1
|
Liu H, Jiang L, Xu S, Wang C, Sun J. Quercetin prevents methylmercury-induced mitochondrial dysfunction in the cerebral cortex of mice. Drug Chem Toxicol 2024; 47:1124-1138. [PMID: 38647114 DOI: 10.1080/01480545.2024.2341888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Methylmercury (MeHg) exposure can cause nerve damage and mitochondrial dysfunction. Mitochondrial dysfunction is mainly mediated by mitochondrial biogenesis and mitochondrial dynamics disorders. Quercetin (QE) plays an important role in activating silencing information regulator 2 related enzyme 1 (SIRT1), and SIRT1 activates peroxisome-proliferator-activated receptor-γ co-activator 1α (PGC-1α), which can regulate mitochondrial biogenesis and mitochondrial dynamics. The main purpose of this study was to explore the alleviating effects of QE on MeHg-induced nerve damage and mitochondrial dysfunction. The results showed that QE could reduce the excessive production of reactive oxygen species (ROS) and the loss of membrane potential induced by MeHg. Meanwhile, QE activated SIRT1 activity and SIRT1/PGC-1α signaling pathway, improved mitochondrial biogenesis and fusion and reduced mitochondrial fission. In summary, we hypothesized that QE prevents MeHg-induced mitochondrial dysfunction by activating SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Liujiangshan Jiang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jingyi Sun
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
2
|
Fontes A, Jauch AT, Sailer J, Engler J, Azul AM, Zischka H. Metabolic Derangement of Essential Transition Metals and Potential Antioxidant Therapies. Int J Mol Sci 2024; 25:7880. [PMID: 39063122 PMCID: PMC11277342 DOI: 10.3390/ijms25147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adrian T. Jauch
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Judith Sailer
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Jonas Engler
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| |
Collapse
|
3
|
Wang J, Xue X, Miao X. Antioxidant Effects of Quercetin Nanocrystals in Nanosuspension against Hydrogen Peroxide-Induced Oxidative Stress in a Zebrafish Model. Pharmaceuticals (Basel) 2023; 16:1209. [PMID: 37765017 PMCID: PMC10536595 DOI: 10.3390/ph16091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Quercetin, a flavonoid compound rich in hydroxyl groups, possesses antioxidant properties, whereas its poor water solubility limits its bioavailability. In pursuit of addressing the water solubility of quercetin and comprehending the impact of nanocrystal particle size on antioxidant efficacy, we prepared three different-sized quercetin nanocrystals, namely small (50 nm), medium (140 nm), and large (360 nm), using a nanosuspension method in this study. Within the in vitro setting, assessments employing solubility and radical scavenging assays revealed that quercetin nanocrystals displayed superior solubility (26, 21, and 13 fold corresponding to small, medium, and large particle sizes) and antioxidant performance compared to the coarse quercetin. Furthermore, quercetin nanocrystals of three particle sizes all demonstrated significant protection effects on the survival rate of H2O2-treated zebrafish at 72 h (77.78%, 73.33%, and 66.67% for small, medium, and large particle sizes, respectively), while the coarse quercetin group exhibited a low survival rate (53.3%) similar to the H2O2-treated group (47.8%). Moreover, all quercetin nanocrystals exhibited potent antioxidant capacity on both the antioxidants and enzymatic antioxidant system in H2O2-treated zebrafish to restore zebrafish to a normal state under oxidative stress. For instance, the levels of reactive oxygen species were reduced to 101.10%, 108.83%, and 109.77% of the normal levels for small, medium, and large particle-sized quercetin nanocrystals, respectively. In conclusion, quercetin nanocrystals demonstrated enhanced solubility, robust antioxidant capacity, and protective effects in zebrafish compared to coarse quercetin.
Collapse
Affiliation(s)
- Junjie Wang
- Marine College, Shandong University, Weihai 264209, China; (J.W.); (X.X.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China; (J.W.); (X.X.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.W.); (X.X.)
| |
Collapse
|
4
|
Li L, Qin Y, Xin X, Wang S, Liu Z, Feng X. The great potential of flavonoids as candidate drugs for NAFLD. Biomed Pharmacother 2023; 164:114991. [PMID: 37302319 DOI: 10.1016/j.biopha.2023.114991] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of approximately 25 % and is associated with high morbidity and high mortality. NAFLD is a leading cause of cirrhosis and hepatocellular carcinoma. Its pathophysiology is complex and still poorly understood, and there are no drugs used in the clinic to specifically treat NAFLD. Its pathogenesis involves the accumulation of excess lipids in the liver, leading to lipid metabolism disorders and inflammation. Phytochemicals with the potential to prevent or treat excess lipid accumulation have recently received increasing attention, as they are potentially more suitable for long-term use than are traditional therapeutic compounds. In this review, we summarize the classification, biochemical properties, and biological functions of flavonoids and how they are used in the treatment of NAFLD. Highlighting the roles and pharmacological uses of these compounds will be of importance for enhancing the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Liangge Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xijian Xin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shendong Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
5
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
6
|
Tan Y, Cheng H, Su C, Chen P, Yang X. PI3K/Akt Signaling Pathway Ameliorates Oxidative Stress-Induced Apoptosis upon Manganese Exposure in PC12 Cells. Biol Trace Elem Res 2022; 200:749-760. [PMID: 33772736 DOI: 10.1007/s12011-021-02687-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Manganese (Mn)-induced neurotoxicity has aroused public concerns for many years, but its precise mechanism is still poorly understood. Herein, we report the impacts of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway in mediating neurological effects induced by manganese sulfate (MnSO4) exposure in PC12 cells. In this study, cells were treated with MnSO4 for 24 h in the absence or presence of LY294002 (a special inhibitor of PI3K). We investigated cell viability and apoptosis signals, as well as levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA). The mRNA levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3 were also quantified through real-time quantitative PCR (RT-qPCR); protein levels of serine/threonine protein kinase (Akt) and forkhead box O3A (Foxo3a) were determined by western blot. Increasing of MnSO4 doses led to decreased SOD, GSH-Px, and CAT activities, while the level of MDA was upregulated. Moreover, cell apoptosis was significantly increased, as the mRNA of Bcl-2 and Caspase-3 was significantly decreased, while Bax mRNA was increased. Phosphorylated Akt (p-Akt) and Foxo3a (p-Foxo3a) were upregulated in a dose-dependent manner. In addition, LY294002 pretreatment reduced the activity of SOD, GSH-Px, and CAT but elevated MDA levels. Meanwhile, LY294002 pretreatment also increased cell apoptosis given the upregulated Bax and Caspase-3 mRNAs and decreased Bcl-2 mRNA. In summary, the PI3K/Akt signaling pathway can be activated by MnSO4 exposure and mediate MnSO4-induced neurotoxicity.
Collapse
Affiliation(s)
- Yanli Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hong Cheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Cheng Su
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| |
Collapse
|
7
|
|
8
|
Alshammari GM, Al-Qahtani WH, Alshuniaber MA, Yagoub AEA, Al-Khalifah AS, Al-Harbi LN, Alhussain MH, AlSedairy SA, Yahya MA. Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
Thaimory M, Goudarzi I, Lashkarbolouki T, Abrari K. Quercetin fail to protect against the neurotoxic effects of chronic homocysteine administration on motor behavior and oxidative stress in the adult rat's cerebellum. Toxicol Res (Camb) 2021; 10:810-816. [PMID: 34484672 DOI: 10.1093/toxres/tfab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/14/2021] [Accepted: 06/20/2021] [Indexed: 11/12/2022] Open
Abstract
Homocysteine (Hcy) is an excitatory amino acid that contains thiol group and derives from the methionine metabolism. It increases vulnerability of the neuronal cells to excitotoxic and oxidative damage. This study aimed to investigate the hyperhomocysteinemia (hHcy) effects on rat cerebellum and the possible protective role of quercetin administration in Hcy-treated rats, using behavioral and biochemical analyzes. To this end, the adult male rats were divided randomly into the control group that received vehicle, Hcy group received Hcy (400 μg/kg), Hcy + Que group received Hcy + quercetin (50 mg/kg), quercetin group received quercetin for 14 days. On Day 14 after the final treatment, lipid peroxidation level, the superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities were evaluated in the cerebellum. After completion of treatment, the rat's performance on rotarod and locomotor activity was evaluated. The results showed that Hcy treatment elicited cerebellar lipid peroxidation, impaired locomotor activity and increased latency to fall on the rotarod. Quercetin failed to attenuate significantly motoric impairment, increased significantly the cerebellar lipid peroxidation and GPx activity in the Hcy + Que group. Our results suggest that Hcy induced cerebellar toxicity and quercetin had no significant protective effects against Hcy toxicity in the cerebellum of adult rats.
Collapse
Affiliation(s)
| | | | | | - Kataneh Abrari
- Faculty of Biology, Damghan University, Cheshme-Ali, Damghan 3671641167, Iran
| |
Collapse
|
10
|
Zhang C, Jiang D, Wang J, Qi Q. The effects of TPT and dietary quercetin on growth, hepatic oxidative damage and apoptosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112697. [PMID: 34450426 DOI: 10.1016/j.ecoenv.2021.112697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to determine the effects of triphenyltin (TPT) and dietary quercetin on the growth, oxidative stress and apoptosis in zebrafish. A total of 240 fish were divided into 4 groups with three replicates as follows: fish were fed with the basal diet as the control group (D1), only 10 ng/L TPT (D2), 10 ng/L TPT + 100 mg/kg quercetin (D3), and only 100 mg/Kg quercetin as the D4 group. At the end of the study period (56 d), the results showed that the growth performance of the fish that were fed 100 mg/kg quercetin was significantly higher than that of fish that were exposed to 10 ng/L TPT. Quercetin ameliorated oxidative stress, which decreased malondialdehyde (MDA) and nitric oxide (NO) levels and improved antioxidant enzyme activities. The mRNA expressions of the key apoptotic gene and pro-inflammatory cytokines were significantly induced by TPT exposure. However, dietary quercetin prevented a marked increase in the Bax, caspase3 and caspase9 transcript abundances that were induced by TPT. In addition, the quercetin treatments decreased inflammation by regulating the NF-kB signalling pathway. In conclusion, our findings suggested that TPT induced oxidative stress and apoptosis in zebrafish and that the pretreatment with quercetin showed an ameliorative role. Dietary 100 mg/ kg quercetin helps to prevent oxidative damage, apoptosis and inflammation in TPT treated zebrafish.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| | - Dongxue Jiang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Junhui Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
11
|
Sun L, Lu B, Liu Y, Wang Q, Li G, Zhao L, Zhao C. Synthesis, characterization and antioxidant activity of quercetin derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1942059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lei Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Bo Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Yandan Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Longxuan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Chunhui Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
12
|
Chopra D, Sharma S, Sharma N, Nehru B. N-Acetylcysteine Ameliorates Neurotoxic Effects of Manganese Intoxication in Rats: A Biochemical and Behavioral Study. Neurochem Res 2021; 46:1953-1969. [PMID: 33950473 DOI: 10.1007/s11064-021-03312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022]
Abstract
Clinical and experimental evidences reveal that excess exposure to manganese is neurotoxic and leads to cellular damage. However, the mechanism underlying manganese neurotoxicity remains poorly understood but oxidative stress has been implicated to be one of the key pathophysiological features related to it. The present study investigates the effects associated with manganese induced toxicity in rats and further to combat these alterations with a well-known antioxidant N-acetylcysteine which is being used in mitigating the damage by its radical scavenging activity. The study was designed to note the sequential changes along with the motor and memory dysfunction associated with biochemical and histo-pathological alterations following exposure and treatment for 2 weeks. The results so obtained showed decrease in the body weights, behavioral deficits with increased stress markers and also neuronal degeneration in histo-pathological examination after manganese intoxication in rats. To overcome the neurotoxic effects of manganese, N-acetylcysteine was used in the current study due to its pleiotropic potential in several pathological ailments. Taken together, N-acetylcysteine helped in ameliorating manganese induced neurotoxic effects by diminishing the behavioral deficits, normalizing acetylcholinesterase activity, and augmentation of redox status.
Collapse
Affiliation(s)
- Devika Chopra
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, 160014, India
| | - Neha Sharma
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, 160014, India
| | - Bimla Nehru
- Department of Biophysics, Basic Medical Sciences Block II, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
14
|
Vig R, Bhadra F, Gupta SK, Sairam K, Vasundhara M. Neuroprotective effects of quercetin produced by an endophytic fungus Nigrospora oryzae isolated from Tinospora cordifolia. J Appl Microbiol 2021; 132:365-380. [PMID: 34091993 DOI: 10.1111/jam.15174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
AIMS Alzheimer's disease is considered one of the most prevalent neurodegenerative disorders and dementia is the core symptom of this disease. This study was aimed to test the bioactive compounds produced by endophytic fungus for the inhibition of acetylcholinesterase (AChE) activity and to identify the compound responsible for this activity. METHODS AND RESULTS Endophytic fungi were isolated from the medicinal plant Tinospora cordifolia and screened for AChE inhibition and antioxidant activity. The extract of one of the isolates Nigrospora oryzae (GL15) showed maximum AChE inhibition as well as antioxidant activity. The compound responsible for AChE inhibition (fraction 3) was identified as quercetin based on UV, FTIR spectra, HPLC and ESI-MS analyses. Furthermore, the identification of quercetin in the extract of fraction 3 was confirmed by 1 H NMR analysis. This extract showed anti-dementia-like activity in scopolamine (SCO) model. The minimal effective dose of the extract of fraction 3 modulated the SCO-provoked cognitive deficits such as impairments in spatial recognition memory and latency period in Y-maze test and passive avoidance test, respectively. The SCO-induced modulation in cholinergic pathway was ameliorated by the extract of N. oryzae in hippocampus, resulting in decrease in AChE activity and restoration of cytoarchitecture of hippocampus. CONCLUSIONS The bioactive compound quercetin produced by N. oryzae may cure the learning and memory shortfalls via AChE-mediated mechanism in experimental mice. SIGNIFICANCE AND IMPACT OF THE STUDY The endophytic fungus N. oryzae serves as a potential source for the bioactive compound quercetin, which plays an important role in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Rajat Vig
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Fatima Bhadra
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Sukesh Kumar Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Krishnamurthy Sairam
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Mondem Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
15
|
Tinkov AA, Paoliello MMB, Mazilina AN, Skalny AV, Martins AC, Voskresenskaya ON, Aaseth J, Santamaria A, Notova SV, Tsatsakis A, Lee E, Bowman AB, Aschner M. Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. Int J Mol Sci 2021; 22:4646. [PMID: 33925013 PMCID: PMC8124173 DOI: 10.3390/ijms22094646] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Monica M. B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil
| | - Aksana N. Mazilina
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Laboratory of Medical Elementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| | - Olga N. Voskresenskaya
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Jan Aaseth
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico;
| | - Svetlana V. Notova
- Institute of Bioelementology, Orenburg State University, 460018 Orenburg, Russia;
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Aristides Tsatsakis
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13 Heraklion, Greece
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA;
| | - Michael Aschner
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| |
Collapse
|
16
|
Orhan IE. Cholinesterase Inhibitory Potential of Quercetin towards Alzheimer's Disease - A Promising Natural Molecule or Fashion of the Day? - A Narrowed Review. Curr Neuropharmacol 2021; 19:2205-2213. [PMID: 33213346 PMCID: PMC9185776 DOI: 10.2174/1570159x18666201119153807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 11/22/2022] Open
Abstract
Natural substances are known to have strong protective effects against neurodegenerative diseases. Among them, phenolic compounds, especially flavonoids, come to the fore with their neuroprotective effects. Since quercetin, which is found in many medicinal plants and foods, is also taken through diet, its physiological effects on humans are imperative. Many studies have been published up to date on the neuroprotective properties of quercetin, a flavanol derivative. However, there is no review published so far summarizing the effect of quercetin on the cholinesterase (ChE) enzymes related to the cholinergic hypothesis, which is one of the pathological mechanisms of Alzheimer's Disease (AD). However, ChE inhibitors, regardless of natural or synthetic, play a vital role in the treatment of AD. Although the number of studies on the ChE inhibitory effect of quercetin is limited, it deserves to be discussed in a review article. With this sensitivity, the neuroprotective effect of quercetin against AD through ChE inhibition was scrutinized in the current review study. In addition, studies on the bioavailability of quercetin and its capacity to cross the blood-brain barrier and how this capacity and bioavailability can be increased were given. Generally, studies containing data published in recent years were obtained from search engines such as PubMed, Scopus, and Medline and included herein. Consequently, quercetin should not be considered as a fashionable natural compound and should be identified as a promising compound, especially with increased bioavailability, for the treatment of AD.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330Ankara, Turkey
| |
Collapse
|
17
|
Nkpaa KW, Owoeye O, Amadi BA, Adedara IA, Abolaji AO, Wegwu MO, Farombi EO. Ethanol exacerbates manganese-induced oxidative/nitrosative stress, pro-inflammatory cytokines, nuclear factor-κB activation, and apoptosis induction in rat cerebellar cortex. J Biochem Mol Toxicol 2020; 35:e22681. [PMID: 33314588 DOI: 10.1002/jbt.22681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/26/2020] [Indexed: 11/06/2022]
Abstract
Manganese (Mn) exposure is causing public health concerns as well as heavy alcohol consumption. This study investigates the mechanisms of neurotoxicity associated with Mn and ethanol (EtOH) exposure in the rat cerebellar cortex. Experimental animals received 30 mg/kg of Mn alone, 5 g/kg of EtOH alone, co-exposed with 30 mg/kg of Mn and 1.25 or 5 g/kg EtOH, while control animals received water by oral gavage for 35 days. Subsequently, alterations in the neuronal morphology of the cerebellar cortex, oxidative/nitrosative stress, acetylcholinesterase (AChE) activity, neuro-inflammation and protein expression of p53, BAX, caspase-3, and BCL-2 were investigated. The results indicate that Mn alone and EtOH alone induce neuronal alterations in the cerebellar cortex, decrease glutathione level and antioxidant enzyme activities, along with an increase in AChE activity, lipid peroxidation, and hydrogen peroxide generation. Mn alone and EtOH alone also increased neuro-inflammatory markers, namely nitric oxide, myeloperoxidase activity, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB (NF-κB) levels in the cerebellar cortex. Immunohistochemistry analysis further revealed that exposure of Mn alone and EtOH alone increases the protein expression of cyclooxygenase-2, BAX, p53, and caspase-3 and decrease BCL-2 in the rat cerebellar cortex. Furthermore, the results indicated that Mn co-exposure with EtOH at 1.25 and 5 g/kg EtOH significantly (p ≤ .05) increases the toxicity in the cerebellum when compared with the toxicity of Mn or EtOH alone. Taken together, co-exposure of Mn and EtOH exacerbates neuronal alterations, oxidative/nitrosative stress, AChE activity, pro-inflammatory cytokines, NF-κB signal transcription, and apoptosis induction in the rat cerebellar cortex.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin A Amadi
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Amos O Abolaji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew O Wegwu
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
18
|
Zhang JL, Liu M, Cui W, Yang L, Zhang CN. Quercetin affects shoaling and anxiety behaviors in zebrafish: Involvement of neuroinflammation and neuron apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 105:359-368. [PMID: 32693159 DOI: 10.1016/j.fsi.2020.06.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Quercetin, a potential fish food supplement, has been reported to process many beneficial properties. However, some negative effects of quercetin have been observed, which pointed out necessity for additional studies to evaluate its safety. Therefore, the present study investigated effects of quercetin (0.01, 0.1, 1, 10, 100 and 1000 μg/L) on shoaling and anxiety behaviors through novel tank tests in zebrafish (Danio rerio). Furthermore, oxidative stress, neuroinflammation and apoptosis in the brains were examined to learn more about mechanisms of action related to quercetin. The results showed that quercetin at the lower concentrations exerted beneficial effects on shoaling and anxiety behaviors. On the contrary, when quercetin was up to 1000 μg/L, it exerted detrimental effects shown as decreases of movement and increases of anxiety behaviors. Generally, U-shaped responses of antioxidant enzyme activities (superoxide dismutase and catalase), and inversed U-shaped responses of inflammatory mediators (cyclooxygenase-2) and cytokines (interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor α) to quercetin treatment were found in the brains. In addition, quercetin at the lower concentrations attenuated cell apoptosis, while even more apoptosis was found at the 1000 μg/L quercetin group. In conclusion, quercetin could exert beneficial or detrimental effects on the shoaling and anxiety behaviors depending on the treatment concentrations, and the underlying mechanisms are potentially associated with neuroinflammation and neuron apoptosis.
Collapse
Affiliation(s)
- Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Min Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wei Cui
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Li Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
19
|
Soares ATG, da Silva AC, Tinkov AA, Khan H, Santamaría A, Skalnaya MG, Skalny AV, Tsatsakis A, Bowman AB, Aschner M, Ávila DS. The impact of manganese on neurotransmitter systems. J Trace Elem Med Biol 2020; 61:126554. [PMID: 32480053 PMCID: PMC7677177 DOI: 10.1016/j.jtemb.2020.126554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Manganese (Mn) is a metal ubiquitously present in nature and essential for many living organisms. As a trace element, it is required in small amounts for the proper functioning of several important enzymes, and reports of Mn deficiency are indeed rare. METHODS This mini-review will cover aspects of Mn toxicokinetics and its impact on brain neurotransmission, as well as its Janus-faced effects on humans and other animal's health. RESULTS The estimated safe upper limit of intracellular Mn for physiological function is in anarrow range of 20-53 μM.Therefore, intake of higher levels of Mn and the outcomes, especially to the nervous system, have been well documented. CONCLUSION The metal affects mostly the brain by accumulating in specific areas, altering cognitive functions and locomotion, thus severely impacting the health of the exposed organisms.
Collapse
Affiliation(s)
- Ana Thalita Gonçalves Soares
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| | - Aline Castro da Silva
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Haroon Khan
- Department of pharmacy, Abdul Wali khan University Mardan 23200, Pakistan
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA. Mexico City, Mexico
| | | | - Anatoly V. Skalny
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Graduation Program in Biochemistry, Federal University of Pampa Campus Uruguaiana, RS, Brazil
| |
Collapse
|
20
|
Wang H, Yang F, Xin R, Cui D, He J, Zhang S, Sun Y. The gut microbiota attenuate neuroinflammation in manganese exposure by inhibiting cerebral NLRP3 inflammasome. Biomed Pharmacother 2020; 129:110449. [PMID: 32768944 DOI: 10.1016/j.biopha.2020.110449] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Manganese (Mn) exposure has been reported to cause neurodegenerative disorders. β-Amyloid (Aβ) induced Tau pathology in an NLRP3-dependent manner is at the heart of Alzheimer's and Parkinson's diseases. The gut microbiota plays a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities. In this study, we found that Mn exposure increases Aβ1-40 and Tau production in brain, and causes hippocampal degeneration and necrosis. Meanwhile, Mn exposure can stimulate neurotoxicity by increasing inflammation either in peripheral blood and CNS. Importantly, we found that transplantation of gut microbiota from normal rats into Mn exposure rats reduced Aβ and Tau expression, and the cerebral expression of NLRP3 was downregulated, and the expression of neuroinflammatory factors was also downregulated. Therefore, improving the composition of gut microbiota in Mn exposure rats can attenuate neuroinflammation, which is considered as a novel therapeutic strategy for Mn exposure by remodelling the gut microbiota.
Collapse
Affiliation(s)
- Hui Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Feng Yang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ruihua Xin
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Dongan Cui
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jiongjie He
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shidong Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Yan Sun
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
21
|
El Fari R, Abbaoui A, Bourziq A, Zroudi M, Draoui A, El Khiat A, Belkouch M, Elgot A, Gamrani H. Neuroprotective effects of docosahexaenoic acid against sub-acute manganese intoxication induced dopaminergic and motor disorders in mice. J Chem Neuroanat 2019; 102:101686. [DOI: 10.1016/j.jchemneu.2019.101686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023]
|
22
|
Alugoju P, Narsimulu D, Bhanu JU, Satyanarayana N, Periyasamy L. Role of quercetin and caloric restriction on the biomolecular composition of aged rat cerebral cortex: An FTIR study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117128. [PMID: 31146210 DOI: 10.1016/j.saa.2019.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Aging brain is characterized by a change in biomolecular composition leading to a diverse range of neurological diseases. Anti-aging research is of current interest, to lessen the burden of age-related macromolecular damage through antioxidant supplementation and caloric restriction. However, data concerning the effect of these anti-aging regimens on age-related biomolecular changes in rat brain is still lacking. In the present study, for the first time, we employed Fourier transform infrared (FTIR) spectroscopy, to investigate the effect of quercetin, caloric restriction (CR) and combination of both on alterations in the composition of lipids and proteins of aged rat brain cerebral cortex. Aged male Wistar rats (21 months old) were divided into four groups: Control (CONT), fed pellet diet; Quercetin (QUER), fed quercetin (50 mg/kg/day); CR (caloric restriction) (fed 40% reduced CONT), and CRQ (40% CR and 50 mg/kg/day QUER). Three-month-old rats served as young control (YOUNG). Our short-term study (45 days) shows decreased band area of unsaturated lipids, decreased area ratios of olefinic/lipid and CH2 antisymmetric stretching (2925 cm-1)/lipids in CONT group compared to young rats, suggesting age-associated lipid peroxidation in aged rats. A slight decrease in the frequency of CH2 antisymmetric mode of lipids (whereas no change in CH2 symmetric mode), but a decrease in bandwidths of both CH2 antisymmetric and symmetric modes of lipids was observed for CONT group compared to YOUNG. Further, a significant decrease in the peak area of infrared bands of proteins and an increase in the peak area of the CO band of lipids was observed in the CONT group. Our data also show that lower levels of α-helical structures and higher levels of random coils, representing altered protein secondary structure composition in the CONT group compared to YOUNG group. Reduction in neuronal cell density and shrinked nucleus was also observed in aged rats. Increase in the accumulation of oxidative mediated damage to macromolecules and diminished antioxidant levels, could be the possible reason for the age-related alterations in the composition of lipids and proteins. However, the combination of quercetin and CR, but not either treatment alone, significantly prevented the age associated alterations in the lipid and protein profiles in the rat cerebral cortex. Further, our results help to understand the mechanism of action of antioxidants under non-restriction and CR conditions, this might help in the development of novel anti-aging treatments to ameliorate oxidative stress in age-related disorders.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - D Narsimulu
- Department of Physics, Pondicherry University, Puducherry 605 014, India
| | - J Udaya Bhanu
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - N Satyanarayana
- Department of Physics, Pondicherry University, Puducherry 605 014, India
| | - Latha Periyasamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India.
| |
Collapse
|
23
|
Nkpaa KW, Awogbindin IO, Amadi BA, Abolaji AO, Adedara IA, Wegwu MO, Farombi EO. Ethanol Exacerbates Manganese-Induced Neurobehavioral Deficits, Striatal Oxidative Stress, and Apoptosis Via Regulation of p53, Caspase-3, and Bax/Bcl-2 Ratio-Dependent Pathway. Biol Trace Elem Res 2019; 191:135-148. [PMID: 30488170 DOI: 10.1007/s12011-018-1587-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
This study investigated the effects of ethanol (EtOH) on manganese (Mn)-induced striatal toxicity in rat by evaluating the neurobehavioral changes, biochemical and molecular events in rats exposed to Mn alone at 30 mg/kg, or their combination with EtOH at 1.25- and 5-g/kg body weight for 35 consecutive days. Locomotive and exploratory profiles were assessed using a video tracking software (ANY-Maze software) during a 5-min trial in a novel environment. Subsequently, acetylcholinesterase (AChE) activity, oxidative stress markers, histological morphology, and expression of apoptotic proteins (p53 and Bax and caspase-3) and anti-apoptotic protein (Bcl-2) were assessed in the striatum. Results showed that Mn, EtOH, and their combination induced locomotor and motor deficits. Track plot analysis indicated that EtOH exacerbated the Mn-induced reduction in exploratory profiles of exposed rats. Similarly, exposure of rats to Mn, EtOH, or combination of Mn and EtOH resulted in decreased activities of anti-oxidant enzymes, diminished level of reduced glutathione, downregulated Bcl-2 expression, increased AChE activity, enhanced hydrogen peroxide and lipid peroxidation levels, and upregulated expressions of p53, Bax, and caspase-3. Moreover, potentiation of Mn-induced striatal toxicity by EtOH co-exposure was dose dependent. Taken together, it seems that EtOH exacerbates Mn-induced neurobehavioral deficits, oxidative stress, and apoptosis induction via the regulation of p53, caspase-3, and Bax/Bcl-2 ratio-dependent pathway in rat striatum.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria.
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin A Amadi
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria
| | - Amos O Abolaji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew O Wegwu
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria.
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
24
|
Sachse B, Kolbaum AE, Ziegenhagen R, Andres S, Berg K, Dusemund B, Hirsch-Ernst KI, Kappenstein O, Müller F, Röhl C, Lindtner O, Lampen A, Schäfer B. Dietary Manganese Exposure in the Adult Population in Germany-What Does it Mean in Relation to Health Risks? Mol Nutr Food Res 2019; 63:e1900065. [PMID: 31216097 DOI: 10.1002/mnfr.201900065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/29/2019] [Indexed: 11/10/2022]
Abstract
Manganese is both an essential nutrient and a potential neurotoxicant. Therefore, the question arises whether the dietary manganese intake in the German population is on the low or high side. Results from a pilot total diet study in Germany presented here reveal that the average dietary manganese intake in the general population in Germany aged 14-80 years is about 2.8 mg day-1 for a person of 70 kg body weight. This exposure level is within the intake range of 2-5 mg per person and day as recommended by the societies for nutrition in Germany, Austria, and Switzerland. No information on the dietary exposure of children in Germany can be provided so far. Although reliable information on health effects related to oral manganese exposure is limited, there is no indication from the literature that these dietary intake levels are associated with adverse health effects either by manganese deficiency or excess. However, there is limited evidence that manganese taken up as a highly bioavailable bolus, for example, uptake via drinking water or food supplements, could pose a potential risk to human health-particularly in certain subpopulations-when certain intake amounts, which are currently not well defined, are exceeded.
Collapse
Affiliation(s)
- Benjamin Sachse
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Anna Elena Kolbaum
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Rainer Ziegenhagen
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Susanne Andres
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Katharina Berg
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Birgit Dusemund
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Karen Ildico Hirsch-Ernst
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Oliver Kappenstein
- German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, 10589, Berlin, Germany
| | - Frederic Müller
- German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, 10589, Berlin, Germany
| | - Claudia Röhl
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany.,State Agency for Social Services Schleswig-Holstein (LAsD), Department of Environmental Health Protection, 24105, Kiel, Germany
| | - Oliver Lindtner
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Bernd Schäfer
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| |
Collapse
|
25
|
Nkpaa KW, Amadi BA, Wegwu MO, Farombi EO. Ethanol increases manganese—Induced spatial learning and memory deficits via oxidative/nitrosative stress induced p53 dependent/independent hippocampal apoptosis. Toxicology 2019; 418:51-61. [DOI: 10.1016/j.tox.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
26
|
Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019; 24:E1123. [PMID: 30901869 PMCID: PMC6470739 DOI: 10.3390/molecules24061123] [Citation(s) in RCA: 671] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/14/2023] Open
Abstract
Quercetin is a bioactive compound that is widely used in botanical medicine and traditional Chinese medicine due to its potent antioxidant activity. In recent years, antioxidant activities of quercetin have been studied extensively, including its effects on glutathione (GSH), enzymatic activity, signal transduction pathways, and reactive oxygen species (ROS) caused by environmental and toxicological factors. Chemical studies on quercetin have mainly focused on the antioxidant activity of its metal ion complexes and complex ions. In this review, we highlight the recent advances in the antioxidant activities, chemical research, and medicinal application of quercetin.
Collapse
Affiliation(s)
- Dong Xu
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Meng-Jiao Hu
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yan-Qiu Wang
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yuan-Lu Cui
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
27
|
Moyano P, García JM, Anadon MJ, Lobo M, García J, Frejo MT, Sola E, Pelayo A, Pino JD. Manganese induced ROS and AChE variants alteration leads to SN56 basal forebrain cholinergic neuronal loss after acute and long-term treatment. Food Chem Toxicol 2019; 125:583-594. [PMID: 30738988 DOI: 10.1016/j.fct.2019.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 01/16/2023]
Abstract
Manganese (Mn) induces cognitive disorders and basal forebrain (BF) cholinergic neuronal loss, involved on learning and memory regulation, which could be the cause of such cognitive disorders. However, the mechanisms through which it induces these effects are unknown. We hypothesized that Mn could induce BF cholinergic neuronal loss through oxidative stress generation, cholinergic transmission and AChE variants alteration that could explain Mn cognitive disorders. This study shows that Mn impaired cholinergic transmission in SN56 cholinergic neurons from BF through alteration of AChE and ChAT activity and CHT expression. Moreover, Mn induces, after acute and long-term exposure, AChE variants alteration and oxidative stress generation that leaded to lipid peroxidation and protein oxidation. Finally, Mn induces cell death on SN56 cholinergic neurons and this effect is independent of cholinergic transmission alteration, but was mediated partially by oxidative stress generation and AChE variants alteration. Our results provide new understanding of the mechanisms contributing to the harmful effects of Mn on cholinergic neurons and their possible involvement in cognitive disorders induced by Mn.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - José Manuel García
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
28
|
Alò R, Zizza M, Fazzari G, Facciolo RM, Canonaco M. Genistein Modifies Hamster Behavior and Expression of Inflammatory Factors following Subchronic Unpredictable Mild Stress. Neuroendocrinology 2019; 108:98-108. [PMID: 30408789 DOI: 10.1159/000495209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Previous studies have pointed to the protective role of genistein against stress adaptations although neuromolecular mechanisms are not yet fully known. With this work, we evaluated the influence of such a phytoestrogen on hamster behavioral and molecular activities following exposure to subchronic unpredictable mild stress. METHODS The motor behaviors of hamsters (n = 28) were analyzed using elevated plus maze (EPM) test, hole board (HB) test, and forced swim test (FST). In addition, neurodegeneration events were assessed with amino cupric silver stain, while expression variations of tropomyosin receptor kinase B (TrkB), nuclear factor kappa-B1 (NF-κB1), and heat shock protein 70 (Hsp70) mRNAs were highlighted in limbic neuronal fields via in situ hybridization. RESULTS Genistein accounted for increased motor performances in EPM and HB tests but reduced immobility during FST, which were correlated with diminished argyrophilic signals in some limbic neuronal fields. Contextually, upregulated Hsp70 and TrkB mRNAs occurred in hippocampal (HIP) and hypothalamic neuronal fields. Conversely, diminished NF-κB1 levels were mainly obtained in HIP. CONCLUSION Hormonal neuroprotective properties of genistein corroborating anxiolytic and antidepressant role(s) through elevated expression levels of stress proteins and trophic factors may constitute novel therapeutic measures against emotional and stress-related motor performances.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy,
| | - Merylin Zizza
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy
| | - Gilda Fazzari
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy
| | - Marcello Canonaco
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
29
|
Cuscuta chinensis and C. campestris Attenuate Scopolamine-Induced Memory Deficit and Oxidative Damage in Mice. Molecules 2018; 23:molecules23123060. [PMID: 30467292 PMCID: PMC6320855 DOI: 10.3390/molecules23123060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
The seeds of Cuscuta chinensis Lam. and C. campestris Yuncker have been commonly used as Chinese medical material for preventing aging. Our previous studies have found that C. chinensis and C. campestris possess anti-inflammatory activities in rodents. However, their other biological activities, such as memory-improving properties, have not yet been explored. In the present study, we examined the memory-improving effects of the extracts of C. chinensis and C. campestris on scopolamine (SCOP)-induced memory deficit and explored their underlying mechanism in mice. Both Cuscuta species improved SCOP-induced memory deficits in the passive avoidance test, elevated plus-maze, and spatial performance test of the Morris water maze in mice. In addition, compared with mice injected with SCOP, mice pretreated with both Cuscuta species stayed for a longer time on the platform for the probe test of the Morris water maze. Moreover, both Cuscuta species reduced brain acetylcholinesterase activity and malondialdehyde levels that were increased by SCOP, and the species restored the activities of antioxidant enzymes (superoxide dismutase and catalase) and the levels of glutathione that were decreased by SCOP in the brains of mice. Both Cuscuta species further decreased brain interleukin-1β and tumor necrosis factor-α levels that were elevated by SCOP. We demonstrated that both Cuscuta species exhibited a protective activity against SCOP-induced memory deficit, cholinergic dysfunction, oxidative damage, and neuroinflammation in mice, and C. campestris has better potential than C. chinensis. In addition, we provided evidence that the seeds of C. campestris can be used as Cuscutae Semen in Traditional Chinese Medicine.
Collapse
|
30
|
Ghahremani S, Soodi M, Atashi A. Quercetin ameliorates chlorpyrifos-induced oxidative stress in the rat brain: Possible involvment of PON2 pathway. J Food Biochem 2018. [DOI: 10.1111/jfbc.12530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saeed Ghahremani
- Department of Toxicology; Faculty of Medical Sciences, Tarbiat Modares University; Tehran Iran
| | - Maliheh Soodi
- Department of Toxicology; Faculty of Medical Sciences, Tarbiat Modares University; Tehran Iran
| | - Amir Atashi
- Department of Laboratory Medical Sciences; School of Allied Medical Sciences, Shahroud University of Medical Sciences; Shahroud Iran
| |
Collapse
|
31
|
Neal M, Richardson JR. Time to get Personal: A Framework for Personalized Targeting of Oxidative Stress in Neurotoxicity and Neurodegenerative Disease. CURRENT OPINION IN TOXICOLOGY 2018; 7:127-132. [PMID: 30272040 DOI: 10.1016/j.cotox.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The annual cost for neurological disorders in the United States was $789 billion in 2014, and with an aging population these numbers are expected to significantly increase in the next 50 years [1]. Neurodegenerative diseases make up a significant portion of these costs. Neurodegenerative diseases are characterized by the loss of neuronal populations in specific regions of the brain. Although the cause is still unknown for most of these diseases, both genetic and environmental factors are thought to play important roles. There are multiple convergent mechanisms underlying the unique susceptibility of neurons to degeneration, including aging, inflammation, mitochondrial dysfunction, and oxidative stress. Oxidative stress (OS) is of particular importance because evidence indicates that the neuronal populations lost in neurodegenerative diseases are particular susceptible to OS. OS is a complex neurotoxic mechanism that arises from excessive generation of free radicals such as reactive oxygen species (ROS), reduction in anti-oxidant factors, or a combination of the two. A complex interplay between the endogenous susceptibility of the brain, genetic factors, and environmental exposures leads to the harmful generation of OS in the brain and contributes significantly to the initiation and/or progression of neurodegeneration. Unfortunately, therapeutics for neurodegenerative diseases have consistently failed in clinical trials. Thus, a better understanding of the interplay between genetic susceptibility and common molecular mechanisms of environmental contributors to OS generation could aid in elucidation of novel therapeutic strategies for neurodegenerative diseases. This review will explore the current picture of oxidative stress in the brain as it relates to neurotoxicity, specifically exploring common mechanisms behind the endogenous susceptibility of the brain to OS, genetic susceptibility and environmental exposures leading to neurotoxicity, to identify precision/personalized medicine approaches for improving therapeutic outcome.
Collapse
Affiliation(s)
- Matthew Neal
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH 44272
| |
Collapse
|