1
|
Ayman J, Buzás A, Dochnal R, Palotai M, Jászberényi M, Bagosi Z. Changes in Locomotor Activity Observed During Acute Nicotine Withdrawal Can Be Attenuated by Ghrelin and GHRP-6 in Rats. Biomedicines 2025; 13:143. [PMID: 39857727 PMCID: PMC11761252 DOI: 10.3390/biomedicines13010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Ghrelin and growth hormone-releasing peptide 6 (GHRP-6) are peptides which can stimulate GH release, acting through the same receptor. Ghrelin and its receptor have been involved in reward sensation and addiction induced by natural and artificial drugs, including nicotine. The present study aimed to investigate the impacts of ghrelin and GHRP-6 on the horizontal and vertical activity in rats exposed to chronic nicotine treatment followed by acute nicotine withdrawal. Methods: Male and female Wistar rats were exposed daily to intraperitoneal (ip) injection with 2 mg/kg nicotine or saline solution for 7 days, twice a day (at 8:00 and at 20:00). In parallel, the rats were exposed daily to an intracerebroventricular (icv) injection with 1 μg/2 μL ghrelin or 1 μg/2 μL GHRP-6 or saline solution for 7 days, once a day (at 8:00). On the morning of the eighth day (12 h after the last ip administration) and the ninth day (24 h after the last ip administration), the horizontal and vertical activity were monitored in a conducta system. Results: On the eighth day, in nicotine-treated rats a significant hyperactivity was observed, that was reduced significantly by ghrelin and GHRP-6. On the ninth day, in nicotine-treated rats a significant hypoactivity was assessed that was reversed significantly by ghrelin and GHRP-6. Conclusions: Based on the present results, the changes in horizontal and vertical activity observed after 12 and 24 h of nicotine withdrawal can be attenuated by ghrelin and GHRP-6.
Collapse
Affiliation(s)
- Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary;
| | - András Buzás
- Department of Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary;
| | - Roberta Dochnal
- Department of Pediatrics and Pedriatic Health Center, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary;
| | - Miklós Palotai
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Miklós Jászberényi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szőkefalvi-Nagy Béla str. 6., 6720 Szeged, Hungary;
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szőkefalvi-Nagy Béla str. 6., 6720 Szeged, Hungary;
| |
Collapse
|
2
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Ayman J, Palotai M, Dochnal R, Bagosi Z. Ghrelin Amplifies the Nicotine-Induced Release of Dopamine in the Bed Nucleus of Stria Terminalis (BNST). Biomedicines 2023; 11:2456. [PMID: 37760897 PMCID: PMC10525377 DOI: 10.3390/biomedicines11092456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin is an orexigenic neuropeptide that is known for stimulating the release of growth hormone (GH) and appetite. In addition, ghrelin has been implicated in addiction to drugs such as nicotine. Nicotine is the principal psychoactive component in tobacco and is responsible for the reward sensation produced by smoking. In our previous in vitro superfusion studies, it was demonstrated that ghrelin and nicotine stimulate equally the dopamine release in the rat amygdala, and ghrelin amplifies the nicotine-induced dopamine release in the rat striatum. However, less attention was paid to the actions of ghrelin and nicotine in the bed nucleus of the stria terminalis (BNST). Therefore, in the present study, nicotine and ghrelin were superfused to the BNST of male Wistar rats, and the dopamine release from the BNST was measured in vitro. In order to determine which receptors mediate these effects, mecamylamine, a non-selective nicotinic acetylcholine receptor (nAchR) antagonist, and GHRP-6, a selective growth hormone secretagogue receptor (GHS-R1A) antagonist, were also superfused to the rat BNST. Nicotine significantly increased the release of dopamine, and this effect was significantly inhibited by mecamylamine. Ghrelin increased dopamine release even more significantly than nicotine did, and this effect was significantly inhibited by GHRP-6. Moreover, when administered together, ghrelin significantly amplified the nicotine-induced release of dopamine in the BNST, and this additive effect was reversed partly by mecamylamine and partly by GHRP-6. Therefore, the present study provides a new base of evidence for the involvement of ghrelin in dopamine signaling implicated in nicotine addiction.
Collapse
Affiliation(s)
- Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Miklós Palotai
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Roberta Dochnal
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Potretzke S, Lemieux A, Nakajima M, al'Absi M. Circulating ghrelin changes as a biomarker of the stress response and craving in abstinent smokers. Pharmacol Biochem Behav 2022; 218:173423. [PMID: 35750154 DOI: 10.1016/j.pbb.2022.173423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RATIONALE There has been growing interest in the role of ghrelin in stress and addiction. Ghrelin regulates central reward mechanisms by mediating the mesolimbic dopaminergic system. Stress also induces neurophysiological activations related to drug reward. However, the extent to which psychosocial stress is associated with changes in ghrelin levels has not been tested in individuals with nicotine dependency undergoing withdrawal, a condition known to induce stress-like symptoms. OBJECTIVES We investigated the association of stress-induced ghrelin, craving, and smoking lapse. METHODS Thirty-six smokers attended a laboratory session that included acute stress tasks during the initial phase of quitting. Self-report measures and biochemical samples were collected for the assessment of smoking status. Blood samples for the measurement of ghrelin and self-report measures of craving were collected multiple times throughout the session RESULTS: Multivariate analysis of variance controlling for gender found a significant main effect of sampling time and lapse group (p < 0.05). Ghrelin levels significantly increased over the pre-stress and post-stress periods (ps < 0.001), suggesting a delayed stress response. Those who lapsed during the study had higher ghrelin levels than those who were able to successfully abstain. A ghrelin stress response was calculated and a significant association was found between this response and craving, which changed across time points (ps < 0.008). CONCLUSIONS The results of this study demonstrate that ghrelin is sensitive to acute manipulation of stress and that there is potential usefulness for ghrelin as a marker of stress, craving, and smoking lapse.
Collapse
Affiliation(s)
- Sheena Potretzke
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 9997239, USA
| | - Andrine Lemieux
- University of Minnesota School of Medicine, 1035 University Drive, Duluth, MN 55812-2487, USA
| | - Motohiro Nakajima
- University of Minnesota School of Medicine, 1035 University Drive, Duluth, MN 55812-2487, USA
| | - Mustafa al'Absi
- University of Minnesota School of Medicine, 1035 University Drive, Duluth, MN 55812-2487, USA.
| |
Collapse
|
6
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
7
|
al'Absi M, DeAngelis B, Nakajima M, Hatsukami D, Allen S. Early life adversity and appetite hormones: The effects of smoking status, nicotine withdrawal, and relapse on ghrelin and peptide YY during smoking cessation. Addict Behav 2021; 118:106866. [PMID: 33640833 DOI: 10.1016/j.addbeh.2021.106866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/28/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
There is evidence suggesting that ghrelin and peptide YY (PYY) modulate stress responses and the rewarding effects of drugs, although no research has examined the impact of exposure to early life stress on these hormones in smokers nor during smoking cessation. This study examined the relationships between early life adversity (ELA) and circulating ghrelin and PYY during ad libitum smoking and early withdrawal in tobacco smokers (N = 98) who were interested in cessation. We also included a comparison group of nonsmokers (N = 36). We prospectively compared levels of hormones between smokers who were successful in quitting within a 2-week period, smokers who relapsed during that period, and nonsmokers. Results showed that ELA was positively associated with elevated ghrelin in nonsmokers. Among those reporting no ELA, successful quitters had higher ghrelin levels than nonsmokers during ad libitum smoking, while relapsers had higher ghrelin levels than nonsmokers during withdrawal. In addition, having no ELA was associated with a decline in ghrelin from the ad libitum to abstinence sessions in successful quitters; this withdrawal-related decline was not found in relapsers. Although effects of ELA, smoking group, and time on PYY were not significant, greater PYY was associated with reduced urges to smoke during withdrawal. These findings suggest the importance of considering changes in appetite-related hormones in individuals who are dependent on tobacco. This research provides additional indications for effects of ELA on appetite-stimulating hormones.
Collapse
|
8
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
9
|
Palotai M, Small C, Makris N, Somes NG, Pinzon AM, Rathi Y, Marzullo A, Levitt JJ, Bakshi R, Chitnis T, Guttmann CRG. Microstructural Changes in the Left Mesocorticolimbic Pathway are Associated with the Comorbid Development of Fatigue and Depression in Multiple Sclerosis. J Neuroimaging 2021; 31:501-507. [PMID: 33522683 DOI: 10.1111/jon.12832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Lower reward responsiveness has been associated with fatigue in multiple sclerosis (MS). However, association of MS-related fatigue with damage to the mesocorticolimbic reward pathway (superolateral medial forebrain bundle [slMFB]) has not been assessed. We investigated the association of fatigue and depression with slMFB damage in MS patients stratified based on longitudinal fatigue patterns. METHODS Patient stratification: 1. Sustained Fatigue (SF): latest two Modified Fatigue Impact Scale (MFIS) ≥ 38 (n = 26); 2. Reversible Fatigue (RF): latest MFIS < 38, and at least one previous MFIS ≥ 38 (n = 25); 3. Never Fatigued (NF): ≥ 5 consecutive MFIS < 38 (n = 42); 4. Healthy Controls (n = 6). Diffusion MRI-derived measures of fractional anisotropy (FA), axial (AD), mean (MD), and radial diffusivity (RD) of the slMFB were compared between the groups. Depression was assessed using the Center for Epidemiologic Studies-Depression Scale (CES-D). RESULTS Depressed (CES-D ≥ 16) SF patients showed significantly higher MD and RD than nondepressed SF and RF, and depressed RF patients, and significantly lower FA than nondepressed SF and depressed RF patients in their left slMFB. Depressed SF patients showed significantly higher left slMFB MD and AD than healthy controls. CONCLUSION Microstructural changes to the left slMFB may play a role in the comorbid development of fatigue and depression in MS.
Collapse
Affiliation(s)
- Miklos Palotai
- Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Catherine Small
- Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nikolaos Makris
- Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Center for Morphometric Analysis, Departments of Psychiatry and Neurology, Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA
| | - Nathaniel G Somes
- Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alfredo Morales Pinzon
- Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende, Italy
| | - James J Levitt
- Psychiatry Neuroimaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rohit Bakshi
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tanuja Chitnis
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Charles R G Guttmann
- Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Wittekind DA, Kratzsch J, Mergl R, Enzenbach C, Witte V, Villringer A, Kluge M. Higher fasting ghrelin serum levels in active smokers than in former and never-smokers. World J Biol Psychiatry 2020; 21:748-756. [PMID: 31552785 DOI: 10.1080/15622975.2019.1671610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Ghrelin, an orexigenic peptide hormone, promotes drug reward and is suspected to play a role in nicotine dependence. However, there is little data on whether ghrelin levels are associated with active and/or former smoking. The relationship between ghrelin serum levels and smoking status in a population-based sample of individuals was studied. METHODS Total ghrelin was determined after an overnight fast in 1519 subjects participating in a population-based cohort study ('LIFE-Adult'). Tobacco consumption was assessed using both the questionnaire and interview. Generalised linear models with gamma distribution and log-link function were performed to analyse the association of total serum ghrelin with smoking status and the association between serum ghrelin and the amount of tobacco consumed in active smokers. RESULTS Ghrelin levels were positively associated with active, but not former smoking (OR = 1.095; p = .002). This association was not moderated by sex (interaction of 'active smoking' and sex: p = .346). Ghrelin levels were not associated with the amount of tobacco consumed in active smokers. CONCLUSIONS This study provides evidence that total ghrelin serum levels are positively associated with active smoking. No association was found for former smokers. A unique feature of the study is the large sample size.
Collapse
Affiliation(s)
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany.,Institute of Clinical Psychology and Psychotherapy, Bundeswehr University Munich, Neubiberg, Germany
| | - Cornelia Enzenbach
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Veronika Witte
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Al Massadi O, Nogueiras R, Dieguez C, Girault JA. Ghrelin and food reward. Neuropharmacology 2019; 148:131-138. [PMID: 30615902 DOI: 10.1016/j.neuropharm.2019.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Food intake is tightly regulated by homeostatic and reward mechanisms and the adequate function of both is necessary for the proper maintenance of energy balance. Ghrelin impacts on these two levels to induce feeding. In this review, we present the actions of ghrelin in food reward, including their dependence on other relevant modulators implicated in the motivational aspects of feeding, including dopamine, opioid peptides, and endocannabinoids. We also describe the interaction between brain areas involved in homeostatic regulation of feeding and the reward system, with a special emphasis on the role of arcuate nucleus melanocortins and lateral hypothalamus orexins in ghrelin function. Finally, we briefly discuss the actions of ghrelin in food reward in obesity. We propose that new insights into the mechanism of action of ghrelin in the rewarding and motivational control of food intake will help to understand food-related disorders including obesity and anorexia.
Collapse
Affiliation(s)
- Omar Al Massadi
- Inserm UMR-S 839, 75005, Paris, France; Sorbonne Université, Sciences and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005, Paris, France.
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 839, 75005, Paris, France; Sorbonne Université, Sciences and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005, Paris, France
| |
Collapse
|
12
|
Jerlhag E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol Ther 2018; 196:1-14. [PMID: 30439457 DOI: 10.1016/j.pharmthera.2018.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the limited efficacy of existing medications for addictive disorders including alcohol use disorder (AUD), the need for additional medications is substantial. Potential new medications for addiction can be identified through investigation of the neurochemical substrates mediating the ability of drugs of abuse such as alcohol to activate the mesolimbic dopamine system. Interestingly, recent studies implicate neuropeptides of the gut-brain axis as modulators of reward and addiction processes. The present review therefore summarizes the current studies investigating the ability of the gut-brain peptides ghrelin, glucagon-like peptide-1 (GLP-1), amylin and neuromedin U (NMU) to modulate alcohol- and drug-related behaviors in rodents and humans. Extensive literature demonstrates that ghrelin, the only known orexigenic neuropeptide to date, enhances reward as well as the intake of alcohol, and other drugs of abuse, while ghrelin receptor antagonism has the opposite effects. On the other hand, the anorexigenic peptides GLP-1, amylin and NMU independently inhibits reward from alcohol and drugs of abuse in rodents. Collectively, these rodent and human studies imply that central ghrelin, GLP-1, amylin and NMU signaling may contribute to addiction processes. Therefore, the need for randomized clinical trials investigating the effects of agents targeting these aforementioned systems on drug/alcohol use is substantial.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Changes in striatal dopamine release and locomotor activity following acute withdrawal from chronic nicotine are mediated by CRF1, but not CRF2, receptors. Brain Res 2018; 1706:41-47. [PMID: 30722977 DOI: 10.1016/j.brainres.2018.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate the participation of corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) in the alterations of the dorsal and ventral striatal dopamine release and the vertical and horizontal locomotor activity observed in rats following chronic nicotine treatment and consequent acute withdrawal. In this purpose, male Wistar rats were exposed to repeated intraperitoneal (ip) injection with nicotine or saline solution for 7 days. On the 8th day or the 9th day the rats were injected intracerebroventricularly (icv) with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B or saline solution. Thirty minutes after the icv injection the changes of the horizontal and vertical locomotor activity were recorded in an in vivo conducta system. Immediately after the behavioral recordings the changes of the dorsal and ventral striatal dopamine release were determined in an in vitro superfusion system. On the 8th day, the horizontal and vertical locomotor activities and the dorsal and ventral striatal dopamine releases increased significantly in nicotine-treated rats, compared to the saline-treated ones. On the 9th day, the horizontal locomotor activity and the dorsal striatal dopamine release increased significantly, whereas the vertical locomotor activity and the ventral striatal dopamine release decreased significantly in nicotine-treated rats, compared to the saline-treated ones. All the changes observed were attenuated significantly by antalarmin, but not astressin2B. The present study demonstrates that the changes of striatal dopamine release and locomotor activity observed following chronic nicotine treatment and consequent acute withdrawal are mediated by CRF1, but not CRF2, receptor.
Collapse
|
14
|
Zallar LJ, Farokhnia M, Tunstall BJ, Vendruscolo LF, Leggio L. The Role of the Ghrelin System in Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:89-119. [PMID: 29056157 DOI: 10.1016/bs.irn.2017.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past years, a significant volume of research has implicated the appetitive hormone ghrelin in the mechanisms underlying drug use and addiction. From a neuroscientific standpoint, ghrelin modulates both reward and stress pathways, two key drivers of substance use behaviors. Previous investigations support a connection between the ghrelin system and alcohol, stimulants, and tobacco use in both animals and humans, while the research on opioids and cannabis is scarce. In general, upregulation of the ghrelin system seems to enhance craving for drugs as well as substances use. On the other hand, acute and chronic exposure to drugs of abuse influences the ghrelin system at different levels. This chapter summarizes the literature on the relationship between the ghrelin system and substance-related behaviors. We also review recent work investigating the ghrelin system as a potential pharmacological target for treating substance use disorders and discuss the need for additional research.
Collapse
Affiliation(s)
- Lia J Zallar
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States.
| |
Collapse
|
15
|
Growth hormone biases amygdala network activation after fear learning. Transl Psychiatry 2016; 6:e960. [PMID: 27898076 PMCID: PMC5290350 DOI: 10.1038/tp.2016.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 01/27/2023] Open
Abstract
Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the 'over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation.
Collapse
|
16
|
Kaya E, Gozen O, Ugur M, Koylu EO, Kanit L, Balkan B. Nicotine regulates cocaine-amphetamine-Regulated Transcript (Cart) in the mesocorticolimbic system. Synapse 2016; 70:283-92. [PMID: 26990424 DOI: 10.1002/syn.21903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
Cocaine-and-Amphetamine Regulated Transcript (CART) mRNA and peptides are intensely expressed in the brain regions comprising mesocorticolimbic system. Studies suggest that CART peptides may have a role in the regulation of reward circuitry. The present study aimed to examine the effect of nicotine on CART expression in the mesocorticolimbic system. Three different doses of nicotine (0.2, 0.4, 0.6 mg/kg free base) were injected subcutaneously for 5 days, and on day 6, rats were decapitated following a challenge dose. CART mRNA and peptide levels in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (DST), amygdala (AMG), lateral hypothalamic area (LHA), and ventral tegmental area (VTA) were measured by quantitative real-time PCR (qPCR) and Western Blot analysis, respectively. In the mPFC, 0.4 and 0.6 mg/kg nicotine, decreased CART peptide levels whereas there was no effect on CART mRNA levels. In the VTA, a down-regulation of CART peptide expression was observed with 0.2 and 0.6 mg/kg nicotine. Conversely, 0.4 and 0.6 mg/kg nicotine increased CART mRNA levels in the AMG without affecting the CART peptide expression. Nicotine did not regulate CART mRNA or CART peptide expression in the NAc, DST, and LHA. We conclude that nicotine regulates CART expression in the mesocorticolimbic system and this regulation may play an important role in nicotine reward. Synapse 70:283-292, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Egemen Kaya
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Muzeyyen Ugur
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Ersin O Koylu
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Burcu Balkan
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| |
Collapse
|
17
|
Vatsalya V, Gowin JL, Schwandt ML, Momenan R, Coe MA, Cooke ME, Hommer DW, Bartlett S, Heilig M, Ramchandani VA. Effects of Varenicline on Neural Correlates of Alcohol Salience in Heavy Drinkers. Int J Neuropsychopharmacol 2015; 18:pyv068. [PMID: 26209857 PMCID: PMC4675979 DOI: 10.1093/ijnp/pyv068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Preclinical and emerging clinical evidence indicates that varenicline, a nicotinic partial agonist approved for smoking cessation, attenuates alcohol seeking and consumption. Reductions of alcohol craving have been observed under varenicline treatment and suggest effects of the medication on alcohol reward processing, but this hypothesis remains untested. METHODS In this double-blind, placebo-controlled randomized experimental medicine study, 29 heavy drinkers underwent a functional magnetic resonance imaging scan after 2 weeks of varenicline (2mg/d) or placebo administration. During functional magnetic resonance imaging, participants performed the Alcohol-Food Incentive Delay task, where they could earn points for snacks or alcohol. At baseline and after 3 weeks of medication, participants underwent intravenous alcohol self-administration sessions in the laboratory. RESULTS During the functional magnetic resonance imaging scan, participants in the varenicline group (N=17) reported lower feelings of happiness and excitement on subjective mood scales when anticipating alcohol reward compared with the placebo group (N=12). Linear mixed effects analysis revealed that anticipation of alcohol reward was associated with significant blood oxygen level dependent activation of the ventral striatum, amygdala, and posterior insula in the placebo group; this activation was attenuated in the varenicline group. The varenicline group showed no difference in intravenous alcohol self-administration relative to the placebo group for either session. Participants with higher insula activation when anticipating alcohol reward showed higher alcohol self-administration behavior across groups. CONCLUSIONS Our findings suggest that varenicline decreases blood oxygen level dependent activation in striato-cortico-limbic regions associated with motivation and incentive salience of alcohol in heavy drinkers. This mechanism may underlie the clinical effectiveness of varenicline in reducing alcohol intake and indicates its potential utility as a pharmacotherapy for alcohol use disorders.
Collapse
Affiliation(s)
- Vatsalya Vatsalya
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Joshua L Gowin
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Melanie L Schwandt
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Reza Momenan
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Marion A Coe
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Megan E Cooke
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Daniel W Hommer
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Selena Bartlett
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Markus Heilig
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Vatsalya, Gowin, Coe, Cooke, and Ramchandani); Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Schwandt and Heilig); Section on Brain Electrophysiology and Imaging, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (Drs Momenan and Hommer); Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia (Dr Bartlett).V.V. current affiliation: University of Louisville and Robley Rex VAMC, Louisville, Kentucky.
| |
Collapse
|
18
|
Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015; 289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/27/2014] [Accepted: 12/31/2014] [Indexed: 12/30/2022]
|
19
|
al’Absi M, Lemieux A, Nakajima M. Peptide YY and ghrelin predict craving and risk for relapse in abstinent smokers. Psychoneuroendocrinology 2014; 49:253-9. [PMID: 25127083 PMCID: PMC4165731 DOI: 10.1016/j.psyneuen.2014.07.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
Abstract
Appetite hormones are directly involved in regulating satiety, energy expenditure, and food intake, and accumulating evidence suggests their involvement in regulating reward and craving for drugs. This study investigated the ability of peptide YY (PYY) and ghrelin during the initial 24-48 h of a smoking cessation attempt to predict smoking relapse at 4 weeks. Multiple regression analysis indicated that increased PYY was associated with decreased reported craving and increased positive affect. Cox proportional hazard models showed that higher ghrelin levels predicted increased risk of smoking relapse (hazard ratio=2.06, 95% CI=1.30-3.27). These results indicate that circulating PYY may have buffering effects during the early stages of cessation while ghrelin may confer increased risk of smoking relapse. Further investigation of the links between these hormones and nicotine dependence is warranted.
Collapse
Affiliation(s)
- Mustafa al’Absi
- Duluth Medical Research Institute, University of Minnesota Medical School, Duluth, MN, USA,Department of Biobehavioral Health and Population, Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Andrine Lemieux
- Duluth Medical Research Institute, University of Minnesota Medical School, Duluth, MN, USA
| | - Motohiro Nakajima
- Duluth Medical Research Institute, University of Minnesota Medical School, Duluth, MN, USA,Department of Biobehavioral Health and Population, Sciences, University of Minnesota Medical School, Duluth, MN, USA
| |
Collapse
|
20
|
Schuette LM, Gray CC, Currie PJ. Microinjection of Ghrelin into the Ventral Tegmental Area Potentiates Cocaine-Induced Conditioned Place Preference. ACTA ACUST UNITED AC 2013; 3:276-580. [PMID: 28989815 PMCID: PMC5627659 DOI: 10.4236/jbbs.2013.38060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Prior work has shown that systemic cocaine pretreatment augments cocaine conditioned place preference (CPP) in rats. In contrast, ghrelin receptor antagonism attenuates cocaine and amphetamine-induced CPP. In order to further investigate ghrelin’s role in dopamine-mediated reward, the present report examined whether pretreament with ghrelin, administered directly into the ventral tegmental area (VTA) of the midbrain, would potentiate the rewarding properties of cocaine as measured by CPP. Adult male Sprague-Dawley rats were given access to either side of the CPP chamber in order to determine initial side preferences. The rats were then restricted to either their non-preferred or preferred side over the course of conditioning which lasted for a total of 16 consecutive days. This was followed by a final test day to then reassess preference. On days where rats were confined to their non-preferred side, ghrelin (30 – 300 pmol) and cocaine (0.625 – 10 mg/kg IP) were administered immediately prior to the conditioning trial. On alternate days rats were treated with vehicle and placed into what was initially determined to be their preferred side. CPP was calculated as the difference in percentage of total time spent in the treatment-paired compartment during the post-conditioning session and the pre-conditioning session. Our results indicated that both cocaine and ghrelin elicited CPP and that ghrelin pre-treatment potentiated the effect of cocaine on place preference. Overall, these findings provide additional support for the argument that ghrelin signaling within the VTA enhances the rewarding effects of psychostimulant compounds.
Collapse
Affiliation(s)
| | | | - Paul J Currie
- Department of Psychology, Reed College, Portland, USA
| |
Collapse
|