1
|
Liu X, Shang H, Wei Q, Yao X, Lian L, Dang J, Jia R, Wu Z, Li H, Niu Q, Cheng X, Zou Z, Chen S, Zhang M, Liu Y, Liu Y, Liu Q, Huang X, Wang H, Feng H, Wang S, Fan D. Tetramethylpyrazine Nitrone in Amyotrophic Lateral Sclerosis: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2461055. [PMID: 39992655 PMCID: PMC11851239 DOI: 10.1001/jamanetworkopen.2024.61055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/17/2024] [Indexed: 02/26/2025] Open
Abstract
Importance Tetramethylpyrazine nitrone has exhibited promising results in improving motor dysfunction in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Objective To evaluate the safety and efficacy of orally administered tetramethylpyrazine nitrone in patients with ALS. Design, Setting, and Participants This phase 2, multicenter, double-masked, placebo-controlled, randomized clinical trial was conducted from December 24, 2020, through July 14, 2023, in 11 centers in China, with a 180-day follow-up. Patients aged 45 to 70 years, with ALS onset within 2 years, ALS Functional Rating Scale-Revised (ALSFRS-R) scores of at least 2 points on each item, and forced vital capacity (FVC) of at least 80% were included. Patients experienced a 1- to 4-point decrease in ALSFRS-R score during a 3-month screening period. Interventions Patients were randomly assigned 1:1:1 to receive low-dose tetramethylpyrazine nitrone (600 mg twice daily), high-dose tetramethylpyrazine nitrone (1200 mg twice daily), or placebo (twice daily) for 180 days. Main Outcomes and Measures The primary outcome was change in ALSFRS-R score (range of 0-48, with lower scores indicating worse function) from baseline to 180 days. The secondary outcomes were changes in FVC, grip strength, ALS Assessment Questionnaire-40 (ALSAQ-40) score, and end point events. Safety outcomes included adverse events. Results A total of 155 patients (mean [SD] age, 55.0 [6.5] years; 115 men [74.2%]) were randomized (51 [32.9%] to the low-dose tetramethylpyrazine nitrone group, 52 [33.6%] to the high-dose tetramethylpyrazine nitrone group, and 52 [33.6%] to the placebo group). No significant differences were observed in ALSFRS-R score changes between low-dose tetramethylpyrazine nitrone (least squares [LS] mean difference, -0.89 points; 95% CI -3.25 to 1.48 points) and high-dose tetramethylpyrazine nitrone (LS mean difference, -0.20 points; 95% CI -2.48 to 2.07 points) compared with placebo. High-dose tetramethylpyrazine nitrone showed a significantly slower decline in grip strength at day 180 (LS mean difference, 2.46 kg; 95% CI, 0.15-4.76 kg). In a subgroup of patients younger than 65 years with slower disease progression, tetramethylpyrazine nitrone significantly attenuated the decline in grip strength (LS mean difference, 3.63 kg; 95% CI, 0.84-6.41 kg), bulbar scores (LS mean difference, 0.66 points; 95% CI, 0.03-1.29 points), and respiratory scores (LS mean difference, 0.54 points; 95% CI, 0.03-1.06 points). Adverse events were mostly mild or moderate, with no severe treatment-related adverse events or deaths. Conclusions and Relevance This randomized clinical trial demonstrates that tetramethylpyrazine nitrone is safe and well-tolerated in patients with ALS. There was no difference in the primary end point across the low-dose, high-dose, and placebo groups, with significant benefits in a subgroup of younger patients with slower disease progression. Trial Registration ChiCTR Identifier: ChiCTR2000039689.
Collapse
Affiliation(s)
- Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Lian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Rui Jia
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Zhiying Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongfu Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Niu
- Department of Neurology, Jiangsu Province Hospital, Nanjing, China
| | - Xi Cheng
- Department of Neurology, Jiangsu Province Hospital, Nanjing, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xusheng Huang
- Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
Zhao J, Xing W, Ji C, Hu H, Zhang Y, Wang Z, Liu J. Nucleophosmin 1 overexpression enhances neuroprotection by attenuating cellular stress in traumatic brain injury. Exp Neurol 2024; 383:115019. [PMID: 39428041 DOI: 10.1016/j.expneurol.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a multifaceted injury that can cause a wide range of symptoms and impairments, leading to significant effects on brain function. Nucleophosmin 1 (NPM1), a versatile phosphoprotein located in the nucleolus, is being recognized as a possible controller of cellular stress reactions and could be important in reducing neuro dysfunction caused by TBI. However the critical roles of NPM1 in cellular stress in TBI remains unclear. METHODS We employed a control cortical impact mouse model and a scratch-induced primary neuronal culture model. Hematoxylin and eosin staining was used to evaluate tissue damage and cellular changes, with NPM1 expression in the cortical area assessed through immunofluorescence staining and Western blot analysis. Neuronal morphology was assessed using Nissl staining. Behavioral assessments were performed to evaluate the impact of NPM1 overexpression on neurobehavioral results in TBI mice. Mitochondrial function was assessed using an Extracellular Flux Analyzer. RESULTS Following TBI, an increase in NPM1 expression was observed, with a peak at 72 h post-injury. Increased levels of NPM1 resulted in decreased neuronal cell death, as shown by Nissl staining, and lower levels of Caspase 8, APE1, H2AX, and 8-OHDG expression, indicating a reduction in DNA damage. NPM1 overexpression also resulted in improved neurobehavioral outcomes, characterized by decreased neurological deficits and enhanced motor function post-TBI. Additionally, in vitro, scratch-induction experiments revealed that NPM1 overexpression mitigated mitochondrial damage, as evidenced by the downregulation of P53, BCL2, and Cyto C expression levels and improvements in mitochondrial respiratory function. CONCLUSION These findings suggest NPM1 as a promising target for developing interventions to alleviate TBI-related cellular stress and promote neuronal survival.
Collapse
Affiliation(s)
- Jiashuo Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu Province, 215000, China
| | - Weixin Xing
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China; Department of Neurosurgery, The 928th Hospital of People's Liberation Army Joint Logistic Support Force, Haikou, Hainan Province, 570000, China
| | - Chengyuan Ji
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Hongwei Hu
- Department of Neurosurgery, Changzhou Jintan First People's Hospital Affiliated to Jiangsu University, 500 Jintan Avenue, Jintan 210036, China
| | - Yuanqing Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Jiangang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| |
Collapse
|
3
|
Guo B, Zheng C, Cao J, Luo F, Li H, Hu S, Mingyuan Lee S, Yang X, Zhang G, Zhang Z, Sun Y, Wang Y. Tetramethylpyrazine nitrone exerts neuroprotection via activation of PGC-1α/Nrf2 pathway in Parkinson's disease models. J Adv Res 2024; 64:195-211. [PMID: 37989471 PMCID: PMC11464467 DOI: 10.1016/j.jare.2023.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is common neurodegenerative disease where oxidative stress and mitochondrial dysfunction play important roles in its progression. Tetramethylpyrazine nitrone (TBN), a potent free radical scavenger, has shown protective effects in various neurological conditions. However, the neuroprotective mechanisms of TBN in PD models remain unclear. OBJECTIVES We aimed to investigate TBN's neuroprotective effects and mechanisms in PD models. METHODS TBN's neuroprotection was initially measured in MPP+/MPTP-induced PD models. Subsequently, a luciferase reporter assay was used to detect peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) promoter activity. Effects of TBN on antioxidant damage and the PGC-1α/Nuclear factor erythroid-2-related factor 2 (Nrf2) pathway were thoroughly investigated. RESULTS In MPP+-induced cell model, TBN (30-300 μM) increased cell survival by 9.95 % (P < 0.05), 16.63 % (P < 0.001), and 24.09 % (P < 0.001), respectively. TBN enhanced oxidative phosphorylation (P < 0.05) and restored PGC-1α transcriptional activity suppressed by MPP+ (84.30 % vs 59.03 %, P < 0.01). In MPTP-treated mice, TBN (30 mg/kg) ameliorated motor impairment, increased striatal dopamine levels (16.75 %, P < 0.001), dopaminergic neurons survival (27.12 %, P < 0.001), and tyrosine hydroxylase expression (28.07 %, P < 0.01). Selegiline, a positive control, increased dopamine levels (15.35 %, P < 0.001) and dopaminergic neurons survival (25.34 %, P < 0.001). Additionally, TBN reduced oxidative products and activated the PGC-1α/Nrf2 pathway. PGC-1α knockdown diminished TBN's neuroprotective effects, decreasing cell viability from 73.65 % to 56.87 % (P < 0.001). CONCLUSION TBN has demonstrated consistent effectiveness in MPP+-induced midbrain neurons and MPTP-induced mice. Notably, the therapeutic effect of TBN in mitigating motor deficits and neurodegeneration is superior to selegiline. The neuroprotective mechanisms of TBN are associated with activation of the PGC-1α/Nrf2 pathway, thereby reducing oxidative stress and maintaining mitochondrial function. These findings suggest that TBN may be a promising therapeutic candidate for PD, warranting further development and investigation.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Shengquan Hu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Gerontology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| |
Collapse
|
4
|
Li T, Zhang L, Cheng M, Hu E, Yan Q, Wu Y, Luo W, Su H, Yu Z, Guo X, Chen Q, Zheng F, Li H, Zhang W, Tang T, Luo J, Wang Y. Metabolomics integrated with network pharmacology of blood-entry constituents reveals the bioactive component of Xuefu Zhuyu decoction and its angiogenic effects in treating traumatic brain injury. Chin Med 2024; 19:131. [PMID: 39327620 PMCID: PMC11425933 DOI: 10.1186/s13020-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) has been extensively utilized to treat traumatic brain injury (TBI). However, the bioactive compounds and the underlying mechanisms have not yet been elucidated. OBJECTIVES This study aimed to investigate the bioactive constituents of XFYZD that are absorbed in the blood and the mechanisms in treating TBI. METHODS The study presents an integrated strategy in three steps to investigate the material basis and pharmacological mechanisms of XFZYD. The first step involves: (1) performing metabolomics analysis of XFZYD to obtain the main functions and targets; (2) screening the blood-entry ingredients and targets of XFZYD from databases; (3) obtaining the potential components targeting the key functions by integrated analysis of metabolomics and network pharmacology. The second step involves screening pharmacological effects with active ingredients in vitro. In the third step, the effects of the top active compound were validated in vivo, and the mechanisms were explored by protein antagonist experiments. RESULTS Metabolomics analysis revealed that XFZYD treated TBI mice mainly through affecting the functions of blood vessels. We screened 62 blood-entry ingredients of XFZYD by network pharmacology. Then, we focused on 39 blood-entry ingredients related to vascular genes enriched by XFZYD-responsive metabolites. Performing the natural products library, we verified that hydroxysafflor yellow A (HSYA), vanillin, ligustilide, paeoniflorin, and other substances promoted endothelial cell proliferation significantly compared to the control group. Among them, the efficacy of HSYA was superior. Further animal studies demonstrated that HSYA treatment alleviated neurological dysfunction in TBI mice by mNSS and foot fault test, and decreased neuronal damage by HE, nissl, and TUNEL staining. HSYA increased the density of cerebral microvessels, raised the expression of angiogenesis marker proteins VEGFA and CD34, and activated the PI3K/Akt/mTOR signaling pathway significantly. The angiogenic effects disappeared after the intervention of PI3K antagonist LY294002. CONCLUSION By applying a novel strategy of integrating network pharmacology of constituents absorbed in blood with metabolomics, the research screened HSYA as one of the top bioactive constituents of XFZYD, which stimulates angiogenesis by activating the PI3K/Akt/mTOR signaling pathway after TBI.
Collapse
Affiliation(s)
- Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Su
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xin Guo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, Hunan, People's Republic of China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Jiekun Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
5
|
Guo B, Zheng C, Cao J, Qiu X, Luo F, Li H, Lee SM, Yang X, Zhang G, Sun Y, Zhang Z, Wang Y. Tetramethylpyrazine Nitrone Promotes the Clearance of Alpha-Synuclein via Nrf2-Mediated Ubiquitin-Proteasome System Activation. Neuromolecular Med 2024; 26:9. [PMID: 38568291 DOI: 10.1007/s12017-024-08775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αβ and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αβ, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Xiaoling Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, 999078, Macao SAR, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China.
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, 601# Huangpu Road, Guangzhou, 510632, China
| |
Collapse
|
6
|
Zhang L, Li D, Zhang C, Zhang J, Xu J, Bai L, Xu J, Wang C. Predictive value of serum MDA and 4-HNE levels on the occurrence of early neurological deterioration after intravenous thrombolysis with rt-PA IVT in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107574. [PMID: 38214238 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVE This study investigated the predictive value of serum MDA and 4-HNE levels on early neurological deterioration (END) after recombinant tissue plasminogen activator (rt-PA) intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients. METHODS This study analyzed 287 AIS patients with standard-dose rt-PA IVT. Clinical baseline and pathological data were recorded before rt-PA IVT, and neurologic deficit was assessed by NIHSS. AIS patients were classified into Non-END and END groups. Serum MDA and 4-HNE levels were determined by ELISA and their correlations with NIHSS scores were evaluated. AIS patients were allocated into groups with high and low MDA or 4-HNE expression, and post-IVT END incidence was compared. Independent risk indexes for post-IVT END and the predictive value of serum MDA+4-HNE levels on post-IVT END were assessed. RESULTS Serum MDA and 4-HNE were higher in AIS patients with post-IVT END. NIHSS score showed a positive correlation with serum MDA and 4-HNE levels. MDA levels were positively correlated with 4-HNE levels in AIS patients. END after IVT was increased in AIS patients with high MDA/4-HNE expression. FBG, lymphocyte percentage, PLR, NIHSS score, serum MDA, and 4-HNE levels were independent risk factors for END after IVT. The diagnostic efficacy of MDA+4-HNE in assessing post-IVT END in AIS patients (sensitivity 92.00 %, specificity 82.70 %) was higher than MDA or 4-HNE alone. CONCLUSION Serum MDA and 4-HNE levels were higher in AIS patients with post-IVT END than in those with non-END, and MDA+4-HNE possessed a higher predictive value for post-IVT END in AIS patients.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian 116033, China
| | - Di Li
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital Affiliated to Dalian University of Technology, Dalian 116033, China
| | - Ce Zhang
- Dean's office, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province 116027, China
| | - Jianhui Zhang
- Department of Neurology, 967 Hospital of PLA Joint Logistic Support Force, 80 Shengli Road, Xigang District, Dalian City, Liaoning Province 116011, China
| | - Jia Xu
- Department of Neurology, Dalian Medical University, No. 28 Aixian Street, Dalian High-tech Park, 116044, China
| | - Lan Bai
- Beijing Yidu Cloud Technology Co., LTD., 8th Floor, Health Wisdom Valley Building, Building 9, No. 35 Huayuan North Road, Haidian District, Beijing, 100000, China
| | - Jianping Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou City, Jiangsu 215000, China
| | - Cui Wang
- Neurology Department, Dalian Central Hospital Affiliated to Dalian University of Technology, No. 826 Southwest Road, Shahekou District, Dalian City, Liaoning Province 116033, China.
| |
Collapse
|
7
|
Qi G, Li S, Jiang Q, Yu Z, Peng Z, Li Q, Qi W, Guo M. Network pharmacology analysis and experimental validation to explore the effect and mechanism of tetramethylpyrazine for spinal cord injury. J Chem Neuroanat 2024; 136:102386. [PMID: 38176475 DOI: 10.1016/j.jchemneu.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To investigate the effect and mechanism of Tetramethylpyrazine (TMP) in treating Spinal Cord Injury (SCI) using network pharmacology analysis and animal experiments. METHODS This study was based on public databases, including PharmMapper, BATMAN-TCM, and STRING, as well as KEGG pathway analysis and other methods of network pharmacology were used to preliminarily explore the molecular mechanism of TMP in the treatment of SCI. Using a mouse SCI compression injury model, the efficacy of TMP was evaluated, and the expression of predictive targets on the PI3K/AKT and MAPK signaling pathways was measured using Western blotting and q-PCR. RESULTS Network pharmacology analysis showed that TMP may exert therapeutic effects through the MAPK and PI3K/AKT signaling pathways. In animal experimental validation studies, it was shown that after treatment with TMP, the hind limb motor function scores and ramp test scores of the TMP-treated mice improved significantly. HE staining showed that after treatment with TMP, cavities decreased, fewer glial cells proliferated, and fewer inflammatory cells infiltrated; Nielsen staining showed less neuronal loss. Western blot studies showed that compared with the model group, expression of RAS, ERK1/2, RAF1, PI3K, and p-AKT proteins in the spinal cord tissue of mice treated with high-dose TMP was significantly lower. Accordingly, q-PCR studies showed that compared with the model group, the expression levels of RAS, ERK1/2, RAF1, PI3K, and p-AKT genes in the spinal cords of mice in the high-dose TMP group were significantly lower. CONCLUSION TMP exhibits a good neuroprotective effect after SCI, which may be related to inhibition of the MAPK and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Guodong Qi
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China
| | - Shujun Li
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Qiong Jiang
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Zhijuan Yu
- Chongqing Erlang Community Health Service Center, Clinical Laboratory, Chongqing, China
| | - Zhenggang Peng
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China
| | - Qiurui Li
- Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Wei Qi
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China.
| | - Mingjun Guo
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Orthopedics Department, Chongqing, China.
| |
Collapse
|
8
|
Danduga RCSR, Shaik HB, Polopalli S, Kola PK, Kanakaraju VK, Kandaswamy S. Tetramethylpyrazine contributes to the neuroprotection in a rodent epileptic model of pentylenetetrazole-induced kindling. J Pharm Pharmacol 2023; 75:1163-1176. [PMID: 37100619 DOI: 10.1093/jpp/rgad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/01/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVES In this study, tetramethylpyrazine (TMP) was evaluated for its therapeutic potential as an alternative therapy for epileptogenesis and its associated comorbidities in rats. METHODS The sub-convulsant dose of pentylenetetrazole (PTZ) (35 mg/kg, intraperitoneally) was injected on alternative days to produce kindling for 32 days and observed for seizure score percent of kindled animals in each group. After kindling, the animals were evaluated in models of anxiety, memory and predictive of depression. The neuroprotective effect of TMP was assessed by estimating the biochemical parameters in the cortex and hippocampus of the brain. Histopathological alterations were also observed in the cortex and hippocampus (CA1, CA3 and DG). KEY FINDINGS The administration of TMP reduced the seizure score and percentage of kindled animals dose-dependently. Furthermore, TMP significantly improved the behavioural parameters measured in the predictive models of depression but not in the anxiety and cognitive performances of the animals. The oxidative-nitrosative stress, excitotoxicity, neuroinflammation and histological alterations in the brain induced by PTZ were significantly mitigated by administering the TMP high dose of 60 mg/kg. CONCLUSION In conclusion, the TMP attenuated the depression behaviour in the PTZ-induced kindled rats, and reduced the oxidative-nitrosative stress, excitotoxicity, neuroinflammation and histological alterations of the brain.
Collapse
Affiliation(s)
- Ravi Chandra Sekhara Reddy Danduga
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Habbeb Banu Shaik
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Subramanyam Polopalli
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Phani Kumar Kola
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Vijaya Kishore Kanakaraju
- Department of Pharmaceutical Chemistry, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Surabhi Kandaswamy
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| |
Collapse
|
9
|
Bukhari SNA, Yogesh R. An Overview of Tetramethylpyrazine (Ligustrazine) and its Derivatives as
Potent Anti-Alzheimer’s Disease Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405232333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Tetramethylpyrazine (TMP), or ligustrazine, is an alkaloid isolated from the Chinese herb
Ligusticum wallichii. It is known for its broad-spectrum medicinal properties against several diseases, and
various studies have shown that it can modulate diverse biological targets and signaling pathways to produce
neuroprotective effects, especially against Alzheimer’s disease (AD). This has attracted significant
research attention evaluating TMP as a potent multitarget anti-AD agent. This review compiles the results
of studies assessing the neuroprotective mechanisms exerted by TMP as well as its derivatives prepared
using a multi-target-directed ligand strategy to explore its multitarget modulating properties. The present
review also highlights the work done on the design, synthesis, structure-activity relationships, and mechanisms
of some potent TMP derivatives that have shown promising anti-AD activities. These derivatives
were designed, synthesized, and evaluated to develop anti-AD molecules with enhanced biological and
pharmacokinetic activities compared to TMP. This review article paves the way for the exploration and
development of TMP and TMP derivatives as an effective treatment for AD.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Ruchika Yogesh
- 22 A3, DS Tower 1, Sukhumvit Soi 33, Khlong Tan Nuea, Wattana, Bangkok 10110, Thailand
| |
Collapse
|
10
|
Yang CC, Hsiao LD, Shih YF, Chang CI, Yang CM. Induction of Heme Oxygenase-1 by 15d-Prostaglandin J2 Mediated via a ROS-Dependent Sp1 and AP-1 Cascade Suppresses Lipopolysaccharide-Triggered Interleukin-6 Expression in Mouse Brain Microvascular Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040719. [PMID: 35453404 PMCID: PMC9024691 DOI: 10.3390/antiox11040719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been shown to exert antioxidant, anti-inflammatory, and anti-apoptotic effects in various types of cells. Therefore, the induction of HO-1 is an excellent rationale for the development of protective drugs. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can modulate the expression of antioxidant defense proteins and be beneficial for neuroinflammation. Brain endothelial cells play an important role in the pathophysiology of brain disorders. Whether 15d-PGJ2 can induce HO-1 expression and protect against the inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells remains unclear. Here, we reveal that 15d-PGJ2 stimulated HO-1 protein and mRNA expression in a time- and concentration-dependent manner in bEnd.3 cells, which was attenuated by diphenyleneiodonium chloride (DPI) and MitoTempo. Thus, activation of NADPH oxidase (NOX)- and mitochondria-derived reactive oxygen species (ROS) mediated 15d-PGJ2-induced HO-1 expression. ROS generation could cause phosphorylation of protein kinase C (PKC)δ, leading to HO-1 expression, which was suppressed by Rottlerin (selective inhibitor PKCδ), DPI, and MitoTempo. We further demonstrated that phosphorylation of c-Jun N-terminal kinase (JNK)1/2 participated in 15d-PGJ2-upregulated HO-1 expression, which was blocked by SP600125 or Rottlerin. Moreover, 15d-PGJ2-induced HO-1 expression was mediated through the activation of c-Jun (a subunit of activator protein 1 (AP-1)) and specificity protein 1 (Sp1), leading to their interaction with the HO-1 promoter, revealed by chromatin immunoprecipitation assay, which was attenuated by SP600125, Mithramycin A, or Tanshinone II A. We further verified the anti-inflammatory effect of HO-1 expression. Our results showed that 15d-PGJ2-induced HO-1 could mitigate the lipopolysaccharide-triggered interleukin-6 expression and secretion, as measured by an ELISA assay kit. These results suggest that 15d-PGJ2-induced HO-1 expression is mediated through the activation of NOX- and mitochondria-derived ROS-dependent PKCδ/JNK1/2/Sp1 and the AP-1 signaling pathway and protects against inflammatory responses in bEnd.3 cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ching-I Chang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 2229)
| |
Collapse
|
11
|
Lu Y, Zhou X, Cheng J, Ma Q. Early Intensified Rehabilitation Training with Hyperbaric Oxygen Therapy Improves Functional Disorders and Prognosis of Patients with Traumatic Brain Injury. Adv Wound Care (New Rochelle) 2021; 10:663-670. [PMID: 34546088 PMCID: PMC8568788 DOI: 10.1089/wound.2018.0876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022] Open
Abstract
Objective: Traumatic brain injury (TBI) is a global public health problem. Hyperbaric oxygen (HBO) therapy may be beneficial for TBI because it improves cerebral blood flow into tissues exhibiting low blood flow. This was done to observe the clinical therapeutic effect of different intensities of rehabilitation training and HBO therapy in early stages of TBI. Approach: In this multicenter, randomized, stratified case-controlled prospective clinical trial, we selected 158 patients with moderate-severe TBI and assigned them into (1) a control group receiving routine once-daily (1/d) rehabilitation training without HBO, (2) study group A receiving routine 1/d rehabilitation training with HBO, (3) study group B receiving twice-daily (2/d) intensified rehabilitation training with HBO, and (4) study group C receiving 2/d intensified rehabilitation training without HBO, all for 3 months. The cognitive ability, activities of daily life (ADL), and movement ability were assessed before and after training with the Fugl-Meyer Assessment (FMA), Functional Independence Measure (FIM), Modified Barthel Index (MBI), and Mini-Mental State Examination (MMSE). Results: FIM, FMA, MBI, and MMSE scores were improved significantly after 1-, 2-, and 3-month rehabilitation training in all TBI patients (p < 0.01), and this improvement was especially remarkable in patients who received 2/d intensified rehabilitation training with HBO (p < 0.01). Innovation: With extensive and intensive research on TBI rehabilitation, it was proved that TBI rehabilitation intervention should be initiated as early as possible. Conclusion: Early intensified rehabilitation training in combination with HBO is more beneficial to the recovery of cognitive, ADL, and movement abilities of TBI patients.
Collapse
Affiliation(s)
- Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Xianshan Zhou
- Traumatic Rehabilitation Center of Hangzhou Sanatorium, Hangzhou, China
| | | | - Qing Ma
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
12
|
Association Between DNA and RNA Oxidative Damage and Mortality of Patients with Traumatic Brain Injury. Neurocrit Care 2021; 32:790-795. [PMID: 31385181 DOI: 10.1007/s12028-019-00800-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The hyperoxidative state in traumatic brain injury (TBI) could produce oxidative damage on the ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Oxidative damage to nucleic acids in TBI patients has been studied, and higher concentrations of 8-OHdG were found in postmortem brain samples of subjects who died following TBI than in subjects who died from sudden cardiac death. Thus, the objective of this study was to determine whether there is an association between serum DNA and RNA oxidative damage and mortality in TBI patients. METHODS We included patients with severe isolated TBI defined as a lower score than 9 points in the Glasgow Coma Scale (GCS) and lower than 9 points in non-cranial aspects in the Injury Severity Score. We determined serum concentrations of the three oxidized guanine species (OGS) (8-OHdG from DNA, 8-hydroxyguanosine from RNA, and 8-hydroxyguanine from DNA or RNA) and malondialdehyde (to estimate lipid peroxidation) on the day of TBI. Mortality at 30 days was the end-point study. RESULTS We found higher serum concentrations of OGS (p < 0.001) and malondialdehyde (p < 0.001) in non-surviving (n = 34) than in surviving patients (n = 90), an association between serum OGS levels and 30-day mortality after control for CGS, age, and computed tomography findings (OR = 1.397; 95% CI = 1.137-1.716; p = 0.001), and a positive correlation between serum levels of OGS and malondialdehyde (rho = 0.24; p = 0.01). CONCLUSIONS To our knowledge, our study is the largest series reporting data on DNA oxidative damage in TBI patients and is the first reporting DNA and RNA oxidative damage in TBI patients associating lipid peroxidation and mortality.
Collapse
|
13
|
Wen J, Li S, Zheng C, Wang F, Luo Y, Wu L, Cao J, Guo B, Yu P, Zhang G, Li S, Sun Y, Yang X, Zhang Z, Wang Y. Tetramethylpyrazine nitrone improves motor dysfunction and pathological manifestations by activating the PGC-1α/Nrf2/HO-1 pathway in ALS mice. Neuropharmacology 2020; 182:108380. [PMID: 33152451 DOI: 10.1016/j.neuropharm.2020.108380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of upper and lower motor neurons that results in skeletal muscle atrophy, weakness and paralysis. Oxidative stress plays a key role in the pathogenesis of ALS, including familial forms of the disease arising from mutation of the gene coding for superoxide dismutase (SOD1). We have used the SOD1G93A ALS mouse model to investigate the efficacy of 2-[[(1,1-dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a novel tetramethylpyrazine derivative armed with a powerful free-radical scavenging nitrone moiety. TBN was administered to mice by intraperitoneal or intragastric injection after the onset of motor deficits. TBN slowed the progression of motor neuron disease as evidenced by improved motor performance, reduced spinal motor neuron loss and the associated glial response, and decreased skeletal muscle fiber denervation and fibrosis. TBN treatment activated mitochondrial antioxidant activity through the PGC-1α/Nrf2/HO-1 pathway and decreased the expression of human SOD1. These findings suggest that TBN holds promise as a therapeutic agent for ALS.
Collapse
Affiliation(s)
- Jing Wen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shangming Li
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Chengyou Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fengjiao Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Yangwen Luo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Liangmiao Wu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Jie Cao
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yewei Sun
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
14
|
Abstract
The recent advances of tetramethylpyrazine nitrones and quinolylnitrones for the treatment of stroke have been reviewed and compared with other agents, showing promising therapeutic applications. As a result of a functional transformation of natural product ligustrazine, (Z)-N-tert-butyl-1-(3,5,6-trimethylpyrazin-2-yl)methanimine oxide (6) is a multitarget small nitrone showing potent thrombolytic activity and free radicals scavenging power, in addition to nontoxicity and blood-brain barrier permeability. Similarly, antioxidant (Z)-N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (17) is a novel agent for cerebral ischemia therapy as it is able to scavenge different types of free radical species, showing strong neuroprotection and reduced infarct size.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry, CSIC; Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
15
|
Salman M, Tabassum H, Parvez S. Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway. Mol Neurobiol 2020; 57:2870-2885. [PMID: 32399817 DOI: 10.1007/s12035-020-01924-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022]
Abstract
The present research was conducted to elucidate a possible molecular mechanism related to neuromodulatory effects of tannic acid (TA) supplementation against traumatic brain injury (TBI) in a rodent model. Oxidative damage and neuroinflammation play a critical role in TBI and lead to behavioral alterations and neuronal dysfunction and death. These changes suggest a potential avenue in neurotherapeutic intervention. The aim of the present study was to investigate the neuroprotective effects of TA and potential mechanism of these effects in a controlled cortical impact injury model of TBI in Wistar rats that were treated with TA (50 mg/kg body weight. i.p.) before 30 min and 6 and 18 h after TBI. TBI-induced rats were examined after 24 h for behavioral dysfunction, Nissl stain, lipid peroxidation rate, glutathione level, activities of antioxidant enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase), the expression level of 4-hydroxynonenal, pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1 beta, as well as brain edema and immunoreactivity of glial fibrillary acidic protein. Results indicated that TA supplementation significantly modulated above mentioned alterations. Moreover, TA treatment effectively upregulated the protein expression of peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) and nuclear factor-E2-related factor-2 (Nrf2) as well as mitochondrial transcription factor A and heme oxygenase-1 (HO-1) following TBI. Overall, our results suggest that TA effectively ameliorates the behavioral alterations, oxidative damage, mitochondrial impairment, and inflammation against TBI that may be attributed to activation of PGC-1α/Nrf-2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Biomedical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
16
|
Zhou Q, Chen S, Li H, Yang B, Chen T, Hu T, Yin D, He H, He M. Tetramethylpyrazine alleviates iron overload damage in vascular endothelium via upregulating DDAHII expression. Toxicol In Vitro 2020; 65:104817. [PMID: 32135237 DOI: 10.1016/j.tiv.2020.104817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
Iron overload causes vascular endothelium damage. It has been thought to relate excessive reactive oxygen species (ROS) generation. Tetramethylpyrazine (TMP), an active ingredient of Ligusticum chuanxiong Hort, protects various cells by inhibiting oxidative stress and cascade reaction of apoptosis. However, whether TMP can increase DDAHII activity and expression against endothelial cell damage induced by iron overload, and the protective mechanism has not been elucidated. In this study, 50 μM iron dextran and 25 μM TMP were used to co-treat HUVECs for 48 h. TMP could increase cell viability and decrease LDH activity, enhance DDAHII expression and activity, p-eNOS/eNOS ratio, NO content, and reduce ADMA level. TMP also showed a strong antioxidant activity with inhibited ROS generation and oxidative stress. Moreover, TMP attenuated mitochondrial membrane potential loss, inhibited mitochondrial permeability transition pore openness, and decreased apoptosis induced by iron overload. While mentioned above, the protective effects of TMP were abolished with the addition of pAD/DDAHII-shRNA. The effects of TMP against iron overload were similar to the positive control groups, L-arginine, a competitive substrate of ADMA, or edaravone, free radical scavenger. These results signify that TMP alleviated iron overload damage in vascular endothelium via ROS/ADMA/ DDAHII/eNOS/NO pathway.
Collapse
Affiliation(s)
- Qing Zhou
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuping Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Bin Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Tianpeng Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Tianhong Hu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China.
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| |
Collapse
|
17
|
Gao J, Long L, Xu F, Feng L, Liu Y, Shi J, Gong Q. Icariside II, a phosphodiesterase 5 inhibitor, attenuates cerebral ischaemia/reperfusion injury by inhibiting glycogen synthase kinase-3β-mediated activation of autophagy. Br J Pharmacol 2020; 177:1434-1452. [PMID: 31658364 PMCID: PMC7056470 DOI: 10.1111/bph.14912] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Cerebral ischaemia/reperfusion causes exacerbated neuronal damage involving excessive autophagy and neuronal loss. The present study was designed to investigate the effect of icariside II, one of main active ingredients of Herba Epimedii on this loss and whether this is related to its PDE 5 inhibitory action. Experimental Approach Focal cerebral ischaemia was induced in the rat by transient middle cerebral artery occlusion over 2 hr, followed by reperfusion with icariside II, 3‐methylamphetamine or rapamycin. The effect of icariside II was determined measuring behaviour changes and the size of the infarction. The expressions of PDE 5, autophagy‐related proteins and the level of phosphorylation of glycogen synthase kinase‐3β (GSK‐3β) were determined. Cultured primary cortical neurons were subjected to oxygen and glucose deprivation followed by reoxygenation in the presence and absence of icariside II. A surface plasmon resonance assay and molecular docking were used to explore the interactions of icariside II with PDE 5 or GSK‐3β. Key Results Icariside II not only protected against induced ischaemic reperfusion injury in rats but also attenuated such injury in primary cortical neurons. The neuroprotective effects of icariside II on such injury were attributed to interfering with the PKG/GSK‐3β/autophagy axis by directly bounding to PDE 5 and GSK‐3β. Conclusions and Implications These findings indicate that icariside II attenuates cerebral I/R‐induced injury via interfering with PKG/GSK‐3β/autophagy axis. This study raises the possibility that icariside II and other PDE 5 inhibitors maybe effective in the treatment ischaemia stroke.
Collapse
Affiliation(s)
- Jianmei Gao
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Long Long
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China.,Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Fan Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Linying Feng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Yuangui Liu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Jingshan Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| |
Collapse
|
18
|
Tetramethylpyrazine Attenuates the Endotheliotoxicity and the Mitochondrial Dysfunction by Doxorubicin via 14-3-3 γ/Bcl-2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5820415. [PMID: 31885804 PMCID: PMC6914960 DOI: 10.1155/2019/5820415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
Abstract
Doxorubicin (Dox) with cardiotoxicity and endotheliotoxicity limits its clinical application for cancer. The toxicitic mechanism involves excess ROS generation. 14-3-3s have the protective effects on various injured tissues and cells. Tetramethylpyrazine (TMP) is an alkaloid extracted from the rhizome of Ligusticum wallichii and has multiple bioactivities. We hypothesize that TMP has the protective effects on vascular endothelium by upregulating 14-3-3γ. To test the hypothesis, Dox-induced endotheliotoxicity was used to establish vascular endothelium injury models in mice and human umbilical vein endothelial cells. The effects of TMP were assessed by determining thoracic aortic strips' endothelium-dependent dilation (EDD), as well as LDH, CK, caspase-3, SOD, CAT, GSH-Px activities and MDA level in serum, apoptotic rate, and histopathological changes of vascular tissue (in vivo). Also, cell viability, LDH and caspase-3 activities, ROS generation, levels of NAD+/NADH and GSH/GSSG, MMP, mPTP opening, and apoptotic rate were evaluated (in vitro). The expression of 14-3-3γ and Bcl-2, as well as phosphorylation of Bad (S112), were determined by Western blot. Our results showed that Dox-induced injury to vascular endothelium was decreased by TMP via upregulating 14-3-3γ expression in total protein and Bcl-2 expression in mitochondria, activating Bad (S112) phosphorylation, maintaining EDD, reducing LDH, CK, and caspase-3 activities, thereby causing a reduction in apoptotic rate, and histopathological changes of vascular endothelium (in vivo). Furthermore, TMP increased cell viability and MMP levels, maintained NAD+/NADH, GSH/GSSG balance, decreased LDH and caspase-3 activities, ROS generation, mPTP opening, and apoptotic rate (in vitro). However, the protective effects to vascular endothelium of TMP were significantly canceled by pAD/14-3-3γ-shRNA, an adenovirus that caused knockdown 14-3-3γ expression, or ABT-737, a specific Bcl-2 inhibitor. In conclusion, this study is the first to demonstrate that TMP protects the vascular endothelium against Dox-induced injury via upregulating 14-3-3γ expression, promoting translocation of Bcl-2 to the mitochondria, closing mPTP, maintaining MMP, inhibiting RIRR mechanism, suppressing oxidative stress, improving mitochondrial function, and alleviating Dox-induced endotheliotoxicity.
Collapse
|
19
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
20
|
Novel neuroprotective tetramethylpyrazine analog T-006 promotes neurogenesis and neurological restoration in a rat model of stroke. Neuroreport 2019; 30:658-663. [DOI: 10.1097/wnr.0000000000001256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Wu L, Su Z, Zha L, Zhu Z, Liu W, Sun Y, Yu P, Wang Y, Zhang G, Zhang Z. Tetramethylpyrazine Nitrone Reduces Oxidative Stress to Alleviate Cerebral Vasospasm in Experimental Subarachnoid Hemorrhage Models. Neuromolecular Med 2019; 21:262-274. [PMID: 31134485 DOI: 10.1007/s12017-019-08543-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Cerebral vasospasm is one of the deleterious complications after subarachnoid hemorrhage (SAH), leading to delayed cerebral ischemia and permanent neurological deficits or even death. Free radicals and oxidative stress are considered as crucial causes contributing to cerebral vasospasm and brain damage after SAH. Tetramethylpyrazine nitrone (TBN), a derivative of the clinically used anti-stroke drug tetramethylpyrazine armed with a powerful free radical scavenging nitrone moiety, has been reported to prevent brain damage from ischemic stroke. The present study aimed to investigate the effects of TBN on vasospasm and brain damage after SAH. Two experimental SAH models were used, a rat model by endovascular perforation and a rabbit model by intracisternal injection of autologous blood. The effects of TBN on SAH were evaluated assessing basilar artery spasm, neuronal apoptosis, and neurological deficits. TBN treatment significantly attenuated vasospasm, improved neurological behavior functions and reduced the number of apoptotic neurons in both the SAH rats and rabbits. Mechanistically, TBN suppressed the increase in 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine immuno-positive cells in the cortex of SAH rat brain. Western blot analyses indicated that TBN effectively reversed the altered expression of Bcl-2, Bax and cytochrome C, and up-regulated nuclear factor erythroid-derived 2-like 2 (Nrf2) and hemeoxygenase-1 (HO-1) protein expressions. In the in vitro studies, TBN inhibited H2O2-induced bEnd.3 cell apoptosis and reduced ROS generation. Additionally, TBN alleviated the contraction of rat basilar artery rings induced by H2O2 ex vivo. In conclusion, TBN ameliorated SAH-induced cerebral vasospasm and neuronal damage. These effects of TBN may be attributed to its anti-oxidative stress effect and up-regulation of Nrf2/HO-1.
Collapse
Affiliation(s)
- Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Zhiyang Su
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Ling Zha
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Zeyu Zhu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Wei Liu
- Foshan Magpie Pharmaceuticals Co., LTD, Foshan, Guangdong Province, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China.
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China.
| |
Collapse
|
22
|
Yauger YJ, Bermudez S, Moritz KE, Glaser E, Stoica B, Byrnes KR. Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro. J Neuroinflammation 2019; 16:41. [PMID: 30777083 PMCID: PMC6378754 DOI: 10.1186/s12974-019-1430-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Excessive iron contributes to oxidative stress after central nervous system injury. NADPH oxidase (NOX) enzymes are upregulated in microglia after pro-inflammatory activation and contribute to oxidative stress. The relationship between iron, microglia, NOX, and oxidative stress is currently unclear. METHODS We evaluated the effects of iron on lipopolysaccharide (LPS)-activated microglia and its secondary effect within neuronal co-cultures. Further, NOX2 and four specific inhibitors were tested to evaluate the relationship with the reactive oxygen species (ROS)-producing enzymes. RESULTS An iron dose-dependent increase in ROS production among microglia treated with LPS was identified. Interestingly, despite this increase in ROS, inflammatory polarization alterations were not detected among the microglia after exposure to iron and LPS. Co-culture experimentation between primary neurons and exposed microglia (iron and LPS) significantly reduced neuronal cell number at 24 h, suggesting a profound neurotoxic effect despite the lack of a change in polarization phenotype. NOX2 and NOX4 inhibition significantly reduced ROS production among microglia exposed to iron and LPS and reduced neuronal damage and death in response to microglial co-culture. CONCLUSIONS In conclusion, iron significantly increased ROS production and neurotoxicity without exacerbating LP-activated microglia phenotype in vitro, suggesting that iron contributes to microglia-related oxidative stress, and this may be a viable therapeutic target for injury or neurodegeneration. Further, this study highlights both NOX2 and NOX4 as potential therapeutic targets in the treatment of iron-induced microglia-related inflammation and neurotoxicity.
Collapse
Affiliation(s)
- Young J Yauger
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Room C2099, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Sara Bermudez
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Room C2099, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kasey E Moritz
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Room C2099, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Ethan Glaser
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland, School of Medicine, 655 W. Baltimore St, Room #6-015, Baltimore, MD, USA
| | - Bogdan Stoica
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland, School of Medicine, 655 W. Baltimore St, Room #6-015, Baltimore, MD, USA
| | - Kimberly R Byrnes
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Room C2099, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Room C2099, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
23
|
Shao Z, Wu P, Wang X, Jin M, Liu S, Ma X, Shi H. Tetramethylpyrazine Protects Against Early Brain Injury and Inhibits the PERK/Akt Pathway in a Rat Model of Subarachnoid Hemorrhage. Neurochem Res 2018; 43:1650-1659. [PMID: 29951731 DOI: 10.1007/s11064-018-2581-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022]
Abstract
Neuronal apoptosis is a potentially fatal pathological process that occurs in early brain injury (EBI) after subarachnoid hemorrhage (SAH). There is an urgent need to identify effective therapeutics to alleviate neuronal apoptosis. Tetramethylpyrazine (TMP), as an important component of the Chinese traditional medicinal herb Ligusticum wallichii, has been widely used in China to treat cerebral ischemic injury and confer neuroprotection. In the present work, we investigate whether TMP can reduce EBI following SAH in rats, specifically via inactivating the PERK/Akt signaling cascade. One hundred twenty-five male Sprague-Dawley rats were used in the present study. TMP was administered by intravenous (i.v.) injection, and the Akt inhibitor MK2206 was injected intracerebroventricularly (i.c.v.). SAH grade, neurological scores, and brain water content were measured 24 h after SAH. Neuronal apoptosis was visualized by Fluoro-Jade C (FJC) staining. Western blotting was used to measure the levels of PERK, p-PERK, eIF2α, p-eIF2α, Akt, p-Akt, Bcl-2, Bax, and cleaved caspase-3. Our results showed that TMP effectively reduced neuronal apoptosis and improved neurobehavioral deficits 24 h after SAH. Administration of TMP reduced the abundance of p-PERK and p-eIF2α. In addition, TMP increased the p-Akt level and the Bcl-2/Bax ratio and decreased the level of cleaved caspase-3. The selective Akt inhibitor MK2206 abolished the anti-apoptotic effect of TMP at 24 h after SAH. Collectively, these results indicate that Akt-related anti-apoptosis through the PERK pathway is a major, potent mechanism of EBI. Further investigation of this pathway may provide a basis for the development of TMP as a clinical treatment.
Collapse
Affiliation(s)
- Zhengkai Shao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xuefeng Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Meishan Jin
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Shuang Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xudong Ma
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
24
|
Ma D, Wang N, Fan X, Zhang L, Luo Y, Huang R, Zhang L, Li Y, Zhao G, Li L. Protective Effects of Cornel Iridoid Glycoside in Rats After Traumatic Brain Injury. Neurochem Res 2018; 43:959-971. [PMID: 29492766 DOI: 10.1007/s11064-018-2501-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Cornel iridoid glycoside (CIG) is the active ingredient extracted from Cornus officinalis. Our previous studies showed that CIG had protective effects on several brain injury models. In the present study, we aimed to examine the effects and elucidate the mechanisms of CIG against traumatic brain injury (TBI). TBI was induced in the right cerebral cortex of male adult rats. The neurological and cognitive functions were evaluated by modified neurological severity score (mNSS) and object recognition test (ORT), respectively. The level of serum S100β was measured by an ELISA method. Nissl staining was used to estimate the neuron survival in the brain. The expression of proteins was determined by western blot and/or immunohistochemical staining. We found that intragastric administration of CIG in TBI rats ameliorated the neurological defects and cognitive impairment, and alleviated the neuronal loss in the injured brain. In the acute stage of TBI (24-72 h), CIG decreased the level of S100β in the serum and brain, increased the ratio of Bcl-2/Bax and decreased the expression of caspase-3 in the injured cortex. Moreover, the treatment with CIG for 30 days increased the levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), enhanced the expression of synapsin I, synaptophysin and postsynaptic density protein 95 (PSD-95), and inhibited the apoptosis-regulating factors in the chronic stage of TBI. The present study demonstrated that CIG had neuroprotective effects against TBI through inhibiting apoptosis in the acute stage and promoting neurorestoration in the chronic stage. The results suggest that CIG may be beneficial to TBI therapy.
Collapse
Affiliation(s)
- Denglei Ma
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Na Wang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Yi Luo
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Rui Huang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Li Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Yali Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100053, China.
| | - Lin Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
25
|
Neuroprotective Effect and Mechanism of Action of Tetramethylpyrazine Nitrone for Ischemic Stroke Therapy. Neuromolecular Med 2018; 20:97-111. [DOI: 10.1007/s12017-018-8478-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
26
|
Zhang G, Zhang T, Li N, Wu L, Gu J, Li C, Zhao C, Liu W, Shan L, Yu P, Yang X, Tang Y, Yang G, Wang Y, Sun Y, Zhang Z. Tetramethylpyrazine nitrone activates the BDNF/Akt/CREB pathway to promote post-ischaemic neuroregeneration and recovery of neurological functions in rats. Br J Pharmacol 2018; 175:517-531. [PMID: 29161771 PMCID: PMC5773967 DOI: 10.1111/bph.14102] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuronal regeneration from endogenous precursors is an attractive strategy for the treatment of ischaemic stroke. However, most stroke-generated newborn neurons die over time. Therefore, a drug that is both neuroprotective and pro-neurogenic may be beneficial after stroke. Here, we assessed the neurogenic and oligodendrogenic effects of tetramethylpyrazine nitrone (TBN), a neuroprotective drug candidate for stroke, in a rat model of ischaemic stroke. EXPERIMENTAL APPROACH We used Sprague Dawley rats with middle cerebral artery occlusion (MCAO). TBN was administered by tail vein injection beginning at 3 h post ischaemia. Therapeutic effect of TBN was evaluated by neurological behaviour and cerebral infarction. Promotion of neurogenesis and oligodendrogenesis was determined by double immunofluorescent staining and Western blotting analyses. Primary cultures of cortical neurons were used to assess the effect of TBN on neuronal differentiation in vitro. KEY RESULTS TBN reduced cerebral infarction, preserved and/or restored neurological function and promoted neurogenesis and oligodendrogenesis in rats after MCAO. In addition, TBN stimulated neuronal differentiation on primary culture of cortical neurons in vitro. Pro-neurogenic effects of TBN were attributed to its activation of the AKT/cAMP responsive element-binding protein through increasing brain-derived neurotrophic factor (BDNF) expression, as shown by the abolition of the effects of TBN by a specific inhibitor of BDNF receptor ANA-12 and by the PI3K inhibitor LY294002. CONCLUSION AND IMPLICATIONS As TBN can simultaneously provide neuroprotection and pro-neurogenic effects, it may be a promising treatment for both acute phase neuroprotection and long-term functional recovery after ischaemic stroke.
Collapse
Affiliation(s)
- Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Tao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Ning Li
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Jianbo Gu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Cuimei Li
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Chen Zhao
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Wei Liu
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and PreventionShenzhenChina
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Guo‐Yuan Yang
- Neuroscience and Neuroengineering Center, Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| |
Collapse
|
27
|
Zhang T, Gu J, Wu L, Li N, Sun Y, Yu P, Wang Y, Zhang G, Zhang Z. Neuroprotective and axonal outgrowth-promoting effects of tetramethylpyrazine nitrone in chronic cerebral hypoperfusion rats and primary hippocampal neurons exposed to hypoxia. Neuropharmacology 2017; 118:137-147. [DOI: 10.1016/j.neuropharm.2017.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/16/2022]
|
28
|
Luo X, Yu Y, Xiang Z, Wu H, Ramakrishna S, Wang Y, So KF, Zhang Z, Xu Y. Tetramethylpyrazine nitrone protects retinal ganglion cells against N
-methyl-d
-aspartate-induced excitotoxicity. J Neurochem 2017; 141:373-386. [DOI: 10.1111/jnc.13970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/07/2017] [Accepted: 01/20/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaopeng Luo
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
| | - Yankun Yu
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
| | - Zongqin Xiang
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
| | - Huisu Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University; Guangzhou China
| | | | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University; Guangzhou China
| | - Kwok-Fai So
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
- Co-Innovation Center of Neuroregeneration; Nantong University; Jiangsu China
- Joint International Research Laboratory of CNS Regeneration; Ministry of Education of PRC; Guangzhou China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University; Guangzhou China
| | - Ying Xu
- GHM Institute of CNS Regeneration; Jinan University; Guangzhou China
- Co-Innovation Center of Neuroregeneration; Nantong University; Jiangsu China
- Joint International Research Laboratory of CNS Regeneration; Ministry of Education of PRC; Guangzhou China
| |
Collapse
|
29
|
Sun Z, Hu W, Yin S, Lu X, Zuo W, Ge S, Xu Y. NGF protects against oxygen and glucose deprivation-induced oxidative stress and apoptosis by up-regulation of HO-1 through MEK/ERK pathway. Neurosci Lett 2017; 641:8-14. [PMID: 28115238 DOI: 10.1016/j.neulet.2017.01.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/28/2023]
Abstract
Both nerve growth factor (NGF) and heme oxygenases-1 (HO-1) promotes neuron survival from cerebral ischemic lesions. NGF protects neurons from oxygen-glucose deprivation (OGD), and HO-1 expression can be induced by some growth factors like NGF. This work attempted to identify the contribution of HO-1 on the neuroprotection role of NGF in OGD model, which is an injury simulation of ischemic neuron in vitro. The viability of cortical neurons cells treated with OGD restored significantly by pretreatment with NGF in a dose dependent manner. Moreover, NGF provided obvious protective effects against OGD-induced neurons apoptosis. It identified that NGF could prevent apoptosis and ROS (reactive oxygen species) accumulation in the primary cortical neurons exposed to OGD. NGF could up-regulate the expression level of HO-1, and then afford neuroprotection against OGD insult. In addition, we found that MEK/ERK pathway participated NGF-induced over-expression of HO-1, and was involved in the transcriptional activity or neuroprotection effect of NGF.
Collapse
Affiliation(s)
- Zhitang Sun
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurology, the Second Hospital of Shanxi Medical University,382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Weimin Hu
- Department of Neurology, the Second Hospital of Shanxi Medical University,382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Shulan Yin
- Department of Neurology, the Second Hospital of Shanxi Medical University,382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Xiufang Lu
- Department of Neurology, the Second Hospital of Shanxi Medical University,382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Wenchao Zuo
- Department of Neurology, the Second Hospital of Shanxi Medical University,382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Sihui Ge
- Department of Neurology, the Second Hospital of Shanxi Medical University,382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|