1
|
Tang H, Ma T, Wang Y, Zhang C, Chu Y, Guo Y, Xi J, Jiao D, Li B, Xie C, Wang Y. Paeoniflorin modulates AGEs/RAGE/P38MAPK/ERK/mTOR autophagy pathway to improve cognitive dysfunction in MRL/lpr mice. Int J Biol Macromol 2025; 307:141765. [PMID: 40049494 DOI: 10.1016/j.ijbiomac.2025.141765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVE The objective of this study was to investigate the therapeutic effects of paeoniflorin (PA) on cognitive impairment and to elucidate its potential mechanisms in MRL/lpr mice, a model of systemic lupus erythematosus-associated cognitive dysfunction. METHOD Cognitive performance and behavioral responses were assessed using a comprehensive battery of tests, including the Morris water maze, the Novel object recognition test, and the Y maze. Neuropathological changes in the hippocampal regions were visualized through Nissl, HE and Immunohistochemistry staining. Protein expression levels of receptor for advanced glycation end-products (RAGE) and LC3B were quantified by immunofluorescence, while the ultrastructure of autophagic organelles was examined using transmission electron microscopy (TEM). Inflammatory cytokines, namely tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) were quantified in both serum and hippocampal homogenates by enzyme-linked immunosorbent assay (ELISA). The hippocampal expression of advanced glycation end-products (AGEs), RAGE, p62, Beclin-1, and key proteins involved in the mitogen-activated protein kinase (MAPK) pathways, including p38MAPK, ERK, and mTOR were analyzed by Western blotting. RESULT Paeoniflorin ameliorates cognitive dysfunction, neuronal damage, pro-inflammatory cytokine production in MRL/lpr mice. Paeoniflorin suppresses RAGE and autophagy levels and P38 MAPK/ERK/mTOR signaling pathway activation in the hippocampus of MRL/lpr mice. CONCLUSION Paeoniflorin may exert its neuroprotective effects by modulating the AGEs/RAGE/P38MAPK/ERK/mTOR autophagy signaling pathway.
Collapse
Affiliation(s)
- Honghui Tang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Tianzhen Ma
- Department of Embryology, Bengbu Medical University, Bengbu, Anhui 233030, China; Anhui Key Laboratory of Tissue Transplantation, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui 233030, China
| | - Yanxin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Chuanmeng Zhang
- School of Mental Health, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Yuanding Chu
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Yuqing Guo
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Jin Xi
- Bengbu Medical University Research Center, Bengbu, Anhui 233030, China; Anhui Key Laboratory of Tissue Transplantation, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui 233030, China
| | - Dongliang Jiao
- School of Mental Health, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui 233030, China
| | - Changhao Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui 233030, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, 287 Changhuai Road, Bengbu, Anhui 233004, China.
| | - Yuanyuan Wang
- Department of Embryology, Bengbu Medical University, Bengbu, Anhui 233030, China; Anhui Key Laboratory of Tissue Transplantation, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui 233030, China.
| |
Collapse
|
2
|
Liu B, Dong K, Zhao Y, Wang X, Sun Z, Xie F, Qian L. Depletion of MGO or Its Derivatives Ameliorate CUMS-Induced Neuroinflammation. Cells 2025; 14:397. [PMID: 40136646 PMCID: PMC11941696 DOI: 10.3390/cells14060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Advanced glycation end products (AGEs) are a series of structurally complex and harmful compounds formed through the reaction between the carbonyl group of reducing sugars (such as glucose and fructose) and the free amino groups of proteins, lipids, or nucleic acids. Excessive accumulation of AGEs in the body can trigger oxidative stress, induce inflammatory responses, and contribute to the development of diabetes, atherosclerosis, and neurological disorders. Within the category of dicarbonyl compounds, methylglyoxal (MGO)-a byproduct resulting from glucose degradation-serves as a pivotal precursor in the formation of AGEs and the induction of neurotoxicity. Specifically, AGEs generated from MGO display significant cytotoxicity toward cells in the central nervous system. Therefore, we aimed to investigate the role of MGO-AGEs in neuroinflammation mediated by CUMS. Interestingly, we found that the overexpression of glyoxalase 1 (GLO1) reduced the levels of MGO in corticosterone-treated microglia, thereby alleviating the inflammatory response. Furthermore, overexpression of GLO1 in the hippocampus of chronically stressed mice reduced MGO levels, mitigating CUMS-induced neuroinflammation and cognitive impairment. Additionally, when using the receptor for advanced glycation end products (RAGE) inhibitor FPS-ZM1 in primary microglia cells, we observed that despite corticosterone-induced elevation of MGO, no significant inflammatory response occurred. This suggests that RAGE clearance can reduce MGO-AGE-mediated neurotoxicity. Subsequently, we used FPS-ZM1 to treat chronically stressed mice and found that it significantly ameliorated neuroinflammation and cognitive dysfunction. These results suggest that targeting MGO metabolism could serve as a therapeutic approach to manage neuroinflammation in stress-related mental disorders.
Collapse
Affiliation(s)
- Bing Liu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Ke Dong
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
- School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Xue Wang
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100191, China; (B.L.); (K.D.); (Y.Z.); (X.W.); (Z.S.)
| |
Collapse
|
3
|
Li W, Chen Q, Peng C, Yang D, Liu S, Lv Y, Jiang L, Xu S, Huang L. Roles of the Receptor for Advanced Glycation End Products and Its Ligands in the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2025; 26:403. [PMID: 39796257 PMCID: PMC11721675 DOI: 10.3390/ijms26010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction. This further promotes inflammatory responses and oxidative stress, ultimately leading to a range of age-related diseases. Given RAGE's significant role in AD, inhibitors that target RAGE and its ligands hold promise as new strategies for treating AD, offering new possibilities for alleviating and treating this serious neurodegenerative disease. This article reviews the various pathogenic mechanisms of AD and summarizes the literature on the interaction between RAGE and its ligands in various AD-related pathological processes, with a particular focus on the evidence and mechanisms by which RAGE interactions with AGEs, HMGB1, Aβ, and S100 proteins induce cognitive impairment in AD. Furthermore, the article discusses the principles of action of RAGE inhibitors and inhibitors targeting RAGE-ligand interactions, along with relevant clinical trials.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Qiuping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Chengjie Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Si Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Yanwen Lv
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Langqi Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
4
|
Radziszewski M, Galus R, Łuszczyński K, Winiarski S, Wąsowski D, Malejczyk J, Włodarski P, Ścieżyńska A. The RAGE Pathway in Skin Pathology Development: A Comprehensive Review of Its Role and Therapeutic Potential. Int J Mol Sci 2024; 25:13570. [PMID: 39769332 PMCID: PMC11676465 DOI: 10.3390/ijms252413570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, is expressed in various cell types and mediates cellular responses to a wide range of ligands. The activation of RAGE triggers complex signaling pathways that drive inflammatory, oxidative, and proliferative responses, which are increasingly implicated in the pathogenesis of skin diseases. Despite its well-established roles in conditions such as diabetes, cancer, and chronic inflammation, the contribution of RAGE to skin pathologies remains underexplored. This review synthesizes current findings on RAGE's involvement in the pathophysiology of skin diseases, including conditions such as psoriasis, atopic dermatitis, and lichen planus, focusing on its roles in inflammatory signaling, tissue remodeling, and skin cancer progression. Additionally, it examines RAGE-modulating treatments investigated in dermatological contexts, highlighting their potential as therapeutic options. Given RAGE's significance in a variety of skin conditions, further research into its mediated pathways may uncover new opportunities for targeted interventions in skin-specific RAGE signaling.
Collapse
Affiliation(s)
- Marcin Radziszewski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Łuszczyński
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| | - Sebastian Winiarski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Dariusz Wąsowski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Paweł Włodarski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| |
Collapse
|
5
|
Vitorakis N, Piperi C. Pivotal role of AGE-RAGE axis in brain aging with current interventions. Ageing Res Rev 2024; 100:102429. [PMID: 39032613 DOI: 10.1016/j.arr.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Brain aging is characterized by several structural, biochemical and molecular changes which can vary among different individuals and can be influenced by genetic, environmental and lifestyle factors. Accumulation of protein aggregates, altered neurotransmitter composition, low-grade chronic inflammation and prolonged oxidative stress have been shown to contribute to brain tissue damage. Among key metabolic byproducts, advanced glycation end products (AGEs), formed endogenously through non-enzymatic reactions or acquired directly from the diet or other exogenous sources, have been detected to accumulate in brain tissue, exerting detrimental effects on cellular structure and function, contributing to neurodegeneration and cognitive decline. Upon binding to signal transduction receptor RAGE, AGEs can initiate pro-inflammatory pathways, exacerbate oxidative stress and neuroinflammation, thus impairing neuronal function and cognition. AGE-RAGE signaling induces programmed cell death, disrupts the blood-brain barrier and promotes protein aggregation, further compromising brain health. In this review, we investigate the intricate relationship between the AGE-RAGE pathway and brain aging in order to detect affected molecules and potential targets for intervention. Reduction of AGE deposition in brain tissue either through novel pharmacological therapeutics, dietary modifications, and lifestyle changes, shows a great promise in mitigating cognitive decline associated with brain aging.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece.
| |
Collapse
|
6
|
Lian W, Wang Z, Zhou F, Yuan X, Xia C, Wang W, Yan Y, Cheng Y, Yang H, Xu J, He J, Zhang W. Cornuside ameliorates cognitive impairments via RAGE/TXNIP/NF-κB signaling in Aβ 1-42 induced Alzheimer's disease mice. J Neuroimmune Pharmacol 2024; 19:24. [PMID: 38780885 DOI: 10.1007/s11481-024-10120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aβ1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1β, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aβ and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.
Collapse
Grants
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- 3332023096 Central Universities Fundamental for Basic Scientific Research of Peking Union Medical College
- 2022SLZDCY-001 Yan'an Science and Technology Plan Project
- 2022JZ-49 Key Project Funding for Shaanxi Provincial Natural Science Basic Rearch Program
- 82273809, 82273815, 82073731 National Natural Science Foundation of China
- 82273809, 82273815, 82073731 National Natural Science Foundation of China
- 2023-NHLHCRF-CXYW-01, 2022-NHLHCRF-YNZY-01 National High Level hospital Clinical Research Funding
- 2023-NHLHCRF-CXYW-01, 2022-NHLHCRF-YNZY-01 National High Level hospital Clinical Research Funding
- 2022-JKCS-16 Nonprofit Central Research Institute Fund of Chinese Academy of Medical Science
- CPA-B04-ZC-2021-005 Chinese Pharmaceutical Association-Yiling Biomedical Innovation Fund Project
Collapse
Affiliation(s)
- Wenwen Lian
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Zexing Wang
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Fulin Zhou
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Xiaotang Yuan
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wenping Wang
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yunchi Cheng
- Department of Pharmacology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Jiekun Xu
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
7
|
Olson LC, Nguyen T, Sabalewski EL, Puetzer JL, Schwartz Z, McClure MJ. S100b treatment overcomes RAGE signaling deficits in myoblasts on advanced glycation end-product cross-linked collagen and promotes myogenic differentiation. Am J Physiol Cell Physiol 2024; 326:C1080-C1093. [PMID: 38314727 DOI: 10.1152/ajpcell.00502.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.
Collapse
Affiliation(s)
- Lucas C Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Gerontology, College of Health Professionals, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Tri Nguyen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Eleanor L Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Orthopaedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Orthopaedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
8
|
Wu D, Huang W, Zhang J, He L, Chen S, Zhu S, Sang Y, Liu K, Hou G, Chen B, Xu Y, Liu B, Yao H. Downregulation of VEGFA accelerates AGEs-mediated nucleus pulposus degeneration through inhibiting protective mitophagy in high glucose environments. Int J Biol Macromol 2024; 262:129950. [PMID: 38320636 DOI: 10.1016/j.ijbiomac.2024.129950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Intervertebral disc degeneration (IVDD) contributes largely to low back pain. Recent studies have highlighted the exacerbating role of diabetes mellitus (DM) in IVDD, mainly due to the influence of hyperglycemia (HG) or the accumulation of advanced glycation end products (AGEs). Vascular endothelial growth factor A (VEGFA) newly assumed a distinct impact in nonvascular tissues through mitophagy regulation. However, the combined actions of HG and AGEs on IVDD and the involved role of VEGFA remain unclear. We confirmed the potential relation between VEGFA and DM through bioinformatics and biological specimen detection. Then we observed that AGEs induced nucleus pulposus (NP) cell degeneration by upregulating cellular reactive oxygen species (ROS), and HG further aggravated ROS level through breaking AGEs-induced protective mitophagy. Furthermore, this adverse effect could be strengthened by VEGFA knockdown. Importantly, we identified that the regulation of VEGFA and mitophagy were vital mechanisms in AGEs-HG-induced NP cell degeneration through Parkin/Akt/mTOR and AMPK/mTOR pathway. Additionally, VEGFA overexpression through local injection with lentivirus carrying VEGFA plasmids significantly alleviated NP degeneration and IVDD in STZ-induced diabetes and puncture rat models. In conclusion, the findings first confirmed that VEGFA protects against AGEs-HG-induced IVDD, which may represent a therapeutic strategy for DM-related IVDD.
Collapse
Affiliation(s)
- Depeng Wu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Weijun Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Junbin Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Lei He
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Siyu Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Sihan Zhu
- University Hospital, LMU Munich, 81377 Munich, Germany
| | - Yuan Sang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Kaihua Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Gang Hou
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Biying Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yichun Xu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bin Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China.
| | - Hui Yao
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
9
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Angioni R, Bonfanti M, Caporale N, Sánchez-Rodríguez R, Munari F, Savino A, Pasqualato S, Buratto D, Pagani I, Bertoldi N, Zanon C, Ferrari P, Ricciardelli E, Putaggio C, Ghezzi S, Elli F, Rotta L, Scardua A, Weber J, Cecatiello V, Iorio F, Zonta F, Cattelan AM, Vicenzi E, Vannini A, Molon B, Villa CE, Viola A, Testa G. RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity. Cell Rep Med 2023; 4:101266. [PMID: 37944530 PMCID: PMC10694673 DOI: 10.1016/j.xcrm.2023.101266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.
Collapse
Affiliation(s)
- Roberta Angioni
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Matteo Bonfanti
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Nicolò Caporale
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Aurora Savino
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Nicole Bertoldi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Paolo Ferrari
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Cristina Putaggio
- Infectious Disease Unit, Padova University Hospital, 35128 Padova, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesco Elli
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | | | - Janine Weber
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Francesco Iorio
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | | | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Carlo Emanuele Villa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy.
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
11
|
Zhou J, Liu S, Bi S, Kong W, Qian R, Xie X, Zeng M, Jiang X, Liao Z, Shuai M, Liu W, Cheng L, Wu M. The RAGE signaling in osteoporosis. Biomed Pharmacother 2023; 165:115044. [PMID: 37354815 DOI: 10.1016/j.biopha.2023.115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoporosis (OP), characterized by an imbalance of bone remodeling between formation and resorption, has become a health issue worldwide. The receptor for advanced glycation end product (RAGE), a transmembrane protein in the immunoglobin family, has multiple ligands and has been involved in many chronic diseases, such as diabetes and OP. Increasing evidence shows that activation of the RAGE signaling negatively affects bone remodeling. Ligands, such as advanced glycation end products (AGEs), S100, β-amyloid (Aβ), and high mobility group box 1 (HMGB1), have been well documented that they may negatively regulate the proliferation and differentiation of osteoblasts and positively stimulate osteoclastogenesis by activating the expression of RAGE. In this review, we comprehensively discuss the structure of RAGE and its biological functions in the pathogenesis of OP. The research findings suggest that RAGE signaling has become a potential target for the therapeutic management of OP.
Collapse
Affiliation(s)
- Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Rui Qian
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Ming Zeng
- Department of Orthopedics, Ruijin Traditional Chinese Medicine Hospital, Ruijin 342500, China
| | - Xiaowei Jiang
- Department of Joint Surgery, Ningdu County People's Hospital, Ningdu 342800, China
| | - Zhibin Liao
- Department of Joint Surgery, Ningdu County People's Hospital, Ningdu 342800, China
| | - Ming Shuai
- Department of Orthopedics, Chongyi County People's Hospital, Chongyi 341300, China
| | - Wei Liu
- Department of Orthopedics, Ningdu County Traditional Chinese Medicine Hospital, Ningdu 342800, China
| | - Long Cheng
- Department of Orthopedics, Ningdu County Traditional Chinese Medicine Hospital, Ningdu 342800, China
| | - Moujian Wu
- Department of Orthopedics, Xingguo County Traditional Chinese Medicine Hospital, Xingguo 342400, China
| |
Collapse
|
12
|
Bansal S, Burman A, Tripathi AK. Advanced glycation end products: Key mediator and therapeutic target of cardiovascular complications in diabetes. World J Diabetes 2023; 14:1146-1162. [PMID: 37664478 PMCID: PMC10473940 DOI: 10.4239/wjd.v14.i8.1146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
The incidence of type 2 diabetes mellitus is growing in epidemic proportions and has become one of the most critical public health concerns. Cardiovascular complications associated with diabetes are the leading cause of morbidity and mortality. The cardiovascular diseases that accompany diabetes include angina, myocardial infarction, stroke, peripheral artery disease, and congestive heart failure. Among the various risk factors generated secondary to hyperglycemic situations, advanced glycation end products (AGEs) are one of the important targets for future diagnosis and prevention of diabetes. In the last decade, AGEs have drawn a lot of attention due to their involvement in diabetic patho-physiology. AGEs can be derived exogenously and endogenously through various pathways. These are a non-homogeneous, chemically diverse group of compounds formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amino groups of protein, lipids, and nucleic acid. AGEs mediate their pathological effects at the cellular and extracellular levels by multiple pathways. At the cellular level, they activate signaling cascades via the receptor for AGEs and initiate a complex series of intracellular signaling resulting in reactive oxygen species generation, inflammation, cellular proliferation, and fibrosis that may possibly exacerbate the damaging effects on cardiac functions in diabetics. AGEs also cause covalent modifications and cross-linking of serum and extracellular matrix proteins; altering their structure, stability, and functions. Early diagnosis of diabetes may prevent its progression to complications and decrease its associated comorbidities. In the present review, we recapitulate the role of AGEs as a crucial mediator of hyperglycemia-mediated detrimental effects in diabetes-associated complications. Furthermore, this review presents an overview of future perspectives for new therapeutic interventions to ameliorate cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Savita Bansal
- Department of Biochemistry, Institute of Home Sciences, University of Delhi, New Delhi 110016, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi 110016, India
| | - Asok Kumar Tripathi
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, New Delhi 110095, India
| |
Collapse
|
13
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
14
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
de Almeida GRL, Szczepanik JC, Selhorst I, Cunha MP, Dafre AL. The expanding impact of methylglyoxal on behavior-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110635. [PMID: 36103947 DOI: 10.1016/j.pnpbp.2022.110635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl compound formed as a byproduct of glycolysis. MGO is a major cell-permeant precursor of advanced glycation end products (AGEs), since it readily reacts with basic phospholipids and nucleotides, as well as amino acid residues of proteins, such as arginine, cysteine, and lysine. The AGEs production induced by MGO are widely associated with several pathologies, including neurodegenerative diseases. However, the impact of MGO metabolism and AGEs formation in the central nervous system (particularly in neurons, astrocytes and oligodendrocytes) on behavior and psychiatric diseases is not fully understood. Here, we briefly present background information on the biological activity of MGO in the central nervous system. It was gathered the available information on the role of MGO metabolism at the physiological processes, as well as at the neurobiology of psychiatry diseases, especially pain-related experiences, anxiety, depression, and cognition impairment-associated diseases. To clarify the role of MGO on behavior and associated diseases, we reviewed primarily the main findings at preclinical studies focusing on genetic and pharmacological approaches. Since monoamine neurotransmitter systems are implicated as pivotal targets on the pathophysiology and treatment of psychiatry and cognitive-related diseases, we also reviewed how MGO affects these neurotransmission systems and the implications of this phenomenon for nociception and pain; learning and cognition; and mood. In summary, this review highlights the pivotal role of glyoxalase 1 (Glo1) and MGO levels in modulating behavioral phenotypes, as well as related cellular and molecular signaling. Conclusively, this review signals dopamine as a new neurochemical MGO target, as well as highlights how MGO metabolism can modulate the pathophysiology and treatment of pain, psychiatric and cognitive-related diseases.
Collapse
Affiliation(s)
- Gudrian R L de Almeida
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Jozimar C Szczepanik
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Basic Sciences of Life, Federal University of Juiz de Fora, 35010-177 Governador Valadares, MG, Brazil.
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
16
|
Li H, Zhou J, Liu S, Chen X, Qin T, Huang G, Luo P, Hu Y, Xia X. Cinnamomum cassia Presl flavonoids prevent hyperglycemia-induced cognitive impairment via inhibiting of AGEs accumulation and oxidative stress. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Dogra S, Das D, Maity SK, Paul A, Rawat P, Daniel PV, Das K, Mitra S, Chakrabarti P, Mondal P. Liver-Derived S100A6 Propels β-Cell Dysfunction in NAFLD. Diabetes 2022; 71:2284-2296. [PMID: 35899967 DOI: 10.2337/db22-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an independent predictor of systemic insulin resistance and type 2 diabetes mellitus (T2DM). However, converse correlates between excess liver fat content and β-cell function remain equivocal. Specifically, how the accumulation of liver fat consequent to the enhanced de novo lipogenesis (DNL) leads to pancreatic β-cell failure and eventually to T2DM is elusive. Here, we have identified that low-molecular-weight calcium-binding protein S100A6, or calcyclin, inhibits glucose-stimulated insulin secretion (GSIS) from β cells through activation of the receptor for the advanced glycation end products and diminution of mitochondrial respiration. Serum S100A6 level is elevated both in human patients with NAFLD and in a high-fat diet-induced mouse model of NAFLD. Although serum S100A6 levels are negatively associated with β-cell insulin secretory capacity in human patients, depletion of hepatic S100A6 improves GSIS and glycemia in mice, suggesting that S100A6 contributes to the pathophysiology of diabetes in NAFLD. Moreover, transcriptional induction of hepatic S100A6 is driven by the potent regulator of DNL, carbohydrate response element-binding protein (ChREBP), and ectopic expression of ChREBP in the liver suppresses GSIS in a S100A6-sensitive manner. Together, these data suggest elevated serum levels of S100A6 may serve as a biomarker in identifying patients with NAFLD with a heightened risk of developing β-cell dysfunction. Overall, our data implicate S100A6 as, to our knowledge, a hitherto unknown hepatokine to be activated by ChREBP and that participates in the hepato-pancreatic communication to impair insulin secretion and drive the development of T2DM in NAFLD.
Collapse
Affiliation(s)
- Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology-Mandi
| | - Debajyoti Das
- Division of Cell Biology and Physiology, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata
| | - Sujay K Maity
- Division of Cell Biology and Physiology, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata
| | - Avishek Paul
- Division of Cell Biology and Physiology, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata
| | - Priya Rawat
- School of Basic Sciences, Indian Institute of Technology-Mandi
| | | | - Kausik Das
- Department of Hepatology, Institute of Post-Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata, India
| | - Souveek Mitra
- Department of Hepatology, Institute of Post-Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata
| | | |
Collapse
|
18
|
Long H, Zhang S, Zeng S, Tong Y, Liu J, Liu C, Li D. Interaction of RAGE with α-synuclein fibrils mediates inflammatory response of microglia. Cell Rep 2022; 40:111401. [PMID: 36130498 DOI: 10.1016/j.celrep.2022.111401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022] Open
Abstract
Microglia-mediated neuroinflammation and α-synuclein (α-syn) aggregation, both as pathological hallmarks of Parkinson's disease (PD), crosstalk to exacerbate degeneration of dopaminergic neurons and PD progression. However, the mechanism underlying their interaction is poorly understood, which obstructs effective therapeutic inhibition of α-syn-induced neuroinflammation. Here, we initiate from structure-based interaction predictions and find that receptor for advanced glycation end products (RAGE) serves as a receptor of α-syn fibrils on microglia. Results of nuclear magnetic resonance (NMR) spectroscopy and mutagenesis validate that the V domain of RAGE that contains an alkaline surface can bind with acidic C-terminal residues of α-syn. Furthermore, the binding of α-syn fibrils with RAGE induces neuroinflammation, which is blocked by both genetic depletion of RAGE and inhibitor FPS-ZM1. Our work shows the important role, as well as the structural mechanism, of RAGE in mediating the inflammatory response of microglia to α-syn fibrils, which may help to establish effective therapeutic strategies to alleviate α-syn-induced neuroinflammation and neuronal damage.
Collapse
Affiliation(s)
- Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yilun Tong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China; WLA Laboratories, World Laureates Association, Shanghai 201203, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Advanced Glycation End Products in Health and Disease. Microorganisms 2022; 10:microorganisms10091848. [PMID: 36144449 PMCID: PMC9501837 DOI: 10.3390/microorganisms10091848] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead to novel therapeutic candidates.
Collapse
|
20
|
Abstract
Smoking is a well-established risk factor for chronic obstructive pulmonary disease (COPD). Chronic lung inflammation continues even after smoking cessation and leads to COPD progression. To date, anti-inflammatory therapies are ineffective in improving pulmonary function and COPD symptoms, and new molecular targets are urgently needed to deal with this challenge. The receptor for advanced glycation end-products (RAGE) was shown to be relevant in COPD pathogenesis, since it is both a genetic determinant of low lung function and a determinant of COPD susceptibility. Moreover, RAGE is involved in the physiological response to cigarette smoke exposure. Since innate and acquired immunity plays an essential role in the development of chronic inflammation and emphysema in COPD, here we summarized the roles of RAGE and its ligand HMGB1 in COPD immunity.
Collapse
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xuejiao Sun
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
21
|
Abdelkader H, Mustafa WW, Alqahtani AM, Alsharani S, Al Fatease A, Alany RG. Glycation-induced age-related illnesses, antiglycation and drug delivery strategies. J Pharm Pharmacol 2022; 74:1546-1567. [PMID: 35972442 DOI: 10.1093/jpp/rgac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Ageing is a major cause of multiple age-related diseases. Several mechanisms have been reported to contribute to these abnormalities including glycation, oxidative stress, the polyol pathway and osmotic stress. Glycation, unlike glycosylation, is an irregular biochemical reaction to the formation of active advanced glycation end-products (AGEs), which are considered to be one of the causes of these chronic diseases. This study provides a recent and comprehensive review on the possible causes, mechanisms, types, analytical techniques, diseases and treatments of the toxic glycation end products. KEY FINDINGS Several mechanisms have been found to play a role in generating hyperglycaemia-induced oxidative stress including an increase in the levels of reactive oxygen species (ROS), increase in the levels of AGEs, binding of AGEs and their receptors (RAGE) and the polyol pathway and thus have been investigated as promising novel targets. SUMMARY This review focuses on the key mechanisms attributed to cumulative increases of glycation and pathological RAGE expression as a significant cause of multiple age-related diseases, and reporting on different aspects of antiglycation therapy as a novel approach to managing/treating age-related diseases. Additionally, historical, current and possible future antiglycation approaches will be presented focussing on novel drug delivery methods.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Wesam W Mustafa
- Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, UK.,Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sultan Alsharani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, UK.,School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Yue Q, Song Y, Liu Z, Zhang L, Yang L, Li J. Receptor for Advanced Glycation End Products (RAGE): A Pivotal Hub in Immune Diseases. Molecules 2022; 27:molecules27154922. [PMID: 35956875 PMCID: PMC9370360 DOI: 10.3390/molecules27154922] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023] Open
Abstract
As a critical molecule in the onset and sustainment of inflammatory response, the receptor for advanced glycation end products (RAGE) has a variety of ligands, such as advanced glycation end products (AGEs), S100/calcium granule protein, and high-mobility group protein 1 (HMGB1). Recently, an increasing number studies have shown that RAGE ligand binding can initiate the intracellular signal cascade, affect intracellular signal transduction, stimulate the release of cytokines, and play a vital role in the occurrence and development of immune-related diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and Alzheimer’s disease. In addition, other RAGE signaling pathways can play crucial roles in life activities, such as inflammation, apoptosis, autophagy, and endoplasmic reticulum stress. Therefore, the strategy of targeted intervention in the RAGE signaling pathway may have significant therapeutic potential, attracting increasing attention. In this paper, through the systematic induction and analysis of RAGE-related signaling pathways and their regulatory mechanisms in immune-related diseases, we provide theoretical clues for the follow-up targeted intervention of RAGE-mediated diseases.
Collapse
Affiliation(s)
- Qing Yue
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Yu Song
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Zi Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu 241002, China;
| | - Ling Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Jinlong Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
- Correspondence: ; Tel.: +86-0315-8805572
| |
Collapse
|
23
|
Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res 2022; 83:1257-1269. [PMID: 35781678 PMCID: PMC9474610 DOI: 10.1002/ddr.21971] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a 45 kDa transmembrane receptor of immunoglobulin family that can bind to various endogenous and exogenous ligands and initiate the inflammatory downstream signaling pathways. RAGE is involved in various disorders including cardiovascular and neurodegenerative diseases, cancer, and diabetes. This review summarizes the structural features of RAGE and its various isoforms along with their pathological effects. Mainly, the article emphasized on the translational significance of antagonizing the interactions of RAGE with its ligands using small molecules reported in the last 5 years and discusses future approaches that could be employed to block the interactions in the treatment of chronic inflammatory ailments. The RAGE inhibitors described in this article could prove as a powerful approach in the management of immune‐inflammatory diseases. A critical review of the literature suggests that there is a dire need to dive deeper into the molecular mechanism of action to resolve critical issues that must be addressed to understand RAGE‐targeting therapy and long‐term blockade of RAGE in human diseases.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
24
|
Li Y, Peng Y, Shen Y, Zhang Y, Liu L, Yang X. Dietary polyphenols: regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 63:9816-9842. [PMID: 35587161 DOI: 10.1080/10408398.2022.2076064] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Advanced glycation end products (AGEs) are formed in non-enzymatic reaction, oxidation, rearrangement and cross-linking between the active carbonyl groups of reducing sugars and the free amines of amino acids. The Maillard reaction is related to sensory characteristics in thermal processed food, while AGEs are formed in food matrix in this process. AGEs are a key link between carbonyl stress and neurodegenerative disease. AGEs can interact with receptors for AGEs (RAGE), causing oxidative stress, inflammation response and signal pathways activation related to neurodegenerative diseases. Neurodegenerative diseases are closely related to gut microbiota imbalance and intestinal inflammation. Polyphenols with multiple hydroxyl groups showed a powerful ability to scavenge ROS and capture α-dicarbonyl species, which led to the formation of mono- and di- adducts, thereby inhibiting AGEs formation. Neurodegenerative diseases can be effectively prevented by inhibiting AGEs production, and interaction with RAGEs, or regulating the microbiota-gut-brain axis. These strategies include polyphenols multifunctional effects on AGEs inhibition, RAGE-ligand interactions blocking, and regulating the abundance and diversity of gut microbiota, and intestinal inflammation alleviation to delay or prevent neurodegenerative diseases progress. It is a wise and promising strategy to supplement dietary polyphenols for preventing neurodegenerative diseases via AGEs-RAGE axis and microbiota-gut-brain axis regulation.
Collapse
Affiliation(s)
- Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yao Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, PR China
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, PR China
| | - Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, PR China
| |
Collapse
|
25
|
Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022; 12:biom12040542. [PMID: 35454131 PMCID: PMC9030615 DOI: 10.3390/biom12040542] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent hyperglycemic state in type 2 diabetes mellitus leads to the initiation and progression of non-enzymatic glycation reaction with proteins and lipids and nucleic acids. Glycation reaction leads to the generation of a heterogeneous group of chemical moieties known as advanced glycated end products (AGEs), which play a central role in the pathophysiology of diabetic complications. The engagement of AGEs with its chief cellular receptor, RAGE, activates a myriad of signaling pathways such as MAPK/ERK, TGF-β, JNK, and NF-κB, leading to enhanced oxidative stress and inflammation. The downstream consequences of the AGEs/RAGE axis involve compromised insulin signaling, perturbation of metabolic homeostasis, RAGE-induced pancreatic beta cell toxicity, and epigenetic modifications. The AGEs/RAGE signaling instigated modulation of gene transcription is profoundly associated with the progression of type 2 diabetes mellitus and pathogenesis of diabetic complications. In this review, we will summarize the exogenous and endogenous sources of AGEs, their role in metabolic dysfunction, and current understandings of AGEs/RAGE signaling cascade. The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications. Furthermore, we present an overview of future perspectives to offer new therapeutic interventions to intervene with the AGEs/RAGE signaling pathway and to slow down the progression of diabetes-related complications.
Collapse
|
26
|
Ren L, Yan H. Targeting AGEs-RAGE pathway inhibits inflammation and presents neuroprotective effect against hepatic ischemia-reperfusion induced hippocampus damage. Clin Res Hepatol Gastroenterol 2022; 46:101792. [PMID: 34400367 DOI: 10.1016/j.clinre.2021.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The present study aimed to investigate the role of AGEs-RAGE signaling and its potential as a treatment target in hepatic ischemia-reperfusion (HIR)-induced hippocampus damage. METHODS HIR operation was conducted in mice, followed by collection of hippocampus tissue at 1 day, 3 days and 7 days. Additionally, low dose, moderate dose and high dose FPS-ZM1 (RAGE inhibitor) was intraperitoneally injected into HIR mice. Besides, sham operation was conduced in mice which served as control. RESULTS HIR increased the hippocampal damage and enhanced its neuron apoptosis within 3 days, which recovered to some extent from day 3 to day 7 post operation. Meanwhile, the expressions of AGEs, RAGE, the downstream proteins in AGEs-RAGE signaling pathway (including PI3K, pAKT, pNKκB p65 and pERK1/2), and the inflammatory cytokines (including IL-1β, IL-6, TNF-α) were increased within 3 days, but were reduced from day 3 to day 7 post operation by HIR. Notably, moderate and high dose of FPS-ZM1 attenuated hippocampal damage, inhibited its neuron apoptosis, inactivated AGEs-RAGE signaling, and suppressed the expressions of inflammatory cytokines (including IL-1β, IL-6, TNF-α); but lose dose of FPS-ZM1 failed to achieve these effects. CONCLUSIONS Targeting AGEs-RAGE pathway inhibits inflammation and presents neuroprotective effect against HIR-induced hippocampus damage.
Collapse
Affiliation(s)
- Lingyun Ren
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hong Yan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
27
|
Jessop F, Schwarz B, Scott D, Roberts LM, Bohrnsen E, Hoidal JR, Bosio CM. Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice. JCI Insight 2022; 7:155896. [PMID: 35076028 PMCID: PMC8855831 DOI: 10.1172/jci.insight.155896] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular and molecular mechanisms driving morbidity following SARS-CoV-2 infection have not been well defined. The receptor for advanced glycation end products (RAGE) is a central mediator of tissue injury and contributes to SARS-CoV-2 disease pathogenesis. In this study, we temporally delineated key cell and molecular events leading to lung injury in mice following SARS-CoV-2 infection and assessed efficacy of therapeutically targeting RAGE to improve survival. Early following infection, SARS-CoV-2 replicated to high titers within the lungs and evaded triggering inflammation and cell death. However, a significant necrotic cell death event in CD45– populations, corresponding with peak viral loads, was observed on day 2 after infection. Metabolic reprogramming and inflammation were initiated following this cell death event and corresponded with increased lung interstitial pneumonia, perivascular inflammation, and endothelial hyperplasia together with decreased oxygen saturation. Therapeutic treatment with the RAGE antagonist FPS-ZM1 improved survival in infected mice and limited inflammation and associated perivascular pathology. Together, these results provide critical characterization of disease pathogenesis in the mouse model and implicate a role for RAGE signaling as a therapeutic target to improve outcomes following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| | - Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Lydia M. Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| | - Eric Bohrnsen
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| | - John R. Hoidal
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, and
| |
Collapse
|
28
|
A Study of the Protective Effect of Bushen Huoxue Prescription on Cerebral Microvascular Endothelia Based on Proteomics and Bioinformatics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2545074. [PMID: 35035499 PMCID: PMC8758271 DOI: 10.1155/2022/2545074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Diabetic cognitive dysfunction is a serious complication of type 2 diabetes mellitus (T2DM), which can cause neurological and microvascular damage in the brain. At present, there is no effective treatment for this complication. Bushen Huoxue prescription (BSHX) is a newly formulated compound Chinese medicine containing 7 components. Previous research indicated that BSHX was neuroprotective against advanced glycosylation end product (AGE)-induced PC12 cell insult; however, the effect of BSHX on AGE-induced cerebral microvascular endothelia injury has not been studied. In the current research, we investigated the protective effects of BSHX on AGE-induced injury in bEnd.3 cells. Our findings revealed that BSHX could effectively protect bEnd.3 cells from apoptosis. Moreover, we analyzed the network regulation effect of BSHX on AGE-induced bEnd.3 cells injury at the proteomic level. The LC-MS/MS-based shotgun proteomics analysis showed BSHX negatively regulated multiple AGE-elicited proteins. Bioinformatics analysis revealed these differential proteins were involved in multiple processes, such as Foxo signaling pathway. Further molecular biology analysis confirmed that BSHX could downregulate the expression of FoxO1/3 protein and inhibit its nuclear transfer and inhibit the expression of downstream apoptotic protein Bim and the activation of caspase, so as to play a protective role in AGE-induced bEnd.3 injury. Taken together, these findings demonstrated the role of BSHX in the management of diabetic cerebral microangiopathy and provide some insights into the proteomics-guided pharmacological mechanism study of traditional Chinese Medicine.
Collapse
|
29
|
Zhao MJ, Jiang HR, Sun JW, Wang ZA, Hu B, Zhu CR, Yin XH, Chen MM, Ma XC, Zhao WD, Luan ZG. Roles of RAGE/ROCK1 Pathway in HMGB1-Induced Early Changes in Barrier Permeability of Human Pulmonary Microvascular Endothelial Cell. Front Immunol 2021; 12:697071. [PMID: 34745088 PMCID: PMC8564108 DOI: 10.3389/fimmu.2021.697071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/01/2021] [Indexed: 01/21/2023] Open
Abstract
Background High mobility group box 1 (HMGB1) causes microvascular endothelial cell barrier dysfunction during acute lung injury (ALI) in sepsis, but the mechanisms have not been well understood. We studied the roles of RAGE and Rho kinase 1 (ROCK1) in HMGB1-induced human pulmonary endothelial barrier disruption. Methods In the present study, the recombinant human high mobility group box 1 (rhHMGB1) was used to stimulate human pulmonary microvascular endothelial cells (HPMECs). The endothelial cell (EC) barrier permeability was examined by detecting FITC-dextran flux. CCK-8 assay was used to detect cell viability under rhHMGB1 treatments. The expression of related molecules involved in RhoA/ROCK1 pathway, phosphorylation of myosin light chain (MLC), F-actin, VE-cadherin and ZO-1 of different treated groups were measured by pull-down assay, western blot and immunofluorescence. Furthermore, we studied the effects of Rho kinase inhibitor (Y-27632), ROCK1/2 siRNA, RAGE-specific blocker (FPS-ZM1) and RAGE siRNA on endothelial barrier properties to elucidate the related mechanisms. Results In the present study, we demonstrated that rhHMGB1 induced EC barrier hyperpermeability in a dose-dependent and time-dependent manner by measuring FITC-dextran flux, a reflection of the loss of EC barrier integrity. Moreover, rhHMGB1 induced a dose-dependent and time-dependent increases in paracellular gap formation accompanied by the development of stress fiber rearrangement and disruption of VE-cadherin and ZO-1, a phenotypic change related to increased endothelial contractility and endothelial barrier permeability. Using inhibitors and siRNAs directed against RAGE and ROCK1/2, we systematically determined that RAGE mediated the rhHMGB1-induced stress fiber reorganization via RhoA/ROCK1 signaling activation and the subsequent MLC phosphorylation in ECs. Conclusion HMGB1 is capable of disrupting the endothelial barrier integrity. This study demonstrates that HMGB1 activates RhoA/ROCK1 pathway via RAGE, which phosphorylates MLC inducing stress fiber formation at short time, and HMGB1/RAGE reduces AJ/TJ expression at long term independently of RhoA/ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Meng-Jiao Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hao-Ran Jiang
- Department of Breast Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing-Wen Sun
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Zi-Ang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Hu
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Cheng-Rui Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Han Yin
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming-Ming Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Chun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Zheng-Gang Luan
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Wang L, Zhao D, Wang H, Wang L, Liu X, Zhang H. FPS-ZM1 inhibits LPS-induced microglial inflammation by suppressing JAK/STAT signaling pathway. Int Immunopharmacol 2021; 100:108117. [PMID: 34509933 DOI: 10.1016/j.intimp.2021.108117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/22/2021] [Accepted: 08/29/2021] [Indexed: 11/15/2022]
Abstract
FPS-ZM1 is an inhibitor of the receptor for advanced glycation end products (RAGE). Nevertheless, there are few reports about its direct effects on microglial inflammation, and the underlying molecular mechanisms remain to be clarified. The present study investigated the potential effects of FPS-ZM1 on lipopolysaccharide (LPS)-mediated microglial inflammation both in vivo and in vitro, and further elucidated the possible molecular mechanisms of action. FPS-ZM1 decreased LPS-induced overproduction of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2), in both BV-2 cells and primary microglial cells. FPS-ZM1 (10 mg/kg, i.p.) ameliorated proliferation and activation of microglia in the hippocampus of C57BL/6J mice subjected to LPS challenge (5 mg/kg, i.p.). Meanwhile, overproduction of pro-inflammatory cytokines IL-1β and TNF-α in the hippocampus was alleviated after treatment with FPS-ZM1. RNA-Sequencing (RNA-Seq) analysis showed involvement of Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling pathway in the regulation of FPS-ZM1 on LPS-induced microglial inflammation. Further investigations demonstrated that FPS-ZM1 downregulated LPS-mediated increases in the phosphorylation levels of JAK/STAT both in vivo and in vitro. FPS-ZM1 also suppressed the nuclear translocation of transcription factor STAT1/3/5 in BV-2 cells. In addition, inhibition of JAK/STAT signaling pathway had an anti-inflammatory effect similar to FPS-ZM1 treatment. Taken together, our results verified the inhibitory effects of FPS-ZM1 against LPS-stimulated microglial inflammation, and for the first time demonstrated such anti-inflammatory activities on microglia are associated with regulation of JAK/STAT signaling pathway both in vivo and in vitro, which may shed new light on the pharmacological mechanisms of FPS-ZM1 against microglial inflammation.
Collapse
Affiliation(s)
- Lan Wang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danfeng Zhao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Huan Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lele Wang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiaohui Liu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Haiyan Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
31
|
Verbascoside Protects Gingival Cells against High Glucose-Induced Oxidative Stress via PKC/HMGB1/RAGE/NFκB Pathway. Antioxidants (Basel) 2021; 10:antiox10091445. [PMID: 34573077 PMCID: PMC8464661 DOI: 10.3390/antiox10091445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Impaired wound healing often occurs in patients with diabetes and causes great inconvenience to them. Aside from the presence of prolonged inflammation, the accumulation of oxidative stress is also implicated in the delayed wound healing. In the present study, we tested the effect of verbascoside, a caffeoyl phenylethanoid glycoside, on the improvement of cell viability and wound healing capacity of gingival epithelial cells under high glucose condition. We showed that verbascoside attenuated the high glucose-induced cytotoxicity and impaired healing, which may be associated with the downregulation of oxidative stress. Our results demonstrated that verbascoside increased the activity of the antioxidant enzyme SOD and reduced the oxidative stress indicator, 8-OHdG, as well as apoptosis. Moreover, verbascoside upregulated the PGC1-α and NRF1 expression and promoted mitochondrial biogenesis, which was mediated by suppression of PKC/HMGB1/RAGE/NFκB signaling. Likewise, we showed the inhibitory effect of verbascoside on oxidative stress was via repression of PKC/HMGB1/RAGE/NFκB activation. Also, our data suggested that the PKC-mediated oxidative stress may lead to the elevated production of inflammatory cytokines, IL-6 and IL-1β. Collectively, we demonstrated that verbascoside may be beneficial to ameliorate impaired oral wound healing for diabetic patients.
Collapse
|
32
|
Marulanda K, Mercel A, Gillis DC, Sun K, Gambarian M, Roark J, Weiss J, Tsihlis ND, Karver MR, Centeno SR, Peters EB, Clemons TD, Stupp SI, McLean SE, Kibbe MR. Intravenous Delivery of Lung-Targeted Nanofibers for Pulmonary Hypertension in Mice. Adv Healthc Mater 2021; 10:e2100302. [PMID: 34061473 PMCID: PMC8273153 DOI: 10.1002/adhm.202100302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Pulmonary hypertension is a highly morbid disease with no cure. Available treatments are limited by systemic adverse effects due to non-specific biodistribution. Self-assembled peptide amphiphile (PA) nanofibers are biocompatible nanomaterials that can be modified to recognize specific biological markers to provide targeted drug delivery and reduce off-target toxicity. Here, PA nanofibers that target the angiotensin I-converting enzyme and the receptor for advanced glycation end-products (RAGE) are developed, as both proteins are overexpressed in the lung with pulmonary hypertension. It is demonstrated that intravenous delivery of RAGE-targeted nanofibers containing the targeting epitope LVFFAED (LVFF) significantly accumulated within the lung in a chronic hypoxia-induced pulmonary hypertension mouse model. Using 3D light sheet fluorescence microscopy, it is shown that LVFF nanofiber localization is specific to the diseased pulmonary tissue with immunofluorescence analysis demonstrating colocalization of the targeted nanofiber to RAGE in the hypoxic lung. Furthermore, biodistribution studies show that significantly more LVFF nanofibers localized to the lung compared to major off-target organs. Targeted nanofibers are retained within the pulmonary tissue for 24 h after injection. Collectively, these data demonstrate the potential of a RAGE-targeted nanomaterial as a drug delivery platform to treat pulmonary hypertension.
Collapse
Affiliation(s)
- Kathleen Marulanda
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Alexandra Mercel
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - David C Gillis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Kui Sun
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Maria Gambarian
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Joshua Roark
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Jenna Weiss
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Mark R Karver
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - S Ruben Centeno
- Department of Pediatrics, University of North Carolina, 260 MacNider Building CB# 7220, Chapel Hill, NC, 27599, USA
| | - Erica B Peters
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Sean E McLean
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| |
Collapse
|
33
|
Li W, Wang S, Wang H, Wang J, Jin F, Fang F, Fang C. Astragaloside IV prevents memory impairment in D-galactose-induced aging rats via the AGEs/RAGE/ NF-κB axis. Arch Med Res 2021; 53:20-28. [PMID: 34217517 DOI: 10.1016/j.arcmed.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated the effects of astragaloside IV (AS-IV) on memory function in aging rats mimicked by D-galactose administration and explored the potential molecular mechanisms. METHODS Twenty-seven male rats were randomly divided into control group (N = 9), model group (N = 9), and AS-IV treated group (N = 9). Aging model was stimulated by D-galactose (400 mg/kg/d, i.p., dissolved in saline) for 8 weeks in rats. The general status of the rats was observed weekly. Learning and memory function was determined using the eight-arm radical maze and step-down test. Pathological changes in the hippocampal CA1 region were determined by hematoxylin and eosin staining. Organ indexes, superoxide dismutase (SOD) activity and malonaldehyde (MDA) content in the serum were measured. Expression of advanced glycation end products (AGEs), receptor for AGEs (RAGE), nuclear factor-κB (NF-κB), interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, real-time polymerase chain reaction or western blotting. RESULTS AS-IV improved the general status of the aging rats induced by D-galactose, prevented the impairment of memory function, organ indexes, and the pathological damage of the hippocampus. From the prospective of oxidative stress, AS-IV increased sera SOD activity and decreased MDA content. Additionally, AS-IV also reduced the inflammatory response by reducing hippocampal IL-1β, TNF-α, and IL-6 expression. Importantly, AS-IV prevented D-galactose-induced expression of AGEs, RAGE and NF-κB in the hippocampus. CONCLUSION AS-IV could prevent D-galactose-induced aging and memory impairment in rats, likely via regulation of inflammatory response, which was modulated by AGEs/RAGE/NF-κB axis.
Collapse
Affiliation(s)
- Wei Li
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shuo Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Hao Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jiepeng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Feng Jin
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chaoyi Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang 050091, China.
| |
Collapse
|
34
|
Bribiesca-Cruz I, Moreno DA, García-Viguera C, Gallardo JM, Segura-Uribe JJ, Pinto-Almazán R, Guerra-Araiza C. Maqui berry ( Aristotelia chilensis) extract improves memory and decreases oxidative stress in male rat brain exposed to ozone. Nutr Neurosci 2021; 24:477-489. [PMID: 31354109 DOI: 10.1080/1028415x.2019.1645438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Prolonged ozone exposure can produce a state of oxidative stress, which in turn causes alterations in the dynamics of the brain and affects memory and learning. Moreover, different investigations have shown that high flavonoid content berries show a great antioxidant activity. The relationship between the protective effect of the maqui berry extract and its antioxidant properties in the brain has not been studied in depth. Objectives: The present study evaluated whether the protection exerted by the aqueous extract of maqui berry in brain regions associated with cognitive performance is due to its antioxidant capacity. Methods: Sprague Dawley rats were exposed to 0.25 ppm ozone and administered with maqui berry extracts. At the end of the treatments, spatial learning and short- and long-term memory were evaluated, as well as oxidative stress markers. Results: The administration of 50 and 100 mg/kg of the aqueous extract of maqui berry was effective in preventing the cognitive deficit caused by chronic exposure to ozone. The antioxidant effect of the administration of maqui berry was analyzed in the prefrontal cortex, hippocampus, and amygdala. Oxidative stress markers levels decreased and the enzymatic activity of superoxide dismutase diminished in animals exposed to ozone treated with the 50 mg/kg dose of maqui berry. Discussion: These results show a relationship between protection at the cognitive level and a decrease in oxidative stress markers, which suggests that the prevention of cognitive damage is due to the antioxidant activity of the maqui berry.
Collapse
Affiliation(s)
- Iván Bribiesca-Cruz
- Unidad de Investigación Médica en Farmacología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Diego A Moreno
- CEBAS-CSIC, Food Science and Technology Department, Phytochemistry and Healthy Foods Lab, Campus Universitario de Espinardo, Murcia, Spain
| | - Cristina García-Viguera
- CEBAS-CSIC, Food Science and Technology Department, Phytochemistry and Healthy Foods Lab, Campus Universitario de Espinardo, Murcia, Spain
| | - Juan Manuel Gallardo
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Julia J Segura-Uribe
- Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación del Hospital Regional de Alta Especialidad de Ixtapaluca, Municipio de Ixtapaluca, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
35
|
Chiappalupi S, Salvadori L, Vukasinovic A, Donato R, Sorci G, Riuzzi F. Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sci 2021; 272:119251. [PMID: 33636175 PMCID: PMC7900755 DOI: 10.1016/j.lfs.2021.119251] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
A novel infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in December 2019 and declared as a global pandemic by the World Health. Approximately 15% of patients with COVID-19 progress to severe pneumonia and eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure with high morbidity and mortality. Evidence points towards a determinant pathogenic role of members of the renin-angiotensin system (RAS) in mediating the susceptibility, infection, inflammatory response and parenchymal injury in lungs and other organs of COVID-19 patients. The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, has important roles in pulmonary pathological states, including fibrosis, pneumonia and ARDS. RAGE overexpression/hyperactivation is essential to the deleterious effects of RAS in several pathological processes, including hypertension, chronic kidney and cardiovascular diseases, and diabetes, all of which are major comorbidities of SARS-CoV-2 infection. We propose RAGE as an additional molecular target in COVID-19 patients for ameliorating the multi-organ pathology induced by the virus and improving survival, also in the perspective of future infections by other coronaviruses.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| | - Aleksandra Vukasinovic
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Rosario Donato
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia 06132, Italy
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy.
| |
Collapse
|
36
|
Shen L, Zhang T, Yang Y, Lu D, Xu A, Li K. FPS-ZM1 Alleviates Neuroinflammation in Focal Cerebral Ischemia Rats via Blocking Ligand/RAGE/DIAPH1 Pathway. ACS Chem Neurosci 2021; 12:63-78. [PMID: 33300334 DOI: 10.1021/acschemneuro.0c00530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Receptor for advanced glycation end products (RAGEs), a multiligand receptor belonging to the cell-surface immunoglobulin superfamily, has been reported to play a crucial role in neuroinflammation and neurodegenerative diseases. Here, we tested our hypothesis that the RAGE-specific antagonist FPS-ZM1 is neuroprotective against ischemic brain injury. Distal middle cerebral artery occlusion (MCAO) or sham operation was performed on anesthetized Sprague-Dawley male rats (n = 60), which were then treated with FPS-ZM1 or vehicle (four groups in total = Vehicle + MCAO, FPS-ZM1 + MCAO, Vehicle + sham, and FPS-ZM1 + sham). After 1 week, neurological function was evaluated, and then, brain tissues were collected for 2,3,5-triphenyltetrazolium chloride staining, Nissl staining, TUNEL staining, Western blotting, and immunohistochemical analyses. FPS-ZM1 treatment after MCAO markedly attenuated neurological deficits and reduced the infarct area. More interestingly, FPS-ZM1 inhibited ischemia-induced astrocytic activation and microgliosis and decreased the elevated levels of proinflammatory cytokines. Furthermore, FPS-ZM1 blocked the increase in the level of RAGE and, notably, of DIAPH1, the key cytoplasmic hub for RAGE-ligand-mediated activation of cellular signaling. Accordingly, FPS-ZM1 also reversed the MCAO-induced increase in phosphorylation of NF-κB targets that are potentially downstream from RAGE/DIAPH1. Our findings reveal that FPS-ZM1 treatment reduces neuroinflammation in rats with focal cerebral ischemia and further suggest that the ligand/RAGE/DIAPH1 pathway contributes to this FPS-ZM1-mediated alleviation of neuroinflammation.
Collapse
Affiliation(s)
- Lingling Shen
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Tianyuan Zhang
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Yu Yang
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Dan Lu
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Anding Xu
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Keshen Li
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| |
Collapse
|
37
|
Momeni Z, Neapetung J, Pacholko A, Kiir TAB, Yamamoto Y, Bekar LK, Campanucci VA. Hyperglycemia induces RAGE-dependent hippocampal spatial memory impairments. Physiol Behav 2020; 229:113287. [PMID: 33316294 DOI: 10.1016/j.physbeh.2020.113287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Diabetes is a prevalent metabolic disorder that has long been associated with changes in different regions of the brain, including the hippocampus. Changes in hippocampal synaptic plasticity and subsequent impairment in cognitive functions such as learning and memory, are well documented in animal models of type 1 and type 2 diabetes. It is known that RAGE contributes to peripheral micro- and macro-vascular complications of diabetes. However, it is still unknown if RAGE plays a similar role in the development of CNS complications of diabetes. Therefore, we hypothesize that RAGE contributes to cognitive dysfunction, such as learning and memory impairments, in a mouse model of STZ-induced hyperglycemia. Control and STZ-induced hyperglycemic mice from WT and RAGE-KO groups were used for the behavioral experiments. While STZ-induced hyperglycemia decreased locomotor activity in the open field (OF) test, it did not affect the recognition memory in the novel object recognition (NOR) test in either genotype. Spatial memory, however, was impaired in STZ-induced hyperglycemic mice in WT but not in RAGE-KO group in both the Barnes maze (BM) and the Morris water maze (MWM) tests. Consistently, the RAGE antagonist FPS-ZM1 protected WT STZ-induced hyperglycemic mice from spatial memory impairment in the BM test. Our findings indicate that the parameters associated with locomotor activity and recognition memory were independent of RAGE in STZ-induced hyperglycemic mice. In contrast, the parameters associated with hippocampal-dependent spatial memory were dependent on RAGE expression.
Collapse
Affiliation(s)
- Zeinab Momeni
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph Neapetung
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Pacholko
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tabitha Achan Bol Kiir
- College of Arts and Science, 9 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Verónica A Campanucci
- Department of Anatomy, Physiology and Pharmacology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
38
|
Fan H, Tang HB, Chen Z, Wang HQ, Zhang L, Jiang Y, Li T, Yang CF, Wang XY, Li X, Wu SX, Zhang GL. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J Neuroinflammation 2020; 17:295. [PMID: 33036632 PMCID: PMC7547440 DOI: 10.1186/s12974-020-01973-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Spinal cord injury (SCI) favors a persistent pro-inflammatory macrophages/microglia-mediated response with only a transient appearance of anti-inflammatory phenotype of immune cells. However, the mechanisms controlling this special sterile inflammation after SCI are still not fully elucidated. It is known that damage-associated molecular patterns (DAMPs) released from necrotic cells after injury can trigger severe inflammation. High mobility group box 1(HMGB1), a ubiquitously expressed DNA binding protein, is an identified DAMP, and our previous study demonstrated that reactive astrocytes could undergo necroptosis and release HMGB1 after SCI in mice. The present study aimed to explore the effects and the possible mechanism of HMGB1on macrophages/microglia polarization, as well as the neuroprotective effects by HMGB1 inhibition after SCI. Methods In this study, the expression and the concentration of HMGB1 was determined by qRT-PCR, ELISA, and immunohistochemistry. Glycyrrhizin was applied to inhibit HMGB1, while FPS-ZM1 to suppress receptor for advanced glycation end products (RAGE). The polarization of macrophages/microglia in vitro and in vivo was detected by qRT-PCR, immunostaining, and western blot. The lesion area was detected by GFAP staining, while neuronal survival was examined by Nissl staining. Luxol fast blue (LFB) staining, DAB staining, and western blot were adopted to evaluate the myelin loss. Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay was applied to evaluate locomotor functional recovery. Results Our data showed that HMGB1 can be elevated and released from necroptotic astrocytes and HMGB1 could induce pro-inflammatory microglia through the RAGE-nuclear factor-kappa B (NF-κB) pathway. We further demonstrated that inhibiting HMGB1 or RAGE effectively decreased the numbers of detrimental pro-inflammatory macrophages/microglia while increased anti-inflammatory cells after SCI. Furthermore, our data showed that inhibiting HMGB1 or RAGE significantly decreased neuronal loss and demyelination, and improved functional recovery after SCI. Conclusions The data implicated that HMGB1-RAGE axis contributed to the dominant pro-inflammatory macrophages/microglia-mediated pro-inflammatory response, and inhibiting this pathway afforded neuroprotection for SCI. Thus, therapies designed to modulate immune microenvironment based on this cascade might be a prospective treatment for SCI.
Collapse
Affiliation(s)
- Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.,Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hai-Bin Tang
- Department of Laboratory Medicine, Xi'an Central Hospital, Xi'an Jiaotong University, 161 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Zhe Chen
- Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hu-Qing Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lei Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yu Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tao Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Cai-Feng Yang
- Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao-Ya Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xia Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Sheng-Xi Wu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Gui-Lian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
39
|
Positron Emission Tomography in the Inflamed Cerebellum: Addressing Novel Targets among G Protein-Coupled Receptors and Immune Receptors. Pharmaceutics 2020; 12:pharmaceutics12100925. [PMID: 32998351 PMCID: PMC7601272 DOI: 10.3390/pharmaceutics12100925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023] Open
Abstract
Inflammatory processes preceding clinical manifestation of brain diseases are moving increasingly into the focus of positron emission tomographic (PET) investigations. A key role in inflammation and as a target of PET imaging efforts is attributed to microglia. Cerebellar microglia, with a predominant ameboid and activated subtype, is of special interest also regarding improved and changing knowledge on functional involvement of the cerebellum in mental activities in addition to its regulatory role in motor function. The present contribution considers small molecule ligands as potential PET tools for the visualization of several receptors recognized to be overexpressed in microglia and which can potentially serve as indicators of inflammatory processes in the cerebellum. The sphingosine 1 phosphate receptor 1 (S1P1), neuropeptide Y receptor 2 (NPY2) and purinoceptor Y12 (P2Y12) cannabinoid receptors and the chemokine receptor CX3CR1 as G-protein-coupled receptors and the ionotropic purinoceptor P2X7 provide structures with rather classical binding behavior, while the immune receptor for advanced glycation end products (RAGE) and the triggering receptor expressed on myeloid cells 2 (TREM2) might depend for instance on further accessory proteins. Improvement in differentiation between microglial functional subtypes in comparison to the presently used 18 kDa translocator protein ligands as well as of the knowledge on the role of polymorphisms are special challenges in such developments.
Collapse
|
40
|
Avetisyan A, Balasanyants S, Simonyan R, Koroev D, Kamynina A, Zinovkin R, Bobkova N, Volpina O. Synthetic fragment (60-76) of RAGE improves brain mitochondria function in olfactory bulbectomized mice. Neurochem Int 2020; 140:104799. [PMID: 32783973 DOI: 10.1016/j.neuint.2020.104799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is considered to contribute to the pathogenesis of Alzheimer's disease (AD), mediating amyloid beta (Aβ) accumulation, mitochondrial damage, and neuroinflammation. Previously, we have synthesized small peptides corresponding to the fragments (60-76) (P1) and (60-62) (P2) of the RAGE extracellular domain, and have shown that administration of P1 fragment but not P2 results in restoration of the spatial memory and decreases the brain Aβ (1-40) level in olfactory bulbectomized (OBX) mice demonstrating main features of Alzheimer's type neurodegeneration. In the present study, we have investigated the supposed mechanism of the therapeutic efficacy of P1 RAGE fragment and compared it to P2 short fragment. We have found that P1 restored activities of the respiratory chain in the Complexes I and IV in both cortical and hippocampal mitochondria of the OBX mice while P2 had no effect. Besides, fluorescein-labeled analog Flu-P1 bound to Aβ (1-40) and Aβ (1-42) with high affinity (Kd in the nanomolar range) whereas Flu-P2 revealed low affinity with tenfold higher Kd value for Aβ (1-40) and did not bind to Aβ (1-42). However, neither of the peptides had a notable impact on inflammation, estimated as mRNA expression of proinflammatory cytokines in the brain tissues of OBX mice. Taken together, our results suggest that direct Aβ-P1 interaction is one of the molecular events mediating the protection of the mitochondria in OBX animals from Aβ toxic effect. The RAGE fragment P1 would be the soluble decoy for Aβs and serve as a promising therapeutic agent against neurodegeneration accompanied by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Armine Avetisyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Samson Balasanyants
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Ruben Simonyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Anna Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Roman Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia Bobkova
- Institute of Cell Biophysics RAS, Moscow Region, Pushchino, Russia
| | - Olga Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| |
Collapse
|
41
|
Kong Y, Liu C, Zhou Y, Qi J, Zhang C, Sun B, Wang J, Guan Y. Progress of RAGE Molecular Imaging in Alzheimer's Disease. Front Aging Neurosci 2020; 12:227. [PMID: 32848706 PMCID: PMC7417350 DOI: 10.3389/fnagi.2020.00227] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by senile plaques (SPs), which are caused by amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) of abnormal hyperphosphorylated tau protein. The receptor for advanced glycation end products (RAGE) binds to advanced glycation end products deposited during vascular dysfunction. Alzheimer’s disease may occur when RAGE binds to Aβ and releases reactive oxygen species, further exacerbating Aβ deposition and eventually leading to SPs and NFTs. As it is involved in early AD, RAGE may be considered as a more potent biomarker than Aβ. Positron emission tomography provides valuable information regarding the underlying pathological processes of AD many years before the appearance of clinical symptoms. Thus, to further reveal the role of RAGE in AD pathology and for early diagnosis of AD, a tracer that targets RAGE is needed. In this review, we first describe the early diagnosis of AD and then summarize the interaction between RAGE and Aβ and Tau that is required to induce AD pathology, and finally focus on RAGE-targeting probes, highlighting the potential of RAGE to be used as an effective target. The development of RAGE probes is expected to aid in AD diagnosis and treatment.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yinping Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Scott NR, Swanson RV, Al-Hammadi N, Domingo-Gonzalez R, Rangel-Moreno J, Kriel BA, Bucsan AN, Das S, Ahmed M, Mehra S, Treerat P, Cruz-Lagunas A, Jimenez-Alvarez L, Muñoz-Torrico M, Bobadilla-Lozoya K, Vogl T, Walzl G, du Plessis N, Kaushal D, Scriba TJ, Zúñiga J, Khader SA. S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. J Clin Invest 2020; 130:3098-3112. [PMID: 32134742 PMCID: PMC7259997 DOI: 10.1172/jci130546] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
Neutrophil accumulation is associated with lung pathology during active tuberculosis (ATB). However, the molecular mechanism or mechanisms by which neutrophils accumulate in the lung and contribute to TB immunopathology are not fully delineated. Using the well-established mouse model of TB, our new data provide evidence that the alarmin S100A8/A9 mediates neutrophil accumulation during progression to chronic TB. Depletion of neutrophils or S100A8/A9 deficiency resulted in improved Mycobacterium tuberculosis (Mtb) control during chronic but not acute TB. Mechanistically, we demonstrate that, following Mtb infection, S100A8/A9 expression is required for upregulation of the integrin molecule CD11b specifically on neutrophils, mediating their accumulation during chronic TB disease. These findings are further substantiated by increased expression of S100A8 and S100A9 mRNA in whole blood in human TB progressors when compared with nonprogressors and rapidly decreased S100A8/A9 protein levels in the serum upon TB treatment. Furthermore, we demonstrate that S100A8/A9 serum levels along with chemokines are useful in distinguishing between ATB and asymptomatic Mtb-infected latent individuals. Thus, our results support targeting S100A8/A9 pathways as host-directed therapy for TB.
Collapse
Affiliation(s)
| | | | - Noor Al-Hammadi
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Belinda A. Kriel
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, DST-NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Stellenbosch, South Africa
| | - Allison N. Bucsan
- Division of Bacteriology and
- Division of Parasitology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | | | - Smriti Mehra
- Division of Bacteriology and
- Division of Parasitology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Luis Jimenez-Alvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcela Muñoz-Torrico
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Karen Bobadilla-Lozoya
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Thomas Vogl
- Institute of Immunology and
- Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, DST-NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Stellenbosch, South Africa
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, DST-NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Stellenbosch, South Africa
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative and
- Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | | |
Collapse
|
43
|
Zheng X, Liu P, Yang C, Wu X. Amyloid protein aggregation in diabetes mellitus accelerate intervertebral disc degeneration. Med Hypotheses 2020; 141:109739. [PMID: 32305815 DOI: 10.1016/j.mehy.2020.109739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
Diabetes is one of the risk factors for disc degeneration, but the exact mechanism is still unclear. Misfolding and aggregation of human islet amyloid polypeptide (hIAPP) is an important factor in diabetes. hIAPP proteins misfold from monomers to β-sheet-rich oligomers, destroy the permeability of the cell membrane and cause abnormal cell function and death. Under the pathological state of diabetes, hIAPP oligomers can promote the expression and secretion of the inflammatory factor IL-1β, while IL-1β-mediated inflammatory response is the pathogenesis basis of intervertebral disc degeneration. Thus, amyloid hIAPP aggregation accelerates disc degeneration in the pathological state of diabetes.
Collapse
Affiliation(s)
- Xiaodan Zheng
- Departments of Stomatology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liu
- Department of Orthopaedic Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical, College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical, College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
44
|
Szczepanik JC, Garcia AF, Lopes de Almeida GR, Cunha MP, Dafre AL. Protective effects against memory impairment induced by methylglyoxal in mice co-treated with FPS-ZM1, an advanced glycation end products receptor antagonist. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep 2019; 9:19150. [PMID: 31844158 PMCID: PMC6915698 DOI: 10.1038/s41598-019-55702-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Dissemination of metastatic precursors from primaries is the primary reason for patient death. Dissemination encompasses tumor cells invasion of stroma, followed by intravasation through the endothelium barrier into the bloodstream. Here, we describe how geminin-overexpressing tumor cells acquire dissemination ability. Acetylated HMGB1 (Ac-HMGB1) secreted by geminin-overexpressing cells activates RAGE and CXCR4 expression on mesenchymal stem cells (MSCs) located in tumor stroma. Through secreting CXCL12, geminin-overexpressing cells recruit these CXCR4+-MSCs into the tumor. Within the tumor, MSCs differentiate into S100A4-secreting cancer-associated fibroblasts (CAFs). S100A4, in a reciprocal manner, activates geminin-overexpressing cells to secrete CCL2 that recruits M0-macrophages from the stroma into the tumor. Within the tumor, CCL2 polarizes M0-macrophages into Gas6-secreting M2-tumor-associated macrophages (M2-TAMs). In concert, geminin-overexpression, S100A4/RAGE and Gas6/AXL signaling promote the invasive and intravasation abilities in geminin-overexpressing cells through exacerbating their stemness and epithelial-to-mesenchymal phenotypes and enhancing expression and functional interaction of CD151 and α3β1-integrin in geminin-overexpressing cells. Tumors formed following injection of geminin-overexpressing cells admixed with MSCs/CAFs grew faster, metastasized earlier, especially to lungs, and were extremely sensitive to anti-c-Abl, anti-RAGE, and anti-AXL drugs. These data support an intrinsic ability in geminin-overexpressing tumor cells to promote their metastatic potential through recruitment and bi-directional interactions with MSCs/CAFs and M2-TAMs.
Collapse
|
46
|
Mi L, Zhang Y, Xu Y, Zheng X, Zhang X, Wang Z, Xue M, Jin X. HMGB1/RAGE pro-inflammatory axis promotes vascular endothelial cell apoptosis in limb ischemia/reperfusion injury. Biomed Pharmacother 2019; 116:109005. [PMID: 31136947 DOI: 10.1016/j.biopha.2019.109005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE High-Mobility Group Box 1 (HMGB1) promotes vascular injuries induced by limb Ischemia and Reperfusion (IR), but the molecular mechanisms are not well understood. This study aimed to investigate the role of Receptor for Advanced-Glycation End products (RAGE) in HMGB1-regulated inflammatory response and vascular injury in limb IR using the rat IR and cellular Hypoxia and Reoxygenation (HR) models. METHODS We analyzed the vascular structure and elastic fiber deposition in rat femoral arteries by histological staining. We determined gene expression in vascular tissues and cells by quantitative RT-PCR, Western blotting and immunofluorescence; analyzed the protein levels in rat serum or cell supernatant by ELISA; and assessed protein interaction by co-immunoprecipitation. We used CCK-8 for analyzing cell viability, and assessed apoptosis by Hoechst staining and flow cytometry. RESULTS RAGE inhibition by FPS-ZM1 significantly repressed rat vascular injury that was induced by limb IR treatment. HMGB1 and RAGE expression, P38, ERK1/2, P65 and IKBa phosphorylation, as well as HIF-1a, NLRP3, Caspase-1, TNF-a and IL-6 expression and P65 in nucleus, increased in femoral arteries of a rat IR model and HUVEC undergoing HR treatment, whereas all the factors except HMGB1 and RAGE were inhibited by FPS-ZM1 treatment. In addition, we found that HMGB1 binds with RAGE in HUVEC undergoing HR treatment, which was suppressed by FPS-ZM1. Finally, the apoptosis of HUVEC also increased by HR treatment, but repressed under FPS-ZM1 treatment. CONCLUSION HMGB1 binds with RAGE to promote vascular inflammation and endothelial cell apoptosis, which mediates vascular injury during acute limb IR.
Collapse
Affiliation(s)
- Lei Mi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China; Department of General Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Yugang Xu
- Department of General Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Xiao Zheng
- Department of General Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Xia Zhang
- Department of General Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Zhu Wang
- Department of Interventional Medicine and Vascular Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ming Xue
- Department of Interventional Radiology, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
47
|
The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol 2019; 12:468-478. [PMID: 30542111 DOI: 10.1038/s41385-018-0119-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions of the intestinal tract. IBD are believed to result from an inappropriate immune response against the intestinal flora in genetically predisposed patients. The precise etiology of these diseases is not fully understood, therefore treatments rely on the dampening of symptoms, essentially inflammation, rather than on the cure of the disease. Despite the availability of biologics, such as anti-TNF antibodies, some patients remain in therapeutic failure and new treatments are thus needed. The multiligand receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor implicated in inflammatory reactions and immune system activation. Here, we investigated the role of RAGE in intestinal inflammation and its potential as a therapeutic target in IBD. We showed that RAGE was upregulated in inflamed tissues from IBD patients compared to controls. Rage-/- mice were less susceptible to intestinal and colonic inflammation development than WT mice. WT mice treated with the RAGE-specific inhibitor FPS-ZM1 experienced less severe enteritis and colitis. We demonstrated that RAGE could induce intestinal inflammation by promoting oxidative stress and endothelial activation which were diminished by FPS-ZM1 treatment. Our results revealed the RAGE signaling pathway as a promising therapeutic target for IBD patients.
Collapse
|
48
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
49
|
Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:1213-1234. [PMID: 30334619 PMCID: PMC6351676 DOI: 10.1002/jcsm.12350] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
50
|
Zhao Y, Luo C, Chen J, Sun Y, Pu D, Lv A, Zhu S, Wu J, Wang M, Zhou J, Liao Z, Zhao K, Xiao Q. High glucose-induced complement component 3 up-regulation via RAGE-p38MAPK-NF-κB signalling in astrocytes: In vivo and in vitro studies. J Cell Mol Med 2018; 22:6087-6098. [PMID: 30246940 PMCID: PMC6237571 DOI: 10.1111/jcmm.13884] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes is considered as a risk for cognitive decline, which is characterized by neurodegenerative alteration and innate immunity activation. Recently, complement 3 (C3), the critical central component of complement system, has been reported to play a key role in neurodegenerative alterations under pathological condition. Receptor for advanced glycation end products (RAGE) activation is confirmed to mediate several inflammatory cytokines production. However, whether C3 activation participates in the diabetic neuropathology and whether this process is regulated by RAGE activation remains unknown. The present study aimed to investigate the role of C3 in streptozotocin‐induced diabetic mice and high glucose‐induced primary astrocytes and the underlying modulatory mechanisms. The decreased synaptophysin density and increased C3 deposition at synapses were observed in the diabetic brain compared to the control brain. Furthermore, the elevated C3 was co‐localized with GFAP‐positive astrocytes in the diabetic brain slice in vivo and high glucose‐induced astrocytes culture in vitro. Diabetes/high glucose‐induced up‐regulation of C3 expression at gene, protein and secretion levels, which were attenuated by pre‐treatment with RAGE, p38MAPK and NF‐κB inhibitors separately. These results demonstrate that high glucose induces C3 up‐regulation via RAGE‐ p38MAPK‐NF‐κB signalling in vivo and in vitro, which might be associated with synaptic protein loss.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Die Pu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ankang Lv
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Meili Wang
- The First People's Hospital of Zunyi, Zunyi, China
| | - Jing Zhou
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kexiang Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|