1
|
Wang H, Fan X, Zhang Y, Ma N, Li L, Lu Q, Wang Q, Yu B, Li X, Gao J. The Application of MicroRNAs in Traumatic Brain Injury: Mechanism Elucidation and Clinical Translation. Mol Neurobiol 2025; 62:7846-7863. [PMID: 39946001 DOI: 10.1007/s12035-025-04737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/31/2025] [Indexed: 05/15/2025]
Abstract
Traumatic brain injury (TBI) is a complex neurological disease caused by external forces impacting the head and is one of the leading causes of mortality and disability worldwide, exerting a significant impact on public health and socioeconomic conditions. Current research on TBI has focused primarily on assessing injury severity, determining clinical treatment, and improving patient prognosis. The timely and accurate diagnosis of TBI in clinical settings and the implementation of effective therapeutic strategies remain challenging. However, a deeper understanding of changes in gene expression and underlying molecular regulatory processes may alleviate this pressing issue. MicroRNAs (miRNAs), a class of short noncoding RNA molecules, play crucial roles in cellular physiology and pathology by regulating gene expression. With advancements in research, miRNAs have garnered increasing attention in TBI studies. This review summarizes the progress of miRNA research in TBI and explores the potential of miRNAs as diagnostic and prognostic markers and therapeutic targets for TBI.
Collapse
Affiliation(s)
- Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China.
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Qi Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China.
| |
Collapse
|
2
|
Putri PHL, Alamudi SH, Dong X, Fu Y. Extracellular vesicles in age-related diseases: disease pathogenesis, intervention, and biomarker. Stem Cell Res Ther 2025; 16:263. [PMID: 40437603 PMCID: PMC12121224 DOI: 10.1186/s13287-025-04374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
Aging is a multifactorial biological process characterized by the irreversible accumulation of molecular damage, leading to an increased risk of age-related diseases. With the global prominent rise in aging populations, elucidating the mechanisms underlying the aging process and developing strategies to combat age-related diseases have become a pressing priority. Extracellular vesicles (EVs) have gained significant attention due to their role in intercellular communication. EVs are known for their ability to deliver biocargoes, such as miRNA, proteins, and lipids, implicating their involvement in disease pathogenesis and intervention. In this review article, we explore the dual role of EVs in age-related diseases: contributing to the pathogenesis of diseases by transferring deleterious molecules, while also offering therapeutic ability by transferring beneficial molecules. We also highlight the application of EVs as biomarkers for early diagnosis of age-related diseases, paving the way for early intervention and precision medicine. Additionally, we discuss how analysing the composition of EVs cargo can provide insights into disease progression. Finally, we address the challenges and future perspectives of EV-based-therapy in clinical translation, including standardization of EVs isolation methods and improving cargo specificity.
Collapse
Affiliation(s)
- Puan Haliza Lintang Putri
- BGI Research, Hangzhou, 310030, China
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16242, Indonesia
| | - Samira Husen Alamudi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16242, Indonesia
| | - Xuan Dong
- BGI Research, Hangzhou, 310030, China
| | - Ying Fu
- BGI Research, Hangzhou, 310030, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Nochalabadi A, Khazaei M, Rezakhani L. Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative. Tissue Cell 2025; 93:102676. [PMID: 39693896 DOI: 10.1016/j.tice.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches. Eukaryote cells release extracellular vesicles (EVs), which control intercellular communication in both health and disease. More and more, EVs such as microvesicles and exosomes (EXOs) are being recognized as viable options for cell-free therapies that address complex tissue regeneration. The present study highlights the functional relevance of EVs in regenerative medicine for nerve-related regeneration. A subclass of EVs, EXOs were first identified as a way for cells to expel undesirable cell products. These nanovesicles have a diameter of 30-150 nm and are secreted by a variety of cells in conditions of both health and illness. Their benefits include the ability to promote endothelial cell growth, inhibit inflammation, encourage cell proliferation, and regulate cell differentiation. They are also known to transport functional proteins, metabolites, and nucleic acids to recipient cells, thus playing a significant role in cellular communication. EXOs impact an extensive array of physiological functions, including immunological responses, tissue regeneration, stem cell conservation, communication within the central nervous system, and pathological processes involving cardiovascular disorders, neurodegeneration, cancer, and inflammation. Their biocompatibility and bi-layered lipid structure (which shields the genetic consignment from deterioration and reduces immunogenicity) make them appealing as therapeutic vectors. They can pass through the blood brain barrier and other major biological membranes because of their small size and membrane composition. The creation of modified EXOs is a dynamic area of research that supports the evaluation of diverse therapeutic freights, improvement of target selectivity, and manufacturing optimization.
Collapse
Affiliation(s)
- Azadeh Nochalabadi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Gong J, Li J, Li J, He A, Ren B, Zhao M, Li K, Zhang Y, He M, Liu Y, Wang Z. Impact of Microglia-Derived Extracellular Vesicles on Resident Central Nervous System Cell Populations After Acute Brain Injury Under Various External Stimuli Conditions. Mol Neurobiol 2025:10.1007/s12035-025-04858-w. [PMID: 40126599 DOI: 10.1007/s12035-025-04858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Acute brain injuries (ABI) caused by various emergencies can lead to structural and functional damage to brain tissue. Common causes include traumatic brain injury, cerebral hemorrhage, ischemic stroke, and heat stroke. Globally, ABI represent a significant portion of neurosurgical cases. Previous studies have emphasized the significant therapeutic potential of stem cell-derived extracellular vesicles (EVs). Recent research indicates that EVs extracted from resident cells in the central nervous system (CNS) also show therapeutic potential following brain injury. Microglia, as innate immune cells of the CNS, respond to changes in the internal environment by altering their phenotype and secreting EVs that impact various CNS cells, including neurons, astrocytes, oligodendrocytes, endothelial cells, neural stem cells (NSCs), and microglia themselves. Notably, under different external stimuli, microglia can either promote neuronal survival, angiogenesis, and myelin regeneration while reducing glial scarring and inflammation, or they can exert opposite effects. This review summarizes and evaluates the current research findings on how microglia-derived EVs influence various CNS cells after ABI under different external stimuli. It analyzes the interaction mechanisms between EVs and resident CNS cells and discusses potential future research directions and clinical applications.
Collapse
Affiliation(s)
- Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Anqi He
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Kexin Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuchi Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mengyao He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| |
Collapse
|
5
|
Chen L, Wang W. Microglia-derived sEV: Friend or foe in the pathogenesis of cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111287. [PMID: 39954801 DOI: 10.1016/j.pnpbp.2025.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
As immune cells, microglia serve a dual role in cognition. Microglia-derived sEV actively contribute to the development of cognitive impairment by selectively targeting specific cells through various substances such as proteins, RNA, DNA, lipids, and metabolic waste. In recent years, there has been an increasing focus on understanding the pathogenesis and therapeutic potential of sEV. This comprehensive review summarizes the detrimental effects of M1 microglial sEV on pathogenic protein transport, neuroinflammation, disruption of the blood-brain barrier (BBB), neuronal death and synaptic dysfunction in relation to cognitive damage. Additionally, it highlights the beneficial effects of M2 microglia on alleviating cognitive impairment based on evidence from cellular experiments and animal studies. Furthermore, since microglial-secreted sEV can be found in cerebrospinal fluid or cross the BBB into plasma circulation, they play a crucial role in diagnosing cognitive impairment. However, using sEV as biomarkers is still at an experimental stage and requires further clinical validation. Future research should aim to explore the mechanisms underlying microglial involvement in various nervous system disorders to identify novel targets for clinical interventions.
Collapse
Affiliation(s)
- Lilin Chen
- Pulmonary and Critical Care Medicine, Heping District, Shenyang City, Liaoning Province, China
| | - Wei Wang
- Pulmonary and Critical Care Medicine, Heping District, Shenyang City, Liaoning Province, China.
| |
Collapse
|
6
|
Sha Z, Dong S, Nie M, Liu T, Wu C, Lv C, Liu M, Jiang W, Yuan J, Qian Y, Piao X, Jiang R, Gao C. Genetic deletion of G protein-coupled receptor 56 aggravates traumatic brain injury through the microglial CCL3/4/5 upregulation targeted to CCR5. Cell Death Dis 2025; 16:175. [PMID: 40089481 PMCID: PMC11910551 DOI: 10.1038/s41419-025-07501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Traumatic brain injury (TBI) is a significant global health concern that often results in death or disability, and effective pharmacological treatments are lacking. G protein-coupled receptor 56 (GPR56), a potential drug target, is crucial for neuronal and glial cell function and therefore plays important roles in various neurological diseases. Here, we investigated the potential role and mechanism of GPR56 in TBI-related damage to gain new insights into the pharmacological treatment of TBI. Our study revealed that TBI caused a significant decrease in GPR56 expression and that the deletion of Gpr56 exacerbated neurological function deficits and blood‒brain barrier (BBB) damage following TBI. Additionally, Gpr56 deletion led to increased microgliosis, increased infiltration of peripheral T cells and macrophages, and increased release of cerebral inflammatory cytokines and chemokines after TBI. Furthermore, Gpr56 deletion induced neuronal apoptosis, impaired autophagy, and exacerbated neurological function deficits through microglial-to-neuronal CCR5 signaling after TBI. Overall, these results indicate that Gpr56 knockout exacerbates neurological deficits, neuroinflammation and neuronal apoptosis following TBI through microglial CCL3/4/5 upregulation targeted to CCR5, which indicates that GRP56 may be a potential new pharmacological target for TBI.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/pathology
- Brain Injuries, Traumatic/metabolism
- Microglia/metabolism
- Microglia/pathology
- Receptors, CCR5/metabolism
- Receptors, CCR5/genetics
- Mice
- Up-Regulation
- Chemokine CCL3/metabolism
- Chemokine CCL3/genetics
- Mice, Knockout
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Mice, Inbred C57BL
- Chemokine CCL5/metabolism
- Chemokine CCL5/genetics
- Chemokine CCL4/metabolism
- Chemokine CCL4/genetics
- Male
- Gene Deletion
- Neurons/metabolism
- Neurons/pathology
- Apoptosis
- Signal Transduction
Collapse
Affiliation(s)
- Zhuang Sha
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xianhua Piao
- Weill Institute for Neuroscience, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Newborn Brain Research Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Rongcai Jiang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- State Key Laboratory of Experimental Hematology, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.
| |
Collapse
|
7
|
Yang HB, Lu DC, Shu M, Li J, Ma Z. The roles and therapeutic potential of exosomal non-coding RNAs in microglia-mediated intercellular communication. Int Immunopharmacol 2025; 148:114049. [PMID: 39823800 DOI: 10.1016/j.intimp.2025.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Exosomes, which are small extracellular vesicles (sEVs), serve as versatile regulators of intercellular communication in the progression of various diseases, including neurological disorders. Among the diverse array of cargo they carry, non-coding RNAs (ncRNAs) play key regulatory roles in various pathophysiological processes. Exosomal ncRNAs derived from distinct cells modulate their reciprocal crosstalk locally or remotely, thereby mediating neurological diseases. Nevertheless, the emerging role of exosomal ncRNAsin microglia-mediated phenotypes remains largely unexplored. This review aims to summarise the biological functions of exosomal ncRNAs and the molecular mechanisms that underlie their impact on microglia-mediated intercellular communication, modulating neuroinflammation and synaptic functions within the landscape of neurological disorders. Furthermore, this review comprehensively described the potential applications of exosomal ncRNAs as diagnostic and prognostic biomarkers, as well as innovative therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Hu-Bo Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Min Shu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
8
|
Negah SS, Moradi HR, Forouzanfar F, Sahraian MA, Faraji M. The Role of Small Extracellular Vesicles Derived from Glial Cells in the Central Nervous System under both Normal and Pathological Conditions. Neurochem Res 2025; 50:89. [PMID: 39883187 DOI: 10.1007/s11064-025-04344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
In recent decades, researchers and clinicians have increasingly focused on glial cell function. One of the primary mechanisms influencing these functions is through extracellular vesicles (EVs), membrane-bound particles released by cells that are essential for intercellular communication. EVs can be broadly categorized into four main types based on their size, origin, and biogenesis: large EVs, small EVs (sEVs), autophagic EVs, and apoptotic bodies. Small EVs (sEVs) are involved in various physiological and pathological processes such as immune responses, angiogenesis, and cellular communication, primarily by transferring proteins, lipids, and nucleic acids to recipient cells. Interactions among glial cells mediated by small EVs can significantly modulate cell polarization and influence glial behavior through miRNA transfer. This communication, facilitated by small EVs in glial cells, is crucial for neuroinflammation, immune responses, and disease progression. This comprehensive review focuses on driven by glial small EVs, highlighting their roles in transporting biomolecules and modulating the functions of recipient cells. Furthermore, we provide an in-depth overview of the specific contributions of small EVs derived from three principal types of glial cells: oligodendrocytes, astrocytes, and microglia.
Collapse
Affiliation(s)
- Sajad Sahab Negah
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Faraji
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Chang C, Weiping L, Jibing C. Exosomal MiRNA Therapy for Central Nervous System Injury Diseases. Cell Mol Neurobiol 2024; 45:3. [PMID: 39652146 PMCID: PMC11628439 DOI: 10.1007/s10571-024-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Central nervous system diseases include central nervous system injury diseases, neurodegenerative diseases, and other conditions. MicroRNAs (miRNAs) are important regulators of gene expression, with therapeutic potential in modulating genes, pathways, and cells associated with central nervous system injury diseases. This article comprehensively reviews the therapeutic role of exosomal miRNAs in various central nervous system injury diseases, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, optic nerve injury, and spinal cord injury. This review covers the pathophysiology, animal models, miRNA transfection, administration methods, behavioral tests for evaluating treatment efficacy, and the mechanisms of action of miRNA-based therapies. Finally, this article discusses the future directions of miRNA therapy for central nervous system injury diseases.
Collapse
Affiliation(s)
- Cui Chang
- Guangxi University of Chinese Medicine, No. 179 Mingxiu East Road, Nanning, 530001, Guangxi, China
| | - Liang Weiping
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, No. 10 Huadong Road, Nanning, 530011, Guangxi, China
| | - Chen Jibing
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, No. 10 Huadong Road, Nanning, 530011, Guangxi, China.
| |
Collapse
|
10
|
Pal P, Sharma M, Gupta SK, Potdar MB, Belgamwar AV. miRNA-124 loaded extracellular vesicles encapsulated within hydrogel matrices for combating chemotherapy-induced neurodegeneration. Biochem Biophys Res Commun 2024; 734:150778. [PMID: 39368371 DOI: 10.1016/j.bbrc.2024.150778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Chemotherapy-induced neurodegeneration represents a significant challenge in cancer survivorship, manifesting in cognitive impairments that severely affect patients' quality of life. Emerging neuroregenerative therapies offer promise in mitigating these adverse effects, with miRNA-124 playing a pivotal role due to its critical functions in neural differentiation, neurogenesis, and neuroprotection. This review article delves into the innovative approach of using miRNA-124-loaded extracellular vesicles (EVs) encapsulated within hydrogel matrices as a targeted strategy for combating chemotherapy-induced neurodegeneration. We explore the biological underpinnings of miR-124 in neuroregeneration, detailing its mechanisms of action and therapeutic potential. The article further examines the roles and advantages of EVs as natural delivery systems for miRNAs and the application of hydrogel matrices in creating a sustained release environment conducive to neural tissue regeneration. By integrating these advanced materials and biological agents, we highlight a synergistic therapeutic strategy that leverages the bioactive properties of miR-124, the targeting capabilities of EVs, and the supportive framework of hydrogels. Preclinical studies and potential pathways to clinical translation are discussed, alongside the challenges, ethical considerations, and future directions in the field. This comprehensive review underscores the transformative potential of miR-124-loaded EVs in hydrogel matrices, offering insights into their development as a novel and integrative approach for addressing the complexities of chemotherapy-induced neurodegeneration.
Collapse
Affiliation(s)
- Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA; KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Mrugendra B Potdar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Aarti V Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| |
Collapse
|
11
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
12
|
Mohseni M, Behzad G, Farhadi A, Behroozi J, Mohseni H, Valipour B. MicroRNAs regulating autophagy: opportunities in treating neurodegenerative diseases. Front Neurosci 2024; 18:1397106. [PMID: 39582602 PMCID: PMC11582054 DOI: 10.3389/fnins.2024.1397106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Neurodegenerative diseases (NDs) are increasingly prevalent in our aging population, imposing significant social and economic burdens. Currently, most ND patients receive only symptomatic treatment due to limited understanding of their underlying causes. Consequently, there is a pressing need for comprehensive research into the pathological mechanisms of NDs by both researchers and clinicians. Autophagy, a cellular mechanism responsible for maintaining cellular equilibrium by removing dysfunctional organelles and misfolded proteins, plays a vital role in cell health and is implicated in various diseases. MicroRNAs (miRNAs) exert influence on autophagy and hold promise for treating these diseases. These small oligonucleotides bind to the 3'-untranslated region (UTR) of target mRNAs, leading to mRNA silencing, degradation, or translation blockade. This review explores recent findings on the regulation of autophagy and autophagy-related genes by different miRNAs in various pathological conditions, including neurodegeneration and inflammation-related diseases. The recognition of miRNAs as key regulators of autophagy in human diseases has spurred investigations into pharmacological compounds and traditional medicines targeting these miRNAs in disease models. This has catalyzed a new wave of therapeutic interventions aimed at modulating autophagy.
Collapse
Affiliation(s)
- Mahdi Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Behzad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamraz Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Ghosh M, Pearse DD. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024; 13:1834. [PMID: 39594583 PMCID: PMC11592485 DOI: 10.3390/cells13221834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury-whether beneficial or harmful-largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
14
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
15
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 PMCID: PMC11921040 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
17
|
Wang Y, Li D, Zhang L, Yin Z, Han Z, Ge X, Li M, Zhao J, Zhang S, Zuo Y, Xiong X, Gao H, Liu Q, Chen F, Lei P. Exosomes derived from microglia overexpressing miR-124-3p alleviate neuronal endoplasmic reticulum stress damage after repetitive mild traumatic brain injury. Neural Regen Res 2024; 19:2010-2018. [PMID: 38227530 DOI: 10.4103/1673-5374.391189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/18/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00033/figure1/v/2024-01-16T170235Z/r/image-tiff We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury. However, its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear. In this study, we first used an HT22 scratch injury model to mimic traumatic brain injury, then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p. We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress. Furthermore, luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α, while an IRE1α functional salvage experiment confirmed that miR-124-3p targeted IRE1α and reduced its expression, thereby inhibiting endoplasmic reticulum stress in injured neurons. Finally, we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced. These findings suggest that, after repetitive mild traumatic brain injury, miR-124-3 can be transferred from microglia-derived exosomes to injured neurons, where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress. Therefore, microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shishuang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zuo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangyang Xiong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
19
|
Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration. Int J Mol Sci 2024; 25:5863. [PMID: 38892052 PMCID: PMC11172915 DOI: 10.3390/ijms25115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Burcak Yavuz
- Vocational School of Health Services, Altinbas University, 34147 Istanbul, Turkey;
| | - Esra Cansever Mutlu
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Besim Ben-Nissan
- Translational Biomaterials and Medicine Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| | - Artemis Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
20
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
21
|
Chen L, Xiong Y, Chopp M, Zhang Y. Engineered exosomes enriched with select microRNAs amplify their therapeutic efficacy for traumatic brain injury and stroke. Front Cell Neurosci 2024; 18:1376601. [PMID: 38566841 PMCID: PMC10985177 DOI: 10.3389/fncel.2024.1376601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke stand as prominent causes of global disability and mortality. Treatment strategies for stroke and TBI are shifting from targeting neuroprotection toward cell-based neurorestorative strategy, aiming to augment endogenous brain remodeling, which holds considerable promise for the treatment of TBI and stroke. Compelling evidence underscores that the therapeutic effects of cell-based therapy are mediated by the active generation and release of exosomes from administered cells. Exosomes, endosomal derived and nano-sized extracellular vesicles, play a pivotal role in intercellular communication. Thus, we may independently employ exosomes to treat stroke and TBI. Systemic administration of mesenchymal stem cell (MSC) derived exosomes promotes neuroplasticity and neurological functional recovery in preclinical animal models of TBI and stroke. In this mini review, we describe the properties of exosomes and recent exosome-based therapies of TBI and stroke. It is noteworthy that the microRNA cargo within exosomes contributes to their therapeutic effects. Thus, we provide a brief introduction to microRNAs and insight into their key roles in mediating therapeutic effects. With the increasing knowledge of exosomes, researchers have "engineered" exosome microRNA content to amplify their therapeutic benefits. We therefore focus our discussion on the therapeutic benefits of recently employed microRNA-enriched engineered exosomes. We also discuss the current opportunities and challenges in translating exosome-based therapy to clinical applications.
Collapse
Affiliation(s)
- Liang Chen
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Yanlu Zhang
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, United States
| |
Collapse
|
22
|
Nie X, Yuan T, Yu T, Yun Z, Yu T, Liu Q. Non-stem cell-derived exosomes: a novel therapeutics for neurotrauma. J Nanobiotechnology 2024; 22:108. [PMID: 38475766 DOI: 10.1186/s12951-024-02380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotrauma, encompassing traumatic brain injuries (TBI) and spinal cord injuries (SCI) impacts a significant portion of the global population. While spontaneous recovery post-TBI or SCI is possible, recent advancements in cell-based therapies aim to bolster these natural reparative mechanisms. Emerging research indicates that the beneficial outcomes of such therapies might be largely mediated by exosomes secreted from the administered cells. While stem cells have garnered much attention, exosomes derived from non-stem cells, including neurons, Schwann cells, microglia, and vascular endothelial cells, have shown notable therapeutic potential. These exosomes contribute to angiogenesis, neurogenesis, and axon remodeling, and display anti-inflammatory properties, marking them as promising agents for neurorestorative treatments. This review provides an in-depth exploration of the current methodologies, challenges, and future directions regarding the therapeutic role of non-stem cell-derived exosomes in neurotrauma.
Collapse
Affiliation(s)
- Xinyu Nie
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Tianyang Yuan
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Zhihe Yun
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Tao Yu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Qinyi Liu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China.
| |
Collapse
|
23
|
Mavroudis I, Jabeen S, Balmus IM, Ciobica A, Burlui V, Romila L, Iordache A. Exploring the Potential of Exosomal Biomarkers in Mild Traumatic Brain Injury and Post-Concussion Syndrome: A Systematic Review. J Pers Med 2023; 14:35. [PMID: 38248736 PMCID: PMC10817245 DOI: 10.3390/jpm14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Alongside their long-term effects, post-concussion syndrome (PCS) and mild traumatic brain injuries (mTBI) are significant public health concerns. Currently, there is a lack of reliable biomarkers for diagnosing and monitoring mTBI and PCS. Exosomes are small extracellular vesicles secreted by cells that have recently emerged as a potential source of biomarkers for mTBI and PCS due to their ability to cross the blood-brain barrier and reflect the pathophysiology of brain injury. In this study, we aimed to investigate the role of salivary exosomal biomarkers in mTBI and PCS. METHODS A systematic review using the PRISMA guidelines was conducted, and studies were selected based on their relevance to the topic. RESULTS The analyzed studies have shown that exosomal tau, phosphorylated tau (p-tau), amyloid beta (Aβ), and microRNAs (miRNAs) are potential biomarkers for mTBI and PCS. Specifically, elevated levels of exosomal tau and p-tau have been associated with mTBI and PCS as well as repetitive mTBI. Dysregulated exosomal miRNAs have also been observed in individuals with mTBI and PCS. Additionally, exosomal Prion cellular protein (PRPc), coagulation factor XIII (XIIIa), synaptogyrin-3, IL-6, and aquaporins have been identified as promising biomarkers for mTBI and PCS. CONCLUSION Salivary exosomal biomarkers have the potential to serve as non-invasive and easily accessible diagnostic and prognostic tools for mTBI and PCS. Further studies are needed to validate these biomarkers and develop standardized protocols for their use in clinical settings. Salivary exosomal biomarkers can improve the diagnosis, monitoring, and treatment of mTBI and PCS, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
| | - Sidra Jabeen
- Liaquat National Hospital and Medical College, Karachi 74800, Pakistan
| | - Ioana Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 26th Alexandru Lapusneanu Street, 700057 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506 Iași, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Alin Iordache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| |
Collapse
|
24
|
He J, Du Z, Zhang H, Wang B, Xia J. Exosomes derived from human umbilical cord mesenchymal stem cells loaded with RVG-Lamp2b and Netrin-1 promotes Schwann cell invasion and migration. Tissue Cell 2023; 85:102219. [PMID: 37716176 DOI: 10.1016/j.tice.2023.102219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Netrin-1 has a neuroprotective effect by regulating angiogenesis, autophagy, apoptosis, and neuroinflammation. This study investigated the effects of netrin-1 delivery to mouse Schwann cells and vascular endothelial cells using exosomes modified with rabies virus glycoprotein (RVG) peptides. MATERIALS AND METHODS RVG-Lamp2b and/or Netrin-1 were overexpressed in human umbilical cord mesenchymal stem cells to obtain exosomes modified with RVG-Lamp2b and/or loaded with Netrin-1. Then, exosomes were labeled with carboxyfluorescein diacetate succinimidyl ester and co-cultured with mouse Schwann cells and endothelial cells. Netrin-1 expression in Schwann cells and endothelial cells was measured using quantitative polymerase chain reaction and immunoblotting. Moreover, methyl thiazolyl tetrazolium assays and Transwell assays were used to detect proliferation, migration, and invasion of Schwann cells and endothelial cells. RESULTS Exosomes with RVG-Lamp2b entered Schwann cells more readily compared with the exosomes without RVG-Lamp2b. Meanwhile, this was not the case in endothelial cells. Netrin-1-loaded exosomes significantly promoted Netrin-1 expression, cell proliferation, migration, invasion, and epithelial-mesenchymal transition in Schwann cells and endothelial cells. These effects were further enhanced by Netrin-1-loaded exosomes modified with RVG-Lamp2b in Schwann cells, but not in endothelial cells. CONCLUSION HucMSC-derived exosomes loaded with RVG-Lamp2b and Netrin-1 promote proliferation, migration, and invasion of Schwann cells.
Collapse
Affiliation(s)
- Jie He
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| | - Zhongju Du
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| | - Hua Zhang
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China.
| | - Bo Wang
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| | - Jurong Xia
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
25
|
Beylerli O, Tamrazov R, Gareev I, Ilyasova T, Shumadalova A, Bai Y, Yang B. Role of exosomal ncRNAs in traumatic brain injury. Noncoding RNA Res 2023; 8:686-692. [PMID: 37860267 PMCID: PMC10582766 DOI: 10.1016/j.ncrna.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex neurological disorder that often results in long-term disabilities, cognitive impairments, and emotional disturbances. Despite significant advancements in understanding the pathophysiology of TBI, effective treatments remain limited. In recent years, exosomal non-coding RNAs (ncRNAs) have emerged as potential players in TBI pathogenesis and as novel diagnostic and therapeutic targets. Exosomal ncRNAs are small RNA molecules that are secreted by cells and transported to distant sites, where they can modulate gene expression and cell signaling pathways. They have been shown to play important roles in various aspects of TBI, such as neuroinflammation, blood-brain barrier dysfunction, and neuronal apoptosis. The ability of exosomal ncRNAs to cross the blood-brain barrier and reach the brain parenchyma makes them attractive candidates for non-invasive biomarkers and drug delivery systems. However, significant challenges still need to be addressed before exosomal ncRNAs can be translated into clinical practice, including standardization of isolation and quantification methods, validation of their diagnostic and prognostic value, and optimization of their therapeutic efficacy and safety. This review aims to summarize the current knowledge regarding the role of exosomal ncRNAs in TBI, including their biogenesis, function, and potential applications in diagnosis, prognosis, and treatment. We also discuss the challenges and future perspectives of using exosomal ncRNAs as clinical tools for TBI management.
Collapse
Affiliation(s)
- Ozal Beylerli
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Rasim Tamrazov
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| |
Collapse
|
26
|
Chen Y, Zhang H, Hu X, Cai W, Jiang L, Wang Y, Wu Y, Wang X, Ni W, Zhou K. Extracellular Vesicles: Therapeutic Potential in Central Nervous System Trauma by Regulating Cell Death. Mol Neurobiol 2023; 60:6789-6813. [PMID: 37482599 DOI: 10.1007/s12035-023-03501-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
CNS (central nervous system) trauma, which is classified as SCI (spinal cord injury) and TBI (traumatic brain injury), is gradually becoming a major cause of accidental death and disability worldwide. Many previous studies have verified that the pathophysiological mechanism underlying cell death and the subsequent neuroinflammation caused by cell death are pivotal factors in the progression of CNS trauma. Simultaneously, EVs (extracellular vesicles), membrane-enclosed particles produced by almost all cell types, have been proven to mediate cell-to-cell communication, and cell death involves complex interactions among molecules. EVs have also been proven to be effective carriers of loaded bioactive components to areas of CNS trauma. Therefore, EVs are promising therapeutic targets to cure CNS trauma. However, the link between EVs and various types of cell death in the context of CNS trauma remains unknown. Therefore, in this review, we summarize the mechanism underlying EV effects, the relationship between EVs and cell death and the pathophysiology underlying EV effects on the CNS trauma based on information in published papers. In addition, we discuss the prospects of applying EVs to the CNS as feasible therapeutic strategies for CNS trauma in the future.
Collapse
Affiliation(s)
- Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yongli Wang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, 313099, China
- Department of Orthopedics, Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, 313099, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
27
|
Wu P, He B, Li X, Zhang H. Roles of microRNA-124 in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2023; 17:1298508. [PMID: 38034588 PMCID: PMC10687822 DOI: 10.3389/fncel.2023.1298508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a prominent global cause of mortality due to the limited availability of effective prevention and treatment strategies for this disorder. An effective molecular biomarker may contribute to determining the prognosis and promoting the therapeutic efficiency of TBI. MicroRNA-124 (miR-124) is most abundantly expressed in the brain and exerts different biological effects in a variety of diseases by regulating pathological processes of apoptosis and proliferation. Recently, increasing evidence has demonstrated the association between miR-124 and TBI, but there is still a lack of relevant literature to summarize the current evidence on this topic. Based on this review, we found that miR-124 was involved as a regulatory factor in cell apoptosis and proliferation, and was also strongly related with the pathophysiological development of TBI. MiR-124 played an essential role in TBI by interacting with multiple biomolecules and signaling pathways, such as JNK, VAMP-3, Rela/ApoE, PDE4B/mTOR, MDK/TLR4/NF-κB, DAPK1/NR2B, JAK/STAT3, PI3K/AKT, Ras/MEK/Erk. The potential benefits of upregulating miR-124 in facilitating TBI recovery have been identified. The advancement of miRNA nanocarrier system technology presents an opportunity for miR-124 to emerge as a novel therapeutic target for TBI. However, the specific mechanisms underlying the role of miR-124 in TBI necessitate further investigation. Additionally, comprehensive large-scale studies are required to evaluate the clinical significance of miR-124 as a therapeutic target for TBI.
Collapse
Affiliation(s)
- Panxing Wu
- Department of Neurosurgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Bao He
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Xiaoliang Li
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
- Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Suzhou, Jiangsu, China
| | - Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
28
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
29
|
Lin L, Zheng S, Lai J, Ye D, Huang Q, Wu Z, Chen X, Wang S. Omega-3 Polyunsaturated Fatty Acids Protect Neurological Function After Traumatic Brain Injury by Suppressing Microglial Transformation to the Proinflammatory Phenotype and Activating Exosomal NGF/TrkA Signaling. Mol Neurobiol 2023; 60:5592-5606. [PMID: 37329381 DOI: 10.1007/s12035-023-03419-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The transformation of microglia to a pro-inflammatory phenotype at the site of traumatic brain injury (TBI) drives the progression of secondary neurodegeneration and irreversible neurological impairment. Omega-3 polyunsaturated fatty acids (PUFA) have been shown to suppress this phenotype transformation, thereby reducing neuroinflammation following TBI, but the molecular mechanisms are unknown. We found that Omega-3 PUFA suppressed the expression of disintegrin metalloproteinase (ADAM17), the enzyme required to convert tumor necrosis factor-α (TNF-α) to the soluble form, thereby inhibiting the TNF-α/NF-κB pathway both in vitro and in a mouse model of TBI. Omega-3 PUFA also prevented the reactive transformation of microglia and promoted the secretion of microglial exosomes containing nerve growth factor (NGF), activating the neuroprotective NGF/TrkA pathway both in culture and TBI model mice. Moreover, Omega-3 PUFA suppressed the pro-apoptotic NGF/P75NTR pathway at the TBI site and reduced apoptotic neuronal death, brain edema, and disruption of the blood-brain barrier. Finally, Omega-3 PUFA preserved sensory and motor function as assessed by two broad-spectrum test batteries. The beneficial effects of Omega-3 PUFA were blocked by an ADAM17 promotor and by a NGF inhibitor, confirming the pathogenic function of ADAM17 and the central neuroprotective role of NGF. Collectively, these findings provide a strong experimental basis for Omega-3 PUFA as a potential clinical treatment for TBI.
Collapse
Affiliation(s)
- Long Lin
- Department of Neurosurgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian Province, China
| | - Shaorui Zheng
- Department of Neurosurgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian Province, China
| | - Jinqing Lai
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Dan Ye
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350025, Fujian Province, China
| | - Qiaomei Huang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Zhe Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| | - Shousen Wang
- Department of Neurosurgery, 900th Hospital, Fuzhou, 350025, Fujian Province, China.
| |
Collapse
|
30
|
Ding X, Zhang L, Zhang X, Qin Y, Yu K, Yang X. Intranasal Insulin Alleviates Traumatic Brain Injury by Inhibiting Autophagy and Endoplasmic Reticulum Stress-mediated Apoptosis Through the PI3K/Akt/mTOR Signaling Pathway. Neuroscience 2023; 529:23-36. [PMID: 37572876 DOI: 10.1016/j.neuroscience.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Intranasal insulin reduces lesion size and enhances memory capacity in traumatic brain injury (TBI) models, but the molecular mechanisms behind this neuroprotective action not yet understood. Here we used Feeney's free-falling method to construct TBI mouse models and administrated intranasal insulin, rapamycin, insulin and rapamycin, or normal saline to assess their effects on neurological functions, cerebral edema, and the expression of Iba1 in microglia through immunofluorescence assay. We also measured concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the brain using enzyme immunosorbent assay, investigated apoptosis with TUNEL staining and Western blotting, and evaluated autophagy, endoplasmic reticulum (ER) stress, and PI3K/Akt/mTOR signaling pathway with Western blotting. The autophagosome was assessed through transmission electron microscopy. Our findings demonstrated that intranasal insulin promoted neurological recovery, decreased brain swelling, and reduced injury lesions on days 1, 3, and 7 post TBI. Moreover, intranasal insulin reduced microglia activation and the concentration of IL-1β or TNF-α on the same days. Through Western blotting and transmission electron microscopy, we observed that intranasal insulin suppressed autophagy while activating the PI3K/AKT/mTOR signaling pathway on days 1 and 3 post TBI. TUNEL assay and Western blotting also indicated that intranasal insulin inhibited ER stress-mediated apoptosis. Interestingly, the mTOR inhibitor rapamycin partially blocked the pro-autophagy and anti-apoptosis effects of intranasal insulin both on days 1 and 3 post TBI. Our results suggest that intranasal insulin can ameliorate TBI by regulating autophagy and ER stress-mediated apoptosis through the PI3K/AKT/mTOR signaling pathway, providing a promising therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Xin Ding
- Department of Neurology, Chengdu Second People's Hospital, No. 2, Huatai Road, Chenghua District, Chengdu, Sichuan 610017, People's Republic of China
| | - Lili Zhang
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, No, 278, Middle Baoguang Avenue, Xindu District, Chengdu, Sichuan 610050, People's Republic of China
| | - Xinping Zhang
- Department of General Medicine, Chengdu Second People's Hospital, No. 2, Huatai Road, Chenghua District, Chengdu, Sichuan 610017, People's Republic of China
| | - Yang Qin
- Department of General Medicine, The General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, People's Republic of China.
| | - Ke Yu
- Department of General Medicine, The General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, People's Republic of China
| | - Xiaokun Yang
- Department of Emergency, The General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, People's Republic of China
| |
Collapse
|
31
|
Song Y, Shi R, Liu Y, Cui F, Han L, Wang C, Chen T, Li Z, Zhang Z, Tang Y, Yang GY, Guan Y. M2 Microglia Extracellular Vesicle miR-124 Regulates Neural Stem Cell Differentiation in Ischemic Stroke via AAK1/NOTCH. Stroke 2023; 54:2629-2639. [PMID: 37586072 DOI: 10.1161/strokeaha.122.041611] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Small extracellular vesicles (sEVs) derived from M2 microglia (M2-microglia-derived small extracellular vesicles [M2-sEVs]) contribute to central nervous system repair, although the underlying mechanism remains unknown. In this study, we aimed to identify the mechanism through which microRNA-124 (miR-124) carried in sEVs promotes neural stem cell (NSC) proliferation and neuronal differentiation in the ischemic mouse brain. METHODS M2-sEVs with or without miR-124 knockdown were injected intravenously for 7 consecutive days after transient middle cerebral artery occlusion surgery. The atrophy volume, neurological score, and degree of neurogenesis were examined at different time points after ischemic attack. NSCs treated with different sEVs were subjected to proteomic analysis. Target protein concentrations were quantified, and subsequent bioinformatic analysis was conducted to explore the key signaling pathways. RESULTS M2-sEV transplantation promoted functional neurological recovery following transient middle cerebral artery occlusion injury. M2-sEV treatment decreased the brain atrophy volume, neurological score, and mortality rate. The effect was reserved by knockdown of miR-124 in M2-sEVs. M2-sEVs promoted proliferation and differentiation of mature neuronal NSCs in vivo. Proteomic analysis of NSC samples treated with M2-sEVs with and without miR-124 knockdown revealed that AAK1 (adaptor-associated protein kinase 1) was the key responding protein in NSCs. The binding of AAK1 to Notch promoted the differentiation of NSCs into neurons rather than astrocytes. CONCLUSIONS Our data suggest that AAK1/Notch is the key pathway in NSCs that responds to the miR-124 carried within M2-sEVs in the ischemic brain. M2-sEVs carrying ample quantities of miR-124 promote functional recovery after ischemic stroke by enhancing NSC proliferation and differentiation. Targeting of M2-sEVs could represent a potential therapeutic strategy for brain recovery.
Collapse
Affiliation(s)
- Yaying Song
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, China (Y.S., L.H., Y.G.)
| | - Rubing Shi
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China (Y.L.)
| | - Fengzhen Cui
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Lu Han
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, China (Y.S., L.H., Y.G.)
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), China (C.W.)
| | - Tingting Chen
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Zongwei Li
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China (R.S., F.C., T.C., Z.L., Z.Z., Y.T., G.-Y.Y.)
| | - Yangtai Guan
- Department of Neurology, Renji Hospital of Shanghai Jiao Tong University, China (Y.S., L.H., Y.G.)
| |
Collapse
|
32
|
Mavroudis I, Balmus IM, Ciobica A, Nicoara MN, Luca AC, Palade DO. The Role of Microglial Exosomes and miR-124-3p in Neuroinflammation and Neuronal Repair after Traumatic Brain Injury. Life (Basel) 2023; 13:1924. [PMID: 37763327 PMCID: PMC10532687 DOI: 10.3390/life13091924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: In this study, we aimed to explore the regulatory mechanism of miR-124-3p microglial exosomes, as they were previously reported to modulate neuroinflammation and promote neuronal repair following traumatic brain injury (TBI). (2) Methods: Studies investigating the impact of microglial exosomal miRNAs, specifically miR-124-3p, on injured neurons and brain microvascular endothelial cells (BMVECs) in the context of TBI were reviewed. (3) Results: Animal models of TBI, in vitro cell culture experiments, RNA sequencing analysis, and functional assays were employed to elucidate the mechanisms underlying the effects of miR-124-3p-loaded exosomes on neuroinflammation and neuronal repair. Anti-inflammatory M2 polarization of microglia, mTOR signaling suppression, and BMVECs-mediated autophagy were reported as the main processes contributing to neuroprotection, reduced blood-brain barrier leakage, and improved neurologic outcomes in animal models of TBI. (4) Conclusions: Microglial exosomes, particularly those carrying miR-124-3p, have emerged as promising candidates for therapeutic interventions in TBI. These exosomes exhibit neuroprotective effects, attenuate neuroinflammation, and promote neuronal repair and plasticity. However, further research is required to fully elucidate the underlying mechanisms and optimize their delivery strategies for effective treatment in human TBI cases.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Str. Alexandru Lapusneanu, no. 26, 700057 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Mircea Nicusor Nicoara
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania
| | - Alina Costina Luca
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. Universitatii no. 16, 700115 Iasi, Romania
| | - Dragos Octavian Palade
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Str. Universitatii no. 16, 700115 Iasi, Romania
| |
Collapse
|
33
|
Xie K, Mo Y, Yue E, Shi N, Liu K. Exosomes derived from M2-type microglia ameliorate oxygen-glucose deprivation/reoxygenation-induced HT22 cell injury by regulating miR-124-3p/NCOA4-mediated ferroptosis. Heliyon 2023; 9:e17592. [PMID: 37424595 PMCID: PMC10328844 DOI: 10.1016/j.heliyon.2023.e17592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Background Although it has been reported that miRNA carried by M2 microglial exosomes protects neurons from ischemia-reperfusion brain injury, the mechanism of action remains poorly understood. This study aimed to explore the miRNA signaling pathway by which M2-type microglia-derived exosomes (M2-exosomes) ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cytotoxicity in HT22 cells. Methods BV2 microglia were induced by M2 polarization. Then, M2-exosomes were identified via transmission electron microscopy and special biomarker detection and co-cultured with HT22 cells. Cell proliferation was evaluated using the Cell Counting Kit-8 (CCK-8) assay. Intracellular concentrations of reactive oxygen species (ROS), Fe2+, glutathione (GSH), and malondialdehyde (MDA) were determined using dichlorofluorescein fluorescence and biochemical determination. miR-124-3p levels were determined using qRT-PCR, and protein expressions were examined via western blotting. Results OGD/R suppressed the proliferation and induced the accumulation of Fe2+, ROS, and MDA and reduction of GSH in mouse HT22 cells, suggesting ferroptosis of HT22 cells. OGD/R-induced changes in the above mentioned indexes was ameliorated by M2-exosomes but restored by the exosome inhibitor GW4869. M2-exosomes with (mimic-exo) or without miR-124-3p (inhibitor-exo) promoted and suppressed proliferation and ferroptosis-associated indexes of HT22 cells, respectively. Moreover, mimic-exo and inhibitor-exo inhibited and enhanced NCOA4 expression in HT22 cells, respectively. NCOA4 overexpression reversed the protective effects of miR-124-3p mimic-exo in OGD/R-conditioned cells. NCOA4 was targeted and regulated by miR-124-3p. Conclusions M2-exosome protects HT22 cells against OGD/R-induced ferroptosis injury by transferring miR-124-3p and NCOA4 into HT22 cells, with the latter being a target gene for miR-124-3p.
Collapse
Affiliation(s)
- Ke Xie
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Yun Mo
- Department of Neurology, Guizhou Medical University, China
| | - Erli Yue
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Nan Shi
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Kangyong Liu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| |
Collapse
|
34
|
Zhu Z, Huang X, Du M, Wu C, Fu J, Tan W, Wu B, Zhang J, Liao ZB. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury. Mol Psychiatry 2023; 28:2630-2644. [PMID: 37340171 PMCID: PMC10615752 DOI: 10.1038/s41380-023-02126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Post-traumatic stress disorder (PTSD) is usually considered a psychiatric disorder upon emotional trauma. However, with the rising number of conflicts and traffic accidents around the world, the incidence of PTSD has skyrocketed along with traumatic brain injury (TBI), a complex neuropathological disease due to external physical force and is also the most common concurrent disease of PTSD. Recently, the overlap between PTSD and TBI is increasingly attracting attention, as it has the potential to stimulate the emergence of novel treatments for both conditions. Of note, treatments exploiting the microRNAs (miRNAs), a well-known class of small non-coding RNAs (ncRNAs), have rapidly gained momentum in many nervous system disorders, given the miRNAs' multitudinous and key regulatory role in various biological processes, including neural development and normal functioning of the nervous system. Currently, a wealth of studies has elucidated the similarities of PTSD and TBI in pathophysiology and symptoms; however, there is a dearth of discussion with respect to miRNAs in both PTSD and TBI. In this review, we summarize the recent available studies of miRNAs in PTSD and TBI and discuss and highlight promising miRNAs therapeutics for both conditions in the future.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Z B Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Guo M, Ge X, Wang C, Yin Z, Jia Z, Hu T, Li M, Wang D, Han Z, Wang L, Xiong X, Chen F, Lei P. Intranasal Delivery of Gene-Edited Microglial Exosomes Improves Neurological Outcomes after Intracerebral Hemorrhage by Regulating Neuroinflammation. Brain Sci 2023; 13:brainsci13040639. [PMID: 37190604 DOI: 10.3390/brainsci13040639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells. They have also been regarded as a promising therapeutic tool in translational medicine, with low immunogenicity, high penetration through the blood-brain barrier, and ease of modification. In our previous research, we have found that exogenous administration of miRNA-124-overexpressed microglial exosomes (Exo-124) are effective in improving post-injury cognitive impairment. From this, we evaluated the potential therapeutic effects of miRNA-124-enriched microglial exosomes on the ICH mice in the present study. We found that the gene-edited exosomes could attenuate neuro-deficits and brain edema, improve blood-brain barrier integrity, and reduce neural cell death. Moreover, the protective effect of Exo-124 was abolished in mice depleted of Gr-1+ myeloid cells. It suggested that the exosomes exerted their functions by limiting the infiltration of leukocyte into the brain, thus controlling neuroinflammation following the onset of ICH. In conclusion, our findings provided a promising therapeutic strategy for improving neuroinflammation in ICH. It also opens a new avenue for intranasal delivery of exosome therapy using miRNA-edited microglial exosomes.
Collapse
Affiliation(s)
- Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zexi Jia
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianpeng Hu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dong Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoli Han
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiangyang Xiong
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
36
|
Yang ZL, Liang ZY, Lin YK, Lin FB, Rao J, Xu XJ, Wang CH, Chen CM. Efficacy of extracellular vesicles of different cell origins in traumatic brain injury: A systematic review and network meta-analysis. Front Neurosci 2023; 17:1147194. [PMID: 37065922 PMCID: PMC10090410 DOI: 10.3389/fnins.2023.1147194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundThere was still no effective treatment for traumatic brain injury (TBI). Recently, many preclinical studies had shown promising efficacy of extracellular vesicles (EVs) from various cell sources. Our aim was to compare which cell-derived EVs were most effective in treating TBI through a network meta-analysis.MethodsWe searched four databases and screened various cell-derived EVs for use in preclinical studies of TBI treatment. A systematic review and network meta-analysis were conducted for two outcome indicators, modified Neurological Severity Score (mNSS) and Morris Water Maze (MWM), and they were ranked by the surface under the cumulative ranking curves (SUCRA). Bias risk assessment was performed with SYRCLE. R software (version 4.1.3, Boston, MA, USA) was used for data analysis.ResultsA total of 20 studies were included in this study, involving 383 animals. Astrocyte-derived extracellular vesicles (AEVs) ranked first in response to mNSS at day 1 (SUCRA: 0.26%), day 3 (SUCRA: 16.32%), and day 7 (SUCRA: 9.64%) post-TBI. Extracellular vesicles derived from mesenchymal stem cells (MSCEVs) were most effective in mNSS assessment on day 14 (SUCRA: 21.94%) and day 28 (SUCRA: 6.26%), as well as MWM’s escape latency (SUCRA: 6.16%) and time spent in the target quadrant (SUCRA: 86.52%). The result of mNSS analysis on day 21 showed that neural stem cell-derived extracellular vesicles (NSCEVs) had the best curative effect (SUCRA: 6.76%).ConclusionAEVs may be the best choice to improve early mNSS recovery after TBI. The efficacy of MSCEVs may be the best in the late mNSS and MWM after TBI.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42023377350.
Collapse
|
37
|
Dysregulation of Serum MicroRNA after Intracerebral Hemorrhage in Aged Mice. Biomedicines 2023; 11:biomedicines11030822. [PMID: 36979801 PMCID: PMC10044892 DOI: 10.3390/biomedicines11030822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Stroke is one of the most common diseases that leads to brain injury and mortality in patients, and intracerebral hemorrhage (ICH) is the most devastating subtype of stroke. Though the prevalence of ICH increases with aging, the effect of aging on the pathophysiology of ICH remains largely understudied. Moreover, there is no effective treatment for ICH. Recent studies have demonstrated the potential of circulating microRNAs as non-invasive diagnostic and prognostic biomarkers in various pathological conditions. While many studies have identified microRNAs that play roles in the pathophysiology of brain injury, few demonstrated their functions and roles after ICH. Given this significant knowledge gap, the present study aims to identify microRNAs that could serve as potential biomarkers of ICH in the elderly. To this end, sham or ICH was induced in aged C57BL/6 mice (18–24 months), and 24 h post-ICH, serum microRNAs were isolated, and expressions were analyzed. We identified 28 significantly dysregulated microRNAs between ICH and sham groups, suggesting their potential to serve as blood biomarkers of acute ICH. Among those microRNAs, based on the current literature, miR-124-3p, miR-137-5p, miR-138-5p, miR-219a-2-3p, miR-135a-5p, miR-541-5p, and miR-770-3p may serve as the most promising blood biomarker candidates of ICH, warranting further investigation.
Collapse
|
38
|
Hui Y, Zhao H, Shi L, Zhang H. Traumatic Brain Injury-Mediated Neuroinflammation and Neurological Deficits are Improved by 8-Methoxypsoralen Through Modulating PPARγ/NF-κB Pathway. Neurochem Res 2023; 48:625-640. [PMID: 36319778 DOI: 10.1007/s11064-022-03788-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2022] [Accepted: 10/07/2022] [Indexed: 01/18/2023]
Abstract
8-Methoxypsoralen (8-MOP) has anti-inflammatory, antioxidant and tissue-repairing abilities. Here, we probed the function and mechanism of 8-MOP in traumatic brain injury (TBI). The in-vivo TBI model was constructed in Sprague-Dawley (SD) rats using controlled cortical impact (CCI) surgery. In parallel, BV2 microglia and HT22 neurons were activated by lipopolysaccharide (LPS) to establish an in-vitro model. The modified neurological score (mNSS) and the Morris water maze experiment were employed to evaluate the rats' neurological functions. The rats' brain edema was assessed by the dry and wet method, and neuronal apoptosis in damaged brain tissues was monitored by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and Nissl's staining. Immunohistochemistry (IHC) was applied to verify Iba1-microglial activation in brain lesions of rats. The expression of inflammatory cytokines in BV2 microglia and HT22 neurons in the injured lesion of TBI rats was examined by the enzyme-linked immunosorbent assay (ELISA). The levels of iNOS, COX2, TLR4, PPARγ, STAT3, and NF-κB in brain lesions, BV2 microglia and HT22 neurons were compared by Western blot. As a result, 8-MOP administration reduced inflammation and LPS-induced neuronal damage in BV2 microglia. In vivo, 8-MOP treatment relieved neurological deficits in TBI rats, improved cognitive, learning and motor functions and mitigated brain edema and neuroinflammation induced by TBI. Furthermore, LPS or TBI activated the NF-κB and STAT3 pathways and repressed the PPARγ expression. However, 8-MOP treatment attenuated NF-κB and STAT3 phosphorylation and elevated PPARγ levels. Hence, 8-MOP exerts neuroprotective and anti-inflammatory effects in TBI rats by modulating the PPARγ/NF-κB pathway.
Collapse
Affiliation(s)
- Yuzuo Hui
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang Road, Liaocheng, 252000, Shandong, China
| | - Han Zhao
- Department of Neurosurgery, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Lei Shi
- Shandong Rongjun General Hospital, Ward 7, Jinan, 250000, Shandong, China
| | - Haitao Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang Road, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
39
|
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxid Redox Signal 2023; 38:234-257. [PMID: 35579958 DOI: 10.1089/ars.2021.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Autophagy and apoptosis are two important cellular mechanisms behind brain injuries, which are severe clinical situations with increasing incidences worldwide. To search for more and better treatments for brain injuries, it is essential to deepen the understanding of autophagy, apoptosis, and their interactions in brain injuries. This article first analyzes how autophagy and apoptosis participate in the pathogenetic processes of brain injuries respectively and mutually, then summarizes some promising treatments targeting autophagy and apoptosis to show the potential clinical applications in personalized medicine and precision medicine in the future. Recent Advances: Most current studies suggest that apoptosis is detrimental to brain recovery. Several studies indicate that autophagy can cause unnecessary death of neurons after brain injuries, while others show that autophagy is beneficial for acute brain injuries (ABIs) by facilitating the removal of damaged proteins and organelles. Whether autophagy is beneficial or detrimental in ABIs depends on many factors, and the results from different research groups are diverse or even controversial, making this topic more appealing to be explored further. Critical Issues: Neuronal autophagy and apoptosis are two primary pathological processes in ABIs. How they interact with each other and how their regulations affect the outcome and prognosis of brain injuries remain uncertain, making these answers more critical. Future Directions: Insights into the interplay between autophagy and apoptosis and the accurate regulations of their balance in ABIs may promote personalized and precise treatments in the field of brain injuries. Antioxid. Redox Signal. 38, 234-257.
Collapse
Affiliation(s)
- Chuyu He
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Yanjun Xu
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Jing Sun
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Layla Li
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Marangon D, Castro e Silva JH, Lecca D. Neuronal and Glial Communication via Non-Coding RNAs: Messages in Extracellular Vesicles. Int J Mol Sci 2022; 24:ijms24010470. [PMID: 36613914 PMCID: PMC9820657 DOI: 10.3390/ijms24010470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles (EVs) have been increasingly recognized as essential players in cell communication in many organs and systems, including the central nervous system (CNS). A proper interaction between neural cells is fundamental in the regulation of neurophysiological processes and its alteration could induce several pathological phenomena, such as neurodegeneration, neuroinflammation, and demyelination. EVs contain and transfer complex molecular cargoes typical of their cells of origin, such as proteins, lipids, carbohydrates, and metabolites to recipient cells. EVs are also enriched in non-coding RNAs (e.g., microRNAs, lncRNAs, and circRNA), which were formerly considered as cell-intrinsic regulators of CNS functions and pathologies, thus representing a new layer of regulation in the cell-to-cell communication. In this review, we summarize the most recent and advanced studies on the role of EV-derived ncRNAs in the CNS. First, we report the potential of neural stem cell-derived ncRNAs as new therapeutic tools for neurorepair. Then, we discuss the role of neuronal ncRNAs in regulating glia activation, and how alteration in glial ncRNAs influences neuronal survival and synaptic functions. We conclude that EV-derived ncRNAs can act as intercellular signals in the CNS to either propagate neuroinflammatory waves or promote reparative functions.
Collapse
|
41
|
Gomes P, Tzouanou F, Skolariki K, Vamvaka-Iakovou A, Noguera-Ortiz C, Tsirtsaki K, Waites CL, Vlamos P, Sousa N, Costa-Silva B, Kapogiannis D, Sotiropoulos I. Extracellular vesicles and Alzheimer's disease in the novel era of Precision Medicine: implications for disease progression, diagnosis and treatment. Exp Neurol 2022; 358:114183. [PMID: 35952764 PMCID: PMC9985072 DOI: 10.1016/j.expneurol.2022.114183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), secreted membranous nano-sized particles, are critical intercellular messengers participating in nervous system homeostasis, while recent evidence implicates EVs in Alzheimer's disease (AD) pathogenesis. Specifically, small EVs have been shown to spread toxic proteins, induce neuronal loss, and contribute to neuroinflammation and AD progression. On the other hand, EVs can reduce amyloid-beta deposition and transfer neuroprotective substances between cells, mitigating disease mechanisms. In addition to their roles in AD pathogenesis, EVs also exhibit great potential for the diagnosis and treatment of other brain disorders, representing an advantageous tool for Precision Medicine. Herein, we summarize the contribution of small EVs to AD-related mechanisms and disease progression, as well as their potential as diagnostic and therapeutic agents for AD.
Collapse
Affiliation(s)
- Patrícia Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Tzouanou
- Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | | | - Anastasia Vamvaka-Iakovou
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Carlos Noguera-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Katerina Tsirtsaki
- Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | | | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece.
| |
Collapse
|
42
|
Zeng H, Huang M, Gong X. MicroRNA-124-3p promotes apoptosis and autophagy of glioma cells by down-regulating CREBRF. Neurol Res 2022; 44:1094-1103. [PMID: 35981103 DOI: 10.1080/01616412.2022.2112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This research was performed to dissect the influence of microRNA (miR)-124-3p on the apoptosis and autophagy of glioma cells and clarify its specific mechanism. METHODS RT-PCR and western blot were utilized to determine miR-124-3p and CREBRF expression in U251 and T98 cells. After loss- and gain-of-function assays in U251 and T98 cells, glioma cell proliferation, autophagy, and apoptosis were measured by MTT assay, western blot, and flow cytometry, respectively. The relationship between miR-124-3p and CREBRF was examined by dual-luciferase reporter assay. The levels of AKT pathway-related proteins were detected by western blot. RESULTS MiR-124-3p was lowly expressed and CREBRF was highly expressed in U251 and T98 cells. Overexpression of miR-124-3p or knockdown of CREBRF enhanced apoptosis and autophagy and diminished proliferation of glioma cells. MiR-124-3p negatively targeted CREBRF. MiR-124-3p up-regulation repressed proliferation and facilitated apoptosis and autophagy of glioma cells by diminishing CREBRF expression and blocking the AKT pathway. CONCLUSION MiR-124-3p accelerates apoptosis and autophagy of glioma cells via CREBRF.
Collapse
Affiliation(s)
- Huan Zeng
- Department of Neurosurgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Mengyi Huang
- Department of Neurosurgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
43
|
Wong R, Zhang Y, Zhao H, Ma D. Circular RNAs in organ injury: recent development. J Transl Med 2022; 20:533. [PMID: 36401311 PMCID: PMC9673305 DOI: 10.1186/s12967-022-03725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Circular ribonucleic acids (circRNAs) are a class of long non-coding RNA that were once regarded as non-functional transcription byproducts. However, recent studies suggested that circRNAs may exhibit important regulatory roles in many critical biological pathways and disease pathologies. These studies have identified significantly differential expression profiles of circRNAs upon changes in physiological and pathological conditions of eukaryotic cells. Importantly, a substantial number of studies have suggested that circRNAs may play critical roles in organ injuries. This review aims to provide a summary of recent studies on circRNAs in organ injuries with respect to (1) changes in circRNAs expression patterns, (2) main mechanism axi(e)s, (3) therapeutic implications and (4) future study prospective. With the increasing attention to this research area and the advancement in high-throughput nucleic acid sequencing techniques, our knowledge of circRNAs may bring fruitful outcomes from basic and clinical research.
Collapse
|
44
|
Molecular Mechanism of the Protective Effects of M2 Microglia on Neurons: A Review Focused on Exosomes and Secretory Proteins. Neurochem Res 2022; 47:3556-3564. [PMID: 36222957 DOI: 10.1007/s11064-022-03760-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 10/17/2022]
Abstract
Microglia, as innate immune cells in the brain, closely monitor changes in the internal environment and participate in the maintenance of homeostasis in the central nervous system (CNS). Microglia can be polarized to the M1 or M2 phenotype in response to various stimuli in vivo or in vitro, affecting the functions of peripheral neurons. M2 microglia have attracted increasing attention in recent years owing to their beneficial effects on various diseases and injuries of the CNS, such as traumatic brain injury, stroke, Alzheimer's disease and multiple sclerosis. They exert neuroprotective effects by various mechanisms, e.g., suppressing inflammation, promoting the degradation of misfolded and aggregated proteins, promoting neurite growth, enhancing neurogenesis, inhibiting autophagy and apoptosis, promoting myelination, maintaining blood-brain barrier integrity, and enhancing phagocytic activity.This review summarizes the molecular mechanisms by which M2 microglia exert protective effects on neurons and provides a reference for the selection of therapeutic targets for CNS diseases.
Collapse
|
45
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
46
|
Xu J, Zheng Y, Wang L, Liu Y, Wang X, Li Y, Chi G. miR-124: A Promising Therapeutic Target for Central Nervous System Injuries and Diseases. Cell Mol Neurobiol 2022; 42:2031-2053. [PMID: 33886036 PMCID: PMC11421642 DOI: 10.1007/s10571-021-01091-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Central nervous system injuries and diseases, such as ischemic stroke, spinal cord injury, neurodegenerative diseases, glioblastoma, multiple sclerosis, and the resulting neuroinflammation often lead to death or long-term disability. MicroRNAs are small, non-coding, single-stranded RNAs that regulate posttranscriptional gene expression in both physiological and pathological cellular processes, including central nervous system injuries and disorders. Studies on miR-124, one of the most abundant microRNAs in the central nervous system, have shown that its dysregulation is related to the occurrence and development of pathology within the central nervous system. Herein, we review the molecular regulatory functions, underlying mechanisms, and effective delivery methods of miR-124 in the central nervous system, where it is involved in pathological conditions. The review also provides novel insights into the therapeutic target potential of miR-124 in the treatment of human central nervous system injuries or diseases.
Collapse
Affiliation(s)
- Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Liangjia Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yining Liu
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Xishu Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
47
|
Zhang J, Shi W, Qu D, Yu T, Qi C, Fu H. Extracellular vesicle therapy for traumatic central nervous system disorders. Stem Cell Res Ther 2022; 13:442. [PMID: 36056445 PMCID: PMC9438220 DOI: 10.1186/s13287-022-03106-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Traumatic central nervous system (CNS) disorders have catastrophic effects on patients, and, currently, there is no effective clinical treatment. Cell transplantation is a common treatment for traumatic CNS injury in animals. In recent years, an increasing number of studies have reported that the beneficial effect of transplanted cells for CNS repair is mediated primarily through the extracellular vesicles (EVs) secreted by the cells, in which microRNAs play a major role. Accordingly, numerous studies have evaluated the roles and applications of EVs secreted by different cell types in neurological diseases. Furthermore, due to their unique biological features, EVs are used as disease biomarkers and drug delivery systems for disease prevention and treatment. We discuss current knowledge related to EVs, focusing on the mechanism underlying their effects on traumatic CNS diseases, and summarize existing research on the potential clinical utility of EVs as disease biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.,Medical Department of Qingdao University, Qingdao, China
| | - Weipeng Shi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.,Medical Department of Qingdao University, Qingdao, China
| | - Di Qu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.,Medical Department of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
48
|
Fan Y, Chen Z, Zhang M. Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases. Lab Invest 2022; 20:291. [PMID: 35761337 PMCID: PMC9235237 DOI: 10.1186/s12967-022-03493-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022]
Abstract
Central nervous system (CNS) diseases, such as multiple sclerosis, Alzheimer's disease (AD), and Parkinson’s disease (PD), affect millions of people around the world. Great efforts were put in disease related research, but few breakthroughs have been made in the diagnostic and therapeutic approaches. Exosomes are cell-derived extracellular vesicles containing diverse biologically active molecules secreted by their cell of origin. These contents, including nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred between different cells, tissues, or organs, regulating various intercellular cross-organ communications and normal and pathogenic processes. Considering that cellular environment and cell state strongly impact the content and uptake efficiency of exosomes, their detection in biological fluids and content composition analysis potentially offer a multicomponent diagnostic readout of several human diseases. Recently, studies have found that aberrant secretion and content of exosomes are closely related to the pathogenesis of CNS diseases. Besides, loading natural cargoes, exosomes can deliver drugs cross the blood brain barrier, making them emerging candidates of biomarkers and therapeutics for CNS diseases. In this review, we summarize and discuss the advanced research progress of exosomes in the pathological processes of several CNS diseases in regarding with neuroinflammation, CNS repair, and pathological protein aggregation. Moreover, we propose the therapeutic strategies of applying exosomes to the diagnosis, early detection, and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
49
|
Oyarce K, Cepeda MY, Lagos R, Garrido C, Vega-Letter AM, Garcia-Robles M, Luz-Crawford P, Elizondo-Vega R. Neuroprotective and Neurotoxic Effects of Glial-Derived Exosomes. Front Cell Neurosci 2022; 16:920686. [PMID: 35813501 PMCID: PMC9257100 DOI: 10.3389/fncel.2022.920686] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Exosomes derived from glial cells such as astrocytes, microglia, and oligodendrocytes can modulate cell communication in the brain and exert protective or neurotoxic effects on neurons, depending on the environmental context upon their release. Their isolation, characterization, and analysis under different conditions in vitro, in animal models and samples derived from patients has allowed to define the participation of other molecular mechanisms behind neuroinflammation and neurodegeneration spreading, and to propose their use as a potential diagnostic tool. Moreover, the discovery of specific molecular cargos, such as cytokines, membrane-bound and soluble proteins (neurotrophic factors, growth factors, misfolded proteins), miRNA and long-non-coding RNA, that are enriched in glial-derived exosomes with neuroprotective or damaging effects, or their inhibitors can now be tested as therapeutic tools. In this review we summarize the state of the art on how exosomes secretion by glia can affect neurons and other glia from the central nervous system in the context of neurodegeneration and neuroinflammation, but also, on how specific stress stimuli and pathological conditions can change the levels of exosome secretion and their properties.
Collapse
Affiliation(s)
- Karina Oyarce
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - María Yamila Cepeda
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Raúl Lagos
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Camila Garrido
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ana María Vega-Letter
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes, Santiago, Chile
| | - María Garcia-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricia Luz-Crawford
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- *Correspondence: Roberto Elizondo-Vega,
| |
Collapse
|
50
|
Wei W, Pan Y, Yang X, Chen Z, Heng Y, Yang B, Pu M, Zuo J, Lai Z, Tang Y, Xin W. The Emerging Role of the Interaction of Extracellular Vesicle and Autophagy-Novel Insights into Neurological Disorders. J Inflamm Res 2022; 15:3395-3407. [PMID: 35706531 PMCID: PMC9191200 DOI: 10.2147/jir.s362865] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells release different types of extracellular vesicles (EVs), including exosomes, apoptotic bodies and microvesicles. EVs carry proteins, lipids and nucleic acids specific to cells and cell states. Autophagy is an intracellular degradation process, which, along with EVs, can significantly affect the development and progression of neurological diseases and, therefore, has been the hotspot. Generally, EVs and autophagy are closely associated. EVs and autophagy can interact with each other. On the one hand, the level of autophagy in target cells is closely related to the secretion and transport of EVs. In another, the application of EVs provides a great opportunity for adjuvant treatment of neurological disorders, for which autophagy is an excellent target. EVs can release their cargos into target cells, which, in turn, regulate the autophagic level of target cells through autophagy-related proteins directly and the non-coding RNA, signal transducer and activator of transcription 3 (STAT3), phosphodiesterase enzyme (PDE) 1-B, etc. signaling pathways indirectly, thus regulating the development of related neurological disorders.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Zhonglun Chen
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Yue Heng
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Bufan Yang
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Mingjun Pu
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Jiacai Zuo
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Zhuhong Lai
- Department of Cardiology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Yufeng Tang
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|