activation, which can contribute to secondary tissue loss. Activation of mGluR5 reduces microglial activation and inhibits microglial-mediated neurodegeneration in vitro, and is neuroprotective in experimental models of CNS injury. In vitro studies also suggest that the beneficial effects of mGluR5 activation involve nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition in activated microglia. We hypothesized that activation of mGluR5 by the selective agonist CHPG after TBI in mice is neuroprotective and that its therapeutic actions are mediated by NADPH oxidase inhibition. Vehicle, CHPG, or CHPG plus the mGluR5 antagonist (MPEP), were administered centrally, 30 minutes post-TBI, and functional recovery and lesion volume was assessed. CHPG significantly attenuated post-traumatic sensorimotor and cognitive deficits, and reduced lesion volumes; these effects were blocked by MPEP, thereby indicating neuroprotection involved selective activation of mGluR5. CHPG treatment also reduced NFκB activity and nitrite production in lipopolysaccharide-stimulated microglia and the protective effects of CHPG treatment were abrogated in NADPH oxidase deficient microglial cultures (gp91(phox-/-)). To address whether the neuroprotective effects of CHPG are mediated via the inhibition of NADPH oxidase, we administered the NADPH oxidase inhibitor apocynin with or without CHPG treatment after TBI. Both apocynin or CHPG treatment alone improved sensorimotor deficits and reduced lesion volumes when compared with vehicle-treated mice; however, the combined CHPG + apocynin treatment was not superior to CHPG alone. These data suggest that the neuroprotective effects of activating mGluR5 receptors after TBI are mediated, in part, via the inhibition of NADPH oxidase.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
41
|
Wang JW, Wang HD, Zhong WZ, Li N, Cong ZX. Expression and cell distribution of metabotropic glutamate receptor 5 in the rat cortex following traumatic brain injury. Brain Res 2012; 1464:73-81. [DOI: 10.1016/j.brainres.2012.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/22/2012] [Accepted: 05/06/2012] [Indexed: 01/20/2023]
|