1
|
Mazzotta E, Romeo M, Sacco G, De Benedittis S, Qualtieri A, Perrotta ID, Muzzalupo R. The Impact of Hyaluronic Acid Coating on the Cationic Niosomal Surface for Doxorubicin Delivery. Molecules 2025; 30:1148. [PMID: 40076371 PMCID: PMC11901725 DOI: 10.3390/molecules30051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
This study was designed to develop cationic vesicles for doxorubicin (DOX) delivery and to compare anticancer efficacy of these systems uncoated and coated with hyaluronic acid. Cationic nanoformulation was first optimized using various amounts of Span80, DODAB, and cholesterol. The optimized niosomal formulation (CTN4) in terms of vesicle size, surface zeta potential, and colloidal stability was coated with hyaluronic acid and the in vitro therapeutic effectiveness in uterine cervix cancer cells of vesicles loaded with DOX was tested. In vitro studies revealed significantly superior cytotoxicity against Hela cells of niosomes coated with HA compared to uncoated formulations. Moreover, cytotoxicity was also evaluated on normal fibroblast murine cell line, NIH-3T3 cells, and the results obtained demonstrated that HA-coated vesicles exhibited lower cytotoxicity to NIH-3T3 cells compared to uncoated nanovesicles. These findings highlighted how the surface coating influences the effectiveness of niosomes developed as a target drug delivery system and the selectivity and the antitumour efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.R.); (G.S.)
| | - Martina Romeo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.R.); (G.S.)
| | - Giuseppina Sacco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.R.); (G.S.)
| | - Selene De Benedittis
- Institute for the Research and the Biomedical Innovation (IRIB)-CNR-Mangone (CS), 00185 Rome, Italy; (S.D.B.); (A.Q.)
| | - Antonio Qualtieri
- Institute for the Research and the Biomedical Innovation (IRIB)-CNR-Mangone (CS), 00185 Rome, Italy; (S.D.B.); (A.Q.)
| | - Ida Daniela Perrotta
- Centre for Microscopy and Microanalysis (CM2), Department of Biology Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.M.); (M.R.); (G.S.)
| |
Collapse
|
2
|
Obaid G, Celli JP, Broekgaarden M, Bulin AL, Uusimaa P, Pogue B, Hasan T, Huang HC. Engineering photodynamics for treatment, priming and imaging. NATURE REVIEWS BIOENGINEERING 2024; 2:752-769. [PMID: 39927170 PMCID: PMC11801064 DOI: 10.1038/s44222-024-00196-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 02/11/2025]
Abstract
Photodynamic therapy (PDT) is a photochemistry-based treatment approach that relies on the activation of photosensitizers by light to locally generate reactive oxygen species that induce cellular cytotoxicity, in particular for the treatment of tumours. The cytotoxic effects of PDT are depth-limited owing to light penetration limits in tissue. However, photodynamic priming (PDP), which inherently occurs during PDT, can prime the tissue microenvironment to adjuvant therapies beyond the direct PDT ablative zone. In this Review, we discuss the underlying mechanisms of PDT and PDP, and their application to the treatment of cancer, outlining how PDP can permeabilize the tumour vasculature, overcome biological barriers, modulate multidrug resistance, enhance immune responses, increase tumour permeability and enable the photochemical release of drugs. We further examine the molecular engineering of photosensitizers to improve their pharmacodynamic and pharmacokinetic properties, increase their molecular specificity and allow image guidance of PDT, and investigate engineered cellular models for the design and optimization of PDT and PDP. Finally, we discuss alternative activation sources, including ultrasound, X-rays and self-illuminating compounds, and outline key barriers to the clinical translation of PDT and PDP.
Collapse
Affiliation(s)
- Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | - Mans Broekgaarden
- Grenoble Alpes University, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Laure Bulin
- Grenoble Alpes University, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | | | - Brian Pogue
- Department of Medical Physics, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Askarizadeh A, Mashreghi M, Mirhadi E, Mehrabian A, Heravi Shargh V, Badiee A, Alavizadeh SH, Arabi L, Kamali H, Jaafari MR. Surface-modified cationic liposomes with a matrix metalloproteinase-degradable polyethylene glycol derivative improved doxorubicin delivery in murine colon cancer. J Liposome Res 2024; 34:221-238. [PMID: 37647288 DOI: 10.1080/08982104.2023.2247079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
PEGylation is a commonly used approach to prolong the blood circulation time of cationic liposomes. However, PEGylation is associated with the "PEG dilemma", which hinders binding and uptake into tumor cells. The cleavable PEG products are a possible solution to this problem. In the current research, doxorubicin-loaded cationic liposomes (Dox-CLs) surface-conjugated with a matrix metalloproteinase-2 (MMP-2)-sensitive octapeptide linker-PEG derivative were prepared and compared to non-PEGylated and PEGylated CLs in terms of size, surface charge, drug encapsulation and release, uptake, in vivo pharmacokinetics, and anticancer efficacy. It was postulated that PEG deshielding in response to the overexpressed MMP-2 in the tumor microenvironment increases the interaction of protected CLs with cellular membranes and improves their uptake by tumor cells/vasculature. MMP2-responsive Dox-CLs had particle sizes of ∼115-140 nm, surface charges of ∼+25 mV, and encapsulation efficiencies of ∼85-95%. In vitro cytotoxicity assessments showed significantly enhanced uptake and cytotoxicity of PEG-cleavable CLs compared to their non-cleavable PEG-coated counterparts or Caelyx®. Also, the chick chorioallantoic membrane assay showed great antiangiogenesis ability of Dox-CLs leading to target and prevent tumor neovascularization. Besides, in vivo studies showed an effective therapeutic efficacy of PEG-cleavable Dox-CLs in murine colorectal cancer with negligible hematological and histopathological toxicity. Altogether, our results showed that MMP2-responsive Dox-CLs could be served as a promising approach to improve tumor drug delivery and uptake.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Heravi Shargh
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Wang P, Wang Y, Xia X, Wu J, Lin J, Huang W, Yan D. A convenient protonated strategy for constructing nanodrugs from hydrophobic drug-inhibitor conjugates to reverse tumor multidrug resistance. NANOSCALE 2024; 16:8434-8446. [PMID: 38592819 DOI: 10.1039/d3nr06293g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Combination therapy has proven effective in counteracting tumor multidrug resistance (MDR). However, the pharmacokinetic differences among various drugs and inherent water insolubility for most small molecule agents greatly hinder their synergistic effects, which makes the delivery of drugs for combination therapy in vivo a key problem. Herein, we propose a protonated strategy to transform a water-insoluble small molecule drug-inhibitor conjugate into an amphiphilic one, which then self-assembles into nanoparticles for co-delivery in vivo to overcome tumor MDR. Specifically, paclitaxel (PTX) is first coupled with a third-generation P-glycoprotein (P-gp) inhibitor zosuquidar (Zos) through a glutathione (GSH)-responsive disulfide bond to produce a hydrophobic drug-inhibitor conjugate (PTX-ss-Zos). Subsequently treated with hydrochloric acid ethanol solution (HCl/EtOH), PTX-ss-Zos is transformed into the amphiphilic protonated precursor and then forms nanoparticles (PTX-ss-Zos@HCl NPs) in water by molecular self-assembly. PTX-ss-Zos@HCl NPs can be administered intravenously and accumulated specifically at tumor sites. Once internalized by cancer cells, PTX-ss-Zos@HCl NPs can be degraded under the overexpressed GSH to release PTX and Zos simultaneously, which synergistically reverse tumor MDR and inhibit tumor growth. This offers a promising strategy to develop small molecule self-assembled nanoagents to reverse tumor MDR in combination therapy.
Collapse
Affiliation(s)
- Penghui Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingchun Wu
- Zhejiang Hopeland Chemical Co., LTD, 26 Luyin Road, Quzhou Hi-Tech Industrial Park, Zhejiang 324100, China
| | - Jintang Lin
- Zhejiang Hopeland Chemical Co., LTD, 26 Luyin Road, Quzhou Hi-Tech Industrial Park, Zhejiang 324100, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Mishra L, Bhowmik S, Singh R, Patel P, Gupta GD, Kurmi BD. Quality by design-assisted development of D-α-tocopherol polyethylene glycol 1000 succinate-incorporated gefitinib-loaded cationic liposome(s). Ther Deliv 2023; 14:745-761. [PMID: 38018431 DOI: 10.4155/tde-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Aim: Gefitinib-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes (GEF-TPGS-LIPO+) were developed and optimized by the quality by design (QbD) approach for its potential anticancer effect. Methods/materials: Box-Behnken design (BBD) a systematic design of experiments was added to screen and optimize the formulation variables. Results: GEF-TPGS-LIPO+ shows vesicle size (210 ± 4.82 nm), polydispersity index (0.271 ± 0.002), zeta potential (22.2 ± 0.84 mV) and entrapment efficiency (82.3 ± 1.95). MTT result shows the enhanced cytotoxicity and higher intracellular drug uptake with highest and lowest levels of the reactive oxygen species and NF-κB expressions on A549 lung cancer cells, determined by fluorescence-activated cell sorting flow cytometry. Conclusion: Potential anticancer effect on A549 cells might be found due to cationic liposomal interaction with cancer cells.
Collapse
Affiliation(s)
- Lopamudra Mishra
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Shuvadip Bhowmik
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab, 142001, India
| |
Collapse
|
6
|
Go EJ, Yang H, Park W, Lee SJ, Han JH, Kong SJ, Lee WS, Han DK, Chon HJ, Kim C. Systemic Delivery of a STING Agonist-Loaded Positively Charged Liposome Selectively Targets Tumor Immune Microenvironment and Suppresses Tumor Angiogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300544. [PMID: 37381624 DOI: 10.1002/smll.202300544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Although stimulator of interferon genes (STING) agonists has shown great promise in preclinical studies, the clinical development of STING agonist therapy is challenged by its limited systemic delivery. Here, positively charged fusogenic liposomes loaded with a STING agonist (PoSTING) are designed for systemic delivery and to preferentially target the tumor microenvironment. When PoSTING is administered intravenously, it selectively targets not only tumor cells but also immune and tumor endothelial cells (ECs). In particular, delivery of STING agonists to tumor ECs normalizes abnormal tumor vasculatures, induces intratumoral STING activation, and elicits robust anti-tumor T cell immunity within the tumor microenvironment. Therefore, PoSTING can be used as a systemic delivery platform to overcome the limitations of using STING agonists in clinical trials.
Collapse
Affiliation(s)
- Eun-Jin Go
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seung Joon Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Jun-Hyeok Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - So Jung Kong
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Won Suk Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| |
Collapse
|
7
|
Karami L. Interaction of neutral and protonated Tamoxifen with the DPPC lipid bilayer using molecular dynamics simulation. Steroids 2023; 194:109225. [PMID: 36948347 DOI: 10.1016/j.steroids.2023.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Tamoxifen as an antiestrogen is successfully applied for the clinical treatment of breast cancer in pre- and post-menopausal women. Due to the side effects related to the oral administration of Tamoxifen (such as deep vein thrombosis, pulmonary embolism, hot flushes, ocular disturbances and some types of cancer), liposomal drug delivery is recommended for taking this drug. Drug encapsulation in a liposomal or lipid drug delivery system improves the pharmacokinetic and pharmacodynamic properties. In this regard, we carried out 200-ns molecular dynamics (MD) simulations for three systems (pure DPPC and neutral and protonated Tamoxifen-loaded DPPC). Here, DPPC is a model lipid bilayer to provide us with conditions like liposomal drug delivery systems to investigate the interactions between Tamoxifen and DPPC lipid bilayers and to estimate the preferred location and orientation of the drug molecule inside the bilayer membrane. Properties such as area per lipid, membrane thickness, lateral diffusion coefficient, order parameters and mass density, were surveyed. With insertion of neutral and protonated Tamoxifen inside the DPPC lipid bilayers, area per lipid and membrane thickness increased slightly. Also, Tamoxifen induce ordering of the hydrocarbon chains in DPPC bilayer. Analysis of MD trajectories shows that neutral Tamoxifen is predominantly found in the hydrophobic tail region, whereas protonated Tamoxifen is located at the lipid-water interface (polar region of DPPC lipid bilayers).
Collapse
Affiliation(s)
- Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
8
|
Askarizadeh A, Mashreghi M, Mirhadi E, Mirzavi F, Shargh VH, Badiee A, Alavizadeh SH, Arabi L, Jaafari MR. Doxorubicin-loaded liposomes surface engineered with the matrix metalloproteinase-2 cleavable polyethylene glycol conjugate for cancer therapy. Cancer Nanotechnol 2023; 14:18. [PMID: 36910721 PMCID: PMC9988605 DOI: 10.1186/s12645-023-00169-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Background Colorectal cancer is one of the prominent leading causes of fatality worldwide. Despite recent advancements within the field of cancer therapy, the cure rates and long-term survivals of patients suffering from colorectal cancer have changed little. The application of conventional chemotherapeutic agents like doxorubicin is limited by some drawbacks such as cardiotoxicity and hematotoxicity. Therefore, nanotechnology has been exploited as a promising solution to address these problems. In this study, we synthesized and compared the anticancer efficacy of doxorubicin-loaded liposomes that were surface engineered with the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-matrix metalloproteinase-2 (MMP-2) cleavable peptide-polyethylene glycol (PEG) conjugate. The peptide linker was used to cleave in response to the upregulated MMP-2 in the tumor microenvironment, thus exposing a positive charge via PEG-deshielding and enhancing liposomal uptake by tumor cells/vasculature. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell binding and uptake, and cytotoxicity. Results The formulations had particle sizes of ~ 100-170 nm, narrow distribution (PDI ˂ 0.2), and various surface charges (- 10.2 mV to + 17.6 mV). MMP-2 overexpression was shown in several cancer cell lines (C26, 4T1, and B16F10) as compared to the normal NIH-3T3 fibroblast cells by gelatin zymography and qRT-PCR. In vitro results demonstrated enhanced antitumor efficacy of the PEG-cleavable cationic liposomes (CLs) as compared to the commercial Caelyx® (up to fivefold) and the chick chorioallantoic membrane assay showed their great antiangiogenesis potential to target and suppress tumor neovascularization. The pharmacokinetics and efficacy studies also indicated higher tumor accumulation and extended survival rates in C26 tumor-bearing mice treated with the MMP-2 cleavable CLs as compared to the non-cleavable CLs with no remarkable sign of toxicity in healthy tissues. Conclusion Altogether, the MMP-2-cleavable CLs have great potency to improve tumor-targeted drug delivery and cellular/tumor-vasculature uptake which merits further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12645-023-00169-8.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Vahid Heravi Shargh
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy. Int J Pharm 2022; 628:122320. [DOI: 10.1016/j.ijpharm.2022.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022]
|
10
|
Zhang N, Feng N, Xin X, Zhang J, Wu D, Jiang Q, Yu T, Gao M, Zhao S, Yang H, Tian Q. Nano-drug delivery system with enhanced tumour penetration and layered anti-tumour efficacy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102592. [PMID: 35905842 DOI: 10.1016/j.nano.2022.102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The low delivery efficiency of nano-drugs and limited tumour penetration are still huge challenges in treating solid tumours. Herein, we developed a pH-responsive nano-drug delivery system, CALS/PDMA@DOX, with a size conversion-layered delivery function. The system is composed of a pH-responsive cationic liposome loaded with DOX (CALS) and a polyamidoamine dendrimer loaded with DOX (PAMAM@DOX) modified with 2,3-dimethylmaleic anhydride (PDMA@DOX) using electrostatic adsorption. In the tumour microenvironment, the positively-charged large-size CALS and the positively-charged small-size PAMAM@DOX were dissociated to exert anti-tumour effects. CALS preferentially targeted tumour angiogenesis endothelial cells. Because of its small size and positive charge, PAMAM@DOX showed excellent tumour penetration. Significant tumour suppression by the system in vivo was confirmed in a 4T1 tumour xenograft mouse model. This pH-triggered size-switching layered delivery nanosystem is a safe and effective cancer treatment delivery platform that improves drug permeability and therapeutic efficacy.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nannan Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangying Xin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junwei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Deqiao Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Jiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Siyuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qingfeng Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Kamel R, EL-Deeb NM, Abbas H. Development of a potential anti-cancer pulmonary nanosystem consisted of chitosan-doped LeciPlex loaded with resveratrol using a machine learning method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Preparation, Characterization, and Evaluation of Liposomes Containing Oridonin from Rabdosia rubescens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030860. [PMID: 35164121 PMCID: PMC8839758 DOI: 10.3390/molecules27030860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Due to the remarkable anti-tumor activities of oridonin (Ori), research on Rabdosia rubescens has attracted more and more attention in the pharmaceutical field. The purpose of this study was to extract Ori from R. rubescens by ultrasound-assisted extraction (UAE) and prepare Ori liposomes as a novel delivery system to improve the bioavailability and biocompatibility. Response surface methodology (RSM), namely Box-Behnken design (BBD), was applied to optimize extraction conditions, formulation, and preparation process. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 75.9%, an extraction time of 35.7 min, and a solid/liquid ratio of 1:32.6. Under these optimal conditions, the extraction yield of Ori was 4.23 mg/g, which was well matched with the predicted value (4.28 mg/g). The optimal preparation conditions of Ori liposomes by RSM, with an ultrasonic time of 41.1 min, a soybean phospholipids/drug ratio of 9.6 g/g, and a water bath temperature of 53.4 °C, had higher encapsulation efficiency (84.1%). The characterization studies indicated that Ori liposomes had well-dispersible spherical shapes and uniform sizes with a particle size of 137.7 nm, a polydispersity index (PDI) of 0.216, and zeta potential of −24.0 mV. In addition, Ori liposomes presented better activity than free Ori. Therefore, the results indicated that Ori liposomes could enhance the bioactivity of Ori, being proposed as a promising vehicle for drug delivery.
Collapse
|
13
|
Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021; 13:1951. [PMID: 34834367 PMCID: PMC8617654 DOI: 10.3390/pharmaceutics13111951] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer noninvasive method and has great potential for clinical applications. Unfortunately, PDT still has many limitations, such as metastatic tumor at unknown sites, inadequate light delivery and a lack of sufficient oxygen. Recent studies have demonstrated that photodynamic therapy in combination with other therapies can enhance anticancer effects. The development of new nanomaterials provides a platform for the codelivery of two or more therapeutic drugs, which is a promising cancer treatment method. The use of multifunctional nanocarriers for the codelivery of two or more drugs can improve physical and chemical properties, increase tumor site aggregation, and enhance the antitumor effect through synergistic actions, which is worthy of further study. This review focuses on the latest research progress on the synergistic enhancement of PDT by simultaneous multidrug administration using codelivery nanocarriers. We introduce the design of codelivery nanocarriers and discuss the mechanism of PDT combined with other antitumor methods. The combination of PDT and chemotherapy, gene therapy, immunotherapy, photothermal therapy, hyperthermia, radiotherapy, sonodynamic therapy and even multidrug therapy are discussed to provide a comprehensive understanding.
Collapse
Affiliation(s)
| | | | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-L.Y.); (K.L.)
| |
Collapse
|
14
|
Abedin MR, Powers K, Aiardo R, Barua D, Barua S. Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci Rep 2021; 11:7347. [PMID: 33795712 PMCID: PMC8016985 DOI: 10.1038/s41598-021-86762-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Chemotherapeutic drugs suffer from non-specific binding, undesired toxicity, and poor blood circulation which contribute to poor therapeutic efficacy. In this study, antibody–drug nanoparticles (ADNs) are engineered by synthesizing pure anti-cancer drug nanorods (NRs) in the core of nanoparticles with a therapeutic monoclonal antibody, Trastuzumab on the surface of NRs for specific targeting and synergistic treatments of human epidermal growth factor receptor 2 (HER2) positive breast cancer cells. ADNs were designed by first synthesizing ~ 95 nm diameter × ~ 500 nm long paclitaxel (PTX) NRs using the nanoprecipitation method. The surface of PTXNRs was functionalized at 2′ OH nucleophilic site using carbonyldiimidazole and conjugated to TTZ through the lysine residue interaction forming PTXNR-TTZ conjugates (ADNs). The size, shape, and surface charge of ADNs were characterized using scanning electron microscopy (SEM), SEM, and zeta potential, respectively. Using fluorophore labeling and response surface analysis, the percentage conjugation efficiency was found > 95% with a PTX to TTZ mass ratio of 4 (molar ratio ≈ 682). In vitro therapeutic efficiency of PTXNR-TTZ was evaluated in two HER2 positive breast cancer cell lines: BT-474 and SK-BR-3, and a HER2 negative MDA-MB-231 breast cancer cell using MTT assay. PTXNR-TTZ inhibited > 80% of BT-474 and SK-BR-3 cells at a higher efficiency than individual PTX and TTZ treatments alone after 72 h. A combination index analysis indicated a synergistic combination of PTXNR-TTZ compared with the doses of single-drug treatment. Relatively lower cytotoxicity was observed in MCF-10A human breast epithelial cell control. The molecular mechanisms of PTXNR-TTZ were investigated using cell cycle and Western blot analyses. The cell cycle analysis showed PTXNR-TTZ arrested > 80% of BT-474 breast cancer cells in the G2/M phase, while > 70% of untreated cells were found in the G0/G1 phase indicating that G2/M arrest induced apoptosis. A similar percentage of G2/M arrested cells was found to induce caspase-dependent apoptosis in PTXNR-TTZ treated BT-474 cells as revealed using Western blot analysis. PTXNR-TTZ treated BT-474 cells showed ~ 1.3, 1.4, and 1.6-fold higher expressions of cleaved caspase-9, cytochrome C, and cleaved caspase-3, respectively than untreated cells, indicating up-regulation of caspase-dependent activation of apoptotic pathways. The PTXNR-TTZ ADN represents a novel nanoparticle design that holds promise for targeted and efficient anti-cancer therapy by selective targeting and cancer cell death via apoptosis and mitotic cell cycle arrest.
Collapse
Affiliation(s)
- Muhammad Raisul Abedin
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Kaitlyne Powers
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Rachel Aiardo
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Dibbya Barua
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA.
| |
Collapse
|
15
|
Liu X, Zhang L, Jiang W, Yang Z, Gan Z, Yu C, Tao R, Chen H. In vitro and in vivo evaluation of liposomes modified with polypeptides and red cell membrane as a novel drug delivery system for myocardium targeting. Drug Deliv 2021; 27:599-606. [PMID: 32308051 PMCID: PMC7191910 DOI: 10.1080/10717544.2020.1754525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ischemic cardiac disease (ICD) is a cardiovascular disease with high morbidity and mortality. In this study, a novel myocardial targeted drug delivery system was developed represented by co-modified liposomes consisting of red cell membrane (RCM), and the peptides TAT and PCM. Liposomes were prepared using a membrane dispersion-ultrasonic method; the prepared 1% TAT and 3% PCM micelles were mixed with liposomes and under overnight stirring to form polypeptid-modified liposomes. RCM was isolated from mice blood, and the mechanical force facilitated RCM adhesion to the lipid bilayer. The characteristics of liposomes such as the morphology, particle size, zeta-potential, and RCM-conjugation to lipsomes were evaluated. Uptake efficiency and cellular toxicity of liposomes were evaluated in vitro on myocardial cells (MCs). As regard the experiments in vivo, liposomes were intravenously injected into mice, and the blood and organs were collectedat different times to analyze the pharmacokinetics profile of liposomes. The cellular uptake and intracellular distribution of liposomes of different composition into MCs demonstrated that RCM-modified liposomes had the best delivery capability. The pharmacokinetics study further demonstrated that RCM-modified liposomes had prolonged mean residence time (MRT) and more accumulation in the heart. This study indicated that RCM can be used to modify liposomes in combination with polypeptides, because such modification increases the myocardial targeting of liposomes. Therefore, this system constructed in this study might be a potentially effective myocardial drug delivery system.
Collapse
Affiliation(s)
- Xueyan Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Liangke Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Wengao Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhangyou Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zongjie Gan
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.,Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ran Tao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.,Research Center for Innovative Pharmaceutical and Excipient Analysis Technology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Moosavian SA, Bianconi V, Pirro M, Sahebkar A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin Cancer Biol 2021; 69:337-348. [PMID: 31585213 DOI: 10.1016/j.semcancer.2019.09.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/28/2019] [Indexed: 12/21/2022]
Abstract
Despite considerable advances in the application of liposomal drug delivery systems in cancer treatment, the clinical application of liposomal formulations has been limited by many factors. It seems that there is a wide gap between results of experimental studies and clinical application of liposomes. In this review, we discuss barriers which limit the translation of liposomal delivery systems in cancer therapy. The main focus of this review will be on differences between preclinical and clinical studies and potential approaches to overcome the main pitfalls in the clinical application of liposomal delivery systems.
Collapse
Affiliation(s)
- Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Omar MM, Hasan OA, Zaki RM, Eleraky NE. Externally Triggered Novel Rapid-Release Sonosensitive Folate-Modified Liposomes for Gemcitabine: Development and Characteristics. Int J Nanomedicine 2021; 16:683-700. [PMID: 33536754 PMCID: PMC7850458 DOI: 10.2147/ijn.s266676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To develop an externally triggered rapid-release targeted system for treating ovarian cancer, gemcitabine (GMC) was entrapped into sonosensitive (SoS) folate (Fo)-modified liposomes (LPs). METHODS GMC-loaded LPs (GMC LPs), GMC-loaded Fo-targeted LPs (GMC-Fo LPs), and GMC-loaded Fo-targeted SoS LPs (GMC-SoS Fo LPs) were prepared utilizing a film-hydration technique and evaluated based on particle size, ζ-potential, and percentage entrapped drug. Cellular uptake of the fluorescent delivery systems in Fo-expressing ovarian cancer cells was quantified using flow cytometry. Finally, tumor-targeting ability, in vivo evaluation, and pharmacokinetic studies were performed. RESULTS GMC LPs, GMC-Fo LPs, and GMC-SoS Fo LPs were successfully prepared, with sizes of <120.3±2.4 nm, 39.7 mV ζ-potential, and 86.3%±1.84% entrapped drug. Cellular uptake of GMC-SoS Fo LPs improved 6.51-fold over GMC LPs (under ultrasonic irradiation - p<0.05). However, cellular uptake of GMC-Fo LPs improved just 1.24-fold over GMC LPs (p>0.05). Biodistribution study showed that of GMC concentration in tumors treated with GMC-SoS-Fo LPs (with ultrasound) improved 2.89-fold that of free GMC (p<0.05). In vivo, GMC-SoS Fo LPs showed the highest antiproliferative and antitumor action on ovarian cancer. CONCLUSION These findings showed that externally triggered rapid-release SoS Fo-modified LPs are a promising system for delivering rapid-release drugs into tumors.
Collapse
Affiliation(s)
- Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy,Sohag University, Sohag, 82524, Egypt
| | - Omiya Ali Hasan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy,Sohag University, Sohag, 82524, Egypt
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
18
|
Diakova GB, Du Z, Klibanov AL. Targeted Ultrasound Contrast Imaging of Tumor Vasculature With Positively Charged Microbubbles. Invest Radiol 2020; 55:736-740. [PMID: 32569011 PMCID: PMC10690642 DOI: 10.1097/rli.0000000000000699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Molecular ultrasound imaging of tumor vasculature is being actively investigated with microbubble contrast agents targeted to neovasculature biomarkers. Yet, a universal method of targeting tumor vasculature independent of specific biomarkers, or in their absence, would be desirable. We report the use of electrostatic interaction to achieve adherence of microbubbles to tumor vasculature and resulting tumor delineation by ultrasound imaging. METHODS AND MATERIALS Microbubbles were prepared from decafluorobutane gas by amalgamation of aqueous micellar medium. Distearoyl phosphatidylcholine (DSPC) and polyethylene glycol (PEG)-stearate were used as microbubble shell-forming lipids; cationic lipid distearoyl trimethylammoniumpropane (DSTAP) was included to introduce positive electrostatic charge. Microbubbles were subjected to flotation in normal gravity, to remove larger particles. Murine colon adenocarcinoma tumor (MC38, J. Schlom, National Institutes of Health) was inoculated in the hind leg of C57BL/6 mice. Contrast ultrasound imaging was performed under isoflurane anesthesia, using a clinical imaging system in low power mode, with tissue signal suppression (contrast pulse sequencing, 7 MHz, 1 Hz; Mechanical Index, 0.2). The ultrasound probe was positioned to monitor the tumor and contralateral leg muscle; microbubble contrast signal was monitored for 30 minutes or more, after intravenous bolus administration of 2.10 microbubbles. Individual time point frames were extracted from ultrasound video recording and analyzed with ImageJ. RESULTS Mean bubble diameter was ~1.6 to 2 μm; 99.9% were less than 5 μm, to prevent blocking blood flow in capillaries. For cationic DSTAP-carrying microbubbles, contrast signal was observed in the tumor beyond 30 minutes after injection. As the fraction of positively charged lipid in the bubble shell was increased, adherent contrast signal in the tumor also increased, but accumulation of DSTAP-microbubbles in the normal muscle increased as well. For bubbles with the highest positive charge tested, DSTAP-DSPC molar ratio 1:4, at 10 minutes after intravenous administration of microbubbles, the contrast signal difference between the tumor and normal muscle was 1.5 (P < 0.005). At 30 minutes, tumor/muscle contrast signal ratio improved and reached 2.1. For the DSTAP-DSPC 1:13 preparation, tumor/muscle signal ratio exceeded 3.6 at 10 minutes and reached 5.4 at 30 minutes. Microbubbles with DSTAP-DSPC ratio 1:22 were optimal for tumor targeting: at 10 minutes, tumor/muscle signal ratio was greater than 7 (P < 0.005); at 30 minutes, greater than 16 (P < 0.01), sufficient for tumor delineation. CONCLUSIONS Cationic microbubbles are easy to prepare. They selectively accumulate in the tumor vasculature after intravenous administration. These microbubbles provide target-to-control contrast ratio that can exceed an order of magnitude. Adherent microbubbles delineate the tumor mass at extended time points, at 30 minutes and beyond. This may allow for an extension of the contrast ultrasound examination time. Overall, positively charged microbubbles could become a universal ultrasound contrast agent for cancer imaging.
Collapse
Affiliation(s)
| | | | - Alexander L Klibanov
- Cardiovascular Division, Department of Medicine, Robert M Berne Cardiovascular Research Center, Department of Radiology, and Department of Biomedical Engineering, University of Virginia, Charlottesville
| |
Collapse
|
19
|
Zare-Zardini H, Alemi A, Taheri-Kafrani A, Hosseini SA, Soltaninejad H, Hamidieh AA, Haghi Karamallah M, Farrokhifar M, Farrokhifar M. Assessment of a New Ginsenoside Rh2 Nanoniosomal Formulation for Enhanced Antitumor Efficacy on Prostate Cancer: An in vitro Study. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3315-3324. [PMID: 32884236 PMCID: PMC7431455 DOI: 10.2147/dddt.s261027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Introduction Ginsenoside Rh2, purified from the Panax ginseng root, has been demonstrated to possess anticancer properties against various cancerous cells including colorectal, breast, skin, ovarian, prostate, and liver cancerous cells. However, the poor bioavailability, low stability on gastrointestinal systems, and fast plasma elimination limit further clinical applications of Ginsenoside Rh2 for cancer treatments. In this study, a novel formulation of niosomal Ginsenoside Rh2 was prepared using the thin film hydration technique. Methods The niosomal formulation contained Span 60 and cholesterol, and cationic lipid DOTAP was evaluated by determining particle size distribution, encapsulation efficiency, the polydispersity index (PDI), and surface morphology. The cytotoxic effects of free Ginsenoside Rh2 and Ginsenoside Rh2-loaded niosomes were determined using the MTT method in the PC3 prostate cancer cell line. For the investigation of the in vitro cellular uptake of Ginsenoside Rh2-loaded niosome, two formulations were prepared: the Ginsenoside Rh2-loaded niosomal formula containing 5% DOTAP and the Ginsenoside Rh2-loaded niosomal formula without DOTAP. Results The mean size, DPI, zeta potential, and encapsulation efficiency of the Ginsenoside Rh2-loaded nanoniosomal formulation containing DOTAP were 93.5±2.1 nm, 0.203±0.01, +4.65±0.65, and 98.32% ±2.4, respectively. The niosomal vesicles were found to be round and have a smooth surface. The release profile of Ginsenoside Rh2 from niosome was biphasic. Furthermore, a two-fold reduction in the Ginsenoside Rh2 concentration was measured when Ginsenoside Rh2 was administered in a nanoniosomal form compared to free Ginsenoside Rh2 solutions in the PC3 prostate cancer cell line. After storage for 90 days, the encapsulation efficiency, vesicle size, PDI, and zeta potential of the optimized formulation did not significantly change compared to the freshly prepared samples. The cellular uptake experiments of the niosomal formulation demonstrated that by adding DOTAP to the niosomal formulation, the cellular uptake was enhanced. Discussion The enhanced cellular uptake and cytotoxic activity of the Ginsenoside Rh2 nanoniosomal formulation on the PC3 cell make it an attractive candidate for application as a nano-sized delivery vehicle to transfer Ginsenoside Rh2 to cancer cells.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Sciences, Farhangian University, Isfahan, Iran.,Medical Nanotechnology &Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ashraf Alemi
- Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Soltaninejad
- Tissue Bank & Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Ali Hamidieh
- Stem Cell and Regenerative Medicine Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Majid Farrokhifar
- Department of Pediatrics, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | |
Collapse
|
20
|
Pavlov RV, Gaynanova GA, Kuznetsova DA, Vasileva LA, Zueva IV, Sapunova AS, Buzyurova DN, Babaev VM, Voloshina AD, Lukashenko SS, Rizvanov IK, Petrov KA, Zakharova LY, Sinyashin OG. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake. Int J Pharm 2020; 587:119640. [PMID: 32673770 DOI: 10.1016/j.ijpharm.2020.119640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Hydroxyethyl bearing gemini surfactants, alkanediyl-α,ω-bis(N-hexadecyl-N-2-hydroxyethyl-N-methylammonium bromide), 16-s-16(OH), were used to augment phosphatidylcholine based liposomes to achieve higher stability and enhanced cellular uptake and penetration. The developed liposomes were loaded with rhodamine B, doxorubicin hydrochloride, pralidoxime chloride to investigate release properties, cytotoxicity in vitro, as well as ability to cross the blood-brain barrier. At molar ratio of 35:1 (lipid:surfactant) the formulation was found to be of low toxicity, stable for two months, and able to deliver rhodamine B beyond the blood-brain barrier in rats. In vivo, pharmacokinetics of free and formulated 2-PAM in plasma and brain were evaluated, liposomal 2-PAM was found to reactivate 27% of brain acetylcholinesterase, which is, to our knowledge, the first example of such high degree of reactivation after intravenous administration of liposomal drug.
Collapse
Affiliation(s)
- Rais V Pavlov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Gulnara A Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Darya A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Leysan A Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Daina N Buzyurova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Vasily M Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Ildar Kh Rizvanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
21
|
Mazzotta E, De Benedittis S, Qualtieri A, Muzzalupo R. Actively Targeted and Redox Responsive Delivery of Anticancer Drug by Chitosan Nanoparticles. Pharmaceutics 2019; 12:pharmaceutics12010026. [PMID: 31888000 PMCID: PMC7023447 DOI: 10.3390/pharmaceutics12010026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/17/2022] Open
Abstract
The clinical efficacy of methotrexate (MTX) is limited by its poor water solubility, its low bioavailability, and the development of resistance in cancer cells. Herein, we developed novel folate redox-responsive chitosan (FTC) nanoparticles for intracellular MTX delivery. l-Cysteine and folic acid molecules were selected to be covalently linked to chitosan in order to confer it redox responsiveness and active targeting of folate receptors (FRs). NPs based on these novel polymers could possess tumor specificity and a controlled drug release due to the overexpression of FRs and high concentration of reductive agents in the microenvironment of cancer cells. Nanoparticles (NPs) were prepared using an ionotropic gelation technique and characterized in terms of size, morphology, and loading capacity. In vitro drug release profiles exhibited a glutathione (GSH) dependence. In the normal physiological environment, NPs maintained good stability, whereas, in a reducing environment similar to tumor cells, the encapsulated MTX was promptly released. The anticancer activity of MTX-loaded FTC-NPs was also studied by incubating HeLa cells with formulations for various time and concentration intervals. A significant reduction in viability was observed in a dose- and time-dependent manner. In particular, FTC-NPs showed a better inhibition effect on HeLa cancer cell proliferation compared to non-target chitosan-based NPs used as control. The selective cellular uptake of FTC-NPs via FRs was evaluated and confirmed by fluorescence microscopy. Overall, the designed NPs provide an attractive strategy and potential platform for efficient intracellular anticancer drug delivery.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Savinio, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy;
| | - Selene De Benedittis
- Institute for the Research and the Biomedical Innovation (IRIB)-CNR-Mangone (CS), 00185 Rome, Italy; (S.D.B.); (A.Q.)
| | - Antonio Qualtieri
- Institute for the Research and the Biomedical Innovation (IRIB)-CNR-Mangone (CS), 00185 Rome, Italy; (S.D.B.); (A.Q.)
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Savinio, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy;
- Correspondence: ; Tel.: +39-0984-493-173
| |
Collapse
|
22
|
Pashirova TN, Burilova EA, Lukashenko SS, Gaysin NK, Gnezdilov OI, Sapunova AS, Fernandes AR, Voloshina AD, Souto EB, Zhiltsova EP, Zakharova LY. Nontoxic antimicrobial micellar systems based on mono- and dicationic Dabco-surfactants and furazolidone: Structure-solubilization properties relationships. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Olechowska K, Mach M, Ha C-Wydro K, Wydro P. Studies on the Interactions of 2-Hydroxyoleic Acid with Monolayers and Bilayers Containing Cationic Lipid: Searching for the Formulations for More Efficient Drug Delivery to Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9084-9092. [PMID: 31246038 DOI: 10.1021/acs.langmuir.9b01326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drug delivery in cationic liposomes seems to be a promising therapeutic approach in cancer treatment. The rational design of the positively charged lipid vesicles as anticancer drug carriers should be supported by a detailed analysis of the interactions of the carrier components with anticancer drugs. In the present work, 2-hydroxyoleic acid (2OHOA; Minerval), a membrane lipid therapy drug, was incorporated into positively charged mono- and bilayer membranes containing 1-palmitoyl-2-oleoyl- sn-glycero-3-ethylphosphocholine (EPOPC), the synthetic cationic lipid, and 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC). The intermolecular interactions, fluidity, and miscibility of the studied monolayers were analyzed by utilizing Langmuir balance experiments. The morphology of two-dimensional films was inspected using a Brewster angle microscopy technique. The properties of the liposomes were investigated by dynamic light scattering (DLS) and zeta potential measurements, steady-state fluorescence anisotropy experiments, and the spectrofluorimetric titration of calcein-encapsulated vesicles with a lysis-inducing agent. According to the collected results, 2OHOA intercalation into films of pure phospholipids or a binary EPOPC/DOPC film is thermodynamically favorable. Surprisingly, no significant effect of the presence of unsaturated 2OHOA chains on the EPOPC/DOPC monolayer order was observed. The experiments carried out for 2OHOA-inserted cationic EPOPC/DOPC (1:4) liposomes indicate effective incorporation of the drug into the liposome bilayer and the formation of stable vesicles without affecting their properties markedly. On the basis of the obtained results, EPOPC/DOPC/2OHOA cationic liposomes with 15% 2OHOA content in the phospholipid bilayer seem to be the most suitable for potential biomedical applications.
Collapse
Affiliation(s)
- Karolina Olechowska
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Marzena Mach
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Katarzyna Ha C-Wydro
- Department of Environmental Chemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| |
Collapse
|
24
|
Amin M, Pourshohod A, Kheirollah A, Afrakhteh M, Gholami-Borujeni F, Zeinali M, Jamalan M. Specific delivery of idarubicin to HER2-positive breast cancerous cell line by trastuzumab-conjugated liposomes. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Yin X, Feng S, Chi Y, Liu J, Sun K, Guo C, Wu Z. Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma. Drug Deliv 2018; 25:900-908. [PMID: 29644882 PMCID: PMC6058671 DOI: 10.1080/10717544.2018.1458920] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
An estrogen (ES)-functionalized cationic liposomal system was developed and exploited for targeted delivery to osteosarcoma. Natural biocompatible chotooligosaccharides (COS, MW2-5 KDa) were covalently tethered to the liposomal surface through a disulfate bond (-SS-) to confer reduction-responsive COS detachment, whereas estrogen was grafted via polyethylene glycol (PEG 2 K) chain to achieve estrogen receptor-targeting. The liposomal carriers were prepared by the ethanol injection method and fluorescent anticancer drug doxorubicin (DOX) was loaded with ammonium sulfate gradient. The physicochemical properties, reduction-sensitivity, and the roles of estrogen on cellular uptake and tumor-targeting were studied. The Chol-SS-COS/ES/DOX liposomes were spherical with an average size about 110 nm, and high encapsulation efficiency. The liposomes were stable in physiological condition but rapidly release the payload in response to tumoral intracellular glutathione (20 mM). MTT cytotoxicity assay confirmed that Chol-SS-COS/ES/DOX liposomes exhibited higher cytotoxicity to MG63 osteosarcoma cells than to liver cells (LO2). Flow cytometry (FCM) and confocal laser scanning microscopy revealed that cellular uptake of Chol-SS-COS/ES/DOX liposomes by MG63, than the free DOX or Chol-SS-COS/DOX. Ex vivo fluorescence distribution study showed that the multifunctional liposomes selectively accumulated in the MG63 xenografts versus the organs. Chol-SS-COS/ES/DOX liposomes strongly inhibited the tumor growth and enhanced the animal survival rate. Overall, the COS grafted estrogen-functionalized cationic liposomes, fortified with glutathione-responsiveness, showed great potential for specific intracellular drug delivery to estrogen receptor-expressing tumors such as osteosarcoma.
Collapse
Affiliation(s)
- Xuelei Yin
- a School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation , (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Shuaishuai Feng
- a School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation , (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Yingying Chi
- a School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation , (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Jinhu Liu
- a School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation , (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Kaoxiang Sun
- a School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation , (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Chuanyou Guo
- b Department of Orthopedic Surgery , Qingdao Municipal Hospital , Qingdao , China
| | - Zimei Wu
- a School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation , (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China.,c School of Pharmacy , University of Auckland , Auckland , New Zealand
| |
Collapse
|
26
|
Mazzotta E, Tavano L, Muzzalupo R. Thermo-Sensitive Vesicles in Controlled Drug Delivery for Chemotherapy. Pharmaceutics 2018; 10:150. [PMID: 30189683 PMCID: PMC6161155 DOI: 10.3390/pharmaceutics10030150] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Thermo-sensitive vesicles are a promising tool for triggering the release of drugs to solid tumours when used in combination with mild hyperthermia. Responsivity to temperature makes them intelligent nanodevices able to provide a site-specific chemotherapy. Following a brief introduction concerning hyperthermia and its advantageous combination with vesicular systems, recent investigations on thermo-sensitive vesicles useful for controlled drug delivery in cancer treatment are reported in this review. In particular, the influence of bilayer composition on the in vitro and in vivo behaviour of thermo-sensitive formulations currently under investigation have been extensively explored.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Savinio, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy.
| | - Lorena Tavano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Savinio, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy.
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Savinio, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
27
|
Kim H, Lee JH, Kim JE, Kim YS, Ryu CH, Lee HJ, Kim HM, Jeon H, Won HJ, Lee JY, Lee J. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. J Ginseng Res 2018; 42:361-369. [PMID: 29983618 PMCID: PMC6026383 DOI: 10.1016/j.jgr.2017.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 02/04/2023] Open
Abstract
Ginsenosides, dammarane-type triterpene saponins obtained from ginseng, have been used as a natural medicine for many years in the Orient due to their various pharmacological activities. However, the therapeutic potential of ginsenosides has been largely limited by the low bioavailability of the natural products caused mainly by low aqueous solubility, poor biomembrane permeability, instability in the gastrointestinal tract, and extensive metabolism in the body. To enhance the bioavailability of ginsenosides, diverse micro-/nano-sized delivery systems such as emulsions, polymeric particles, and vesicular systems have been investigated. The delivery systems improved the bioavailability of ginsenosides by enhancing solubility, permeability, and stability of the natural products. This mini-review aims to provide comprehensive information on the micro-/nano-sized delivery systems for increasing the bioavailability of ginsenosides, which may be helpful for designing better delivery systems to maximize the versatile therapeutic potential of ginsenosides.
Collapse
Affiliation(s)
- Hyeongmin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Sciences, Hoseo University, Asan, Republic of Korea
| | - Jee Eun Kim
- Graduate School of Pharmaceutical Management, Chung-Ang University, Seoul, Republic of Korea
| | - Young Su Kim
- Graduate School of Pharmaceutical Management, Chung-Ang University, Seoul, Republic of Korea
| | - Choong Ho Ryu
- Graduate School of Pharmaceutical Management, Chung-Ang University, Seoul, Republic of Korea
| | - Hong Joo Lee
- Graduate School of Pharmaceutical Management, Chung-Ang University, Seoul, Republic of Korea
| | - Hye Min Kim
- Graduate School of Pharmaceutical Management, Chung-Ang University, Seoul, Republic of Korea
| | - Hyojin Jeon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyo-Joong Won
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- Graduate School of Pharmaceutical Management, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Monpara J, Kanthou C, Tozer GM, Vavia PR. Rational Design of Cholesterol Derivative for Improved Stability of Paclitaxel Cationic Liposomes. Pharm Res 2018. [PMID: 29520495 DOI: 10.1007/s11095-018-2367-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This work explores synthesis of novel cholesterol derivative for the preparation of cationic liposomes and its interaction with Paclitaxel (PTX) within liposome membrane using molecular dynamic (MD) simulation and in-vitro studies. METHODS Cholesteryl Arginine Ethylester (CAE) was synthesized and characterized. Cationic liposomes were prepared using Soy PC (SPC) at a molar ratio of 77.5:15:7.5 of SPC/CAE/PTX. Conventional liposomes were composed of SPC/cholesterol/PTX (92:5:3 M ratio). The interaction between paclitaxel, ligand and the membrane was studied using 10 ns MD simulation. The interactions were studied using Differential Scanning Calorimetry (DSC) and Small Angle Neutron Scattering analysis. The efficacy of liposomes was evaluated by MTT assay and endothelial cell migration assay on different cell lines. The safety of the ligand was determined using the Comet Assay. RESULTS The cationic liposomes improved loading efficiency and stability compared to conventional liposomes. The increased PTX loading could be attributed to the hydrogen bond between CAE and PTX and deeper penetration of PTX in the bilayer. The DSC study suggested that inclusion of CAE in the DPPC bilayer eliminates Tg. SANS data showed that CAE has more pronounced membrane thickening effect as compared to cholesterol. The cationic liposomes showed slightly improved cytotoxicity in three different cell lines and improved endothelial cell migration inhibition compared to conventional liposomes. Furthermore, the COMET assay showed that CAE alone does not show any genotoxicity. CONCLUSIONS The novel cationic ligand (CAE) retains paclitaxel within the phospholipid bilayer and helps in improved drug loading and physical stability. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jasmin Monpara
- Department of Pharmaceutical Sciences and Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Institute of Chemical Technology, Mumbai, 400019, India
| | - Chryso Kanthou
- Tumor Microcirculation Group, Department of Oncology & Metabolism School of Medicine, The University of Sheffield, Sheffield, UK
| | - Gillian M Tozer
- Tumor Microcirculation Group, Department of Oncology & Metabolism School of Medicine, The University of Sheffield, Sheffield, UK
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
29
|
McCully M, Sánchez-Navarro M, Teixidó M, Giralt E. Peptide Mediated Brain Delivery of Nano- and Submicroparticles: A Synergistic Approach. Curr Pharm Des 2018; 24:1366-1376. [PMID: 29205110 PMCID: PMC6110044 DOI: 10.2174/1381612824666171201115126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
Abstract
The brain is a complex, regulated organ with a highly controlled access mechanism: The Blood-Brain Barrier (BBB). The selectivity of this barrier is a double-edged sword, being both its greatest strength and weakness. This weakness is evident when trying to target therapeutics against diseases within the brain. Diseases such as metastatic brain cancer have extremely poor prognosis due to the poor permeability of many therapeutics across the BBB. Peptides can be designed to target BBB receptors and gain access to the brain by transcytosis. These peptides (known as BBB-shuttles) can carry compounds, usually excluded from the brain, across the BBB. BBB-shuttles are limited by poor loading of therapeutics and degradation of the peptide and cargo. Likewise, nano- submicro- and microparticles can be fine-tuned to limit their degradation and with high loading of therapeutics. However, most nano- and microparticles' core materials completely lack efficient targeting, with a few selected materials able to cross the BBB passively. Combining the selectivity of peptides with the high loading potential of nano-, microparticles offers an exciting strategy to develop novel, targeted therapeutics towards many brain disorders and diseases. Nevertheless, at present the field is diverse, in both scope and nomenclature, often with competing or contradictory names. In this review, we will try to address some of these issues and evaluate the current state of peptide mediated nano,-microparticle transport to the brain, analyzing delivery vehicle type and peptide design, the two key components that must act synergistically for optimal therapeutic impact.
Collapse
Affiliation(s)
| | | | - Meritxell Teixidó
- Address correspondence to these authors at the Institute for Research in Biomedicine, Baldiri Reixac 10, 08028 Barcelona, Spain; Tel/Fax: +34 93 40 37125 0; E-mails: ;
| | - Ernest Giralt
- Address correspondence to these authors at the Institute for Research in Biomedicine, Baldiri Reixac 10, 08028 Barcelona, Spain; Tel/Fax: +34 93 40 37125 0; E-mails: ;
| |
Collapse
|
30
|
Nishimura T, Yamada A, Umezaki K, Sawada SI, Mukai SA, Sasaki Y, Akiyoshi K. Self-Assembled Polypeptide Nanogels with Enzymatically Transformable Surface as a Small Interfering RNA Delivery Platform. Biomacromolecules 2017; 18:3913-3923. [PMID: 29059529 DOI: 10.1021/acs.biomac.7b00937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tomoki Nishimura
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Akina Yamada
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kaori Umezaki
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shin-ichi Sawada
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atsu Mukai
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Yoshihiro Sasaki
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
31
|
De M, Ghosh S, Sen T, Shadab M, Banerjee I, Basu S, Ali N. A Novel Therapeutic Strategy for Cancer Using Phosphatidylserine Targeting Stearylamine-Bearing Cationic Liposomes. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:9-27. [PMID: 29499959 PMCID: PMC5723379 DOI: 10.1016/j.omtn.2017.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
There is a pressing need for a ubiquitously expressed antigen or receptor on the tumor surface for successful mitigation of the deleterious side effects of chemotherapy. Phosphatidylserine (PS), normally constrained to the intracellular surface, is exposed on the external surface of tumors and most tumorigenic cell lines. Here we report that a novel PS-targeting liposome, phosphatidylcholine-stearylamine (PC-SA), induced apoptosis and showed potent anticancer effects as a single agent against a majority of cancer cell lines. We experimentally proved that this was due to a strong affinity for and direct interaction of these liposomes with PS. Complexation of the chemotherapeutic drugs doxorubicin and camptothecin in these vesicles demonstrated a manyfold enhancement in the efficacies of the drugs both in vitro and across three advanced tumor models without any signs of toxicity. Both free and drug-loaded liposomes were maximally confined to the tumor site with low tissue concentration. These data indicate that PC-SA is a unique and promising liposome that, alone and as a combination therapy, has anticancer potential across a wide range of cancer types.
Collapse
Affiliation(s)
- Manjarika De
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sneha Ghosh
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Triparna Sen
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Md Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Indranil Banerjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Santanu Basu
- Department of Oncology, ESI Hospital, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
| |
Collapse
|
32
|
Zhu Q, Pan X, Sun Y, Wang Z, Liu F, Li A, Zhao Z, Wang Y, Li K, Mi L. Biological nanoparticles carrying the Hmda-7 gene are effective in inhibiting pancreatic cancer in vitro and in vivo. PLoS One 2017; 12:e0185507. [PMID: 28985230 PMCID: PMC5630125 DOI: 10.1371/journal.pone.0185507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Objectives Pancreatic cancer is one of the most common malignancies of the digestive system, and remains a clinical challenge. This study aimed to assess the effects of bovine serum albumin (BSA) nanoparticles carrying the hMDA-7 gene (BSA-NP-hMDA-7) in the treatment of pancreatic cancer. Methods BSA-NP-hMDA-7 was generated by nanotechnology and gene recombination technology. A total of 5 BXPC-3 or PANC-1 pancreatic cancer cell groups were examined, including Control, BSA-NPs, Empty vector, hMDA-7 plasmid, and hMDA-7 BSA-NPs groups, respectively. Proliferation and apoptosis of cultured cells were assessed by the MTT method and flow-cytometry, respectively. In addition, pancreatic cancer models were established with both cell lines in nude mice, and the expression profiles of hMDA-7 and VEGF in cancer tissues were measured by Western blot and immunohistochemistry. Results BSA-NP-hMDA-7 nanoparticles were successfully generated, and significantly inhibited the proliferation of BXPC-3 and PANC-1 cells; in addition, apoptosis rates were higher in both cell lines after treatment with BSA-NP-hMDA-7 (P<0.05). Nude mouse xenograft studies indicated that treatment with BSA-NP-hMDA-7 nanoparticles resulted in decreased tumor size. Moreover, the hMDA-7 protein was found in tumor tissues after hMDA-7 gene transfection, while BSA-NP-hMDA-7 significantly suppressed VEGF expression in tumor tissues. Similar results were obtained for both BXPC-3 and PANC-1 xenograft models. Conclusion BSA nanoparticles carrying the hMDA-7 gene effectively transfected BXPC-3 and PANC-1 pancreatic cancer cells, causing reduced cell proliferation and enhanced apoptosis in vitro. In mouse xenografts, BSA-NP-hMDA-7 treatment decreased tumor size and reduced VEGF expression. These findings indicated that BSA-NP-hMDA-7 might exert anticancer effects via VEGF suppression.
Collapse
Affiliation(s)
- Qingyun Zhu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinting Pan
- The Affiliated Hospital of Qingdao University, Qingdao, China
- * E-mail:
| | - Yunbo Sun
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhengbin Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fuguo Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiqin Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhihui Zhao
- Nano New Material Key Laboratories of Qingdao University, Qingdao, China
| | - Yunlong Wang
- Nano New Material Key Laboratories of Qingdao University, Qingdao, China
| | - Kun Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liangyu Mi
- Department of ICU, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Luo D, Geng J, Li N, Carter KA, Shao S, Atilla-Gokcumen GE, Lovell JF. Vessel-Targeted Chemophototherapy with Cationic Porphyrin-Phospholipid Liposomes. Mol Cancer Ther 2017; 16:2452-2461. [PMID: 28729400 DOI: 10.1158/1535-7163.mct-17-0276] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/02/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022]
Abstract
Cationic liposomes have been used for targeted drug delivery to tumor blood vessels, via mechanisms that are not fully elucidated. Doxorubicin (Dox)-loaded liposomes were prepared that incorporate a cationic lipid; 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), along with a small amount of porphyrin-phospholipid (PoP). Near-infrared (NIR) light caused release of entrapped Dox via PoP-mediated DOTAP photo-oxidation. The formulation was optimized to enable extremely rapid NIR light-triggered Dox release (i.e., in 15 seconds), while retaining reasonable serum stability. In vitro, cationic PoP liposomes readily bound to both MIA PaCa-2 human pancreatic cancer cells and human vascular endothelial cells. When administered intravenously, cationic PoP liposomes were cleared from circulation within minutes, with most accumulation in the liver and spleen. Fluorescence imaging revealed that some cationic PoP liposomes also localized at the tumor blood vessels. Compared with analogous neutral liposomes, strong tumor photoablation was induced with a single treatment of cationic PoP liposomes and laser irradiation (5 mg/kg Dox and 100 J/cm2 NIR light). Unexpectedly, empty cationic PoP liposomes (lacking Dox) induced equally potent antitumor phototherapeutic effects as the drug loaded ones. A more balanced chemo- and phototherapeutic response was subsequently achieved when antitumor studies were repeated using higher drug dosing (7 mg/kg Dox) and a low fluence phototreatment (20 J/cm2 NIR light). These results demonstrate the feasibility of vessel-targeted chemophototherapy using cationic PoP liposomes and also illustrate synergistic considerations. Mol Cancer Ther; 16(11); 2452-61. ©2017 AACR.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Nasi Li
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York.
| |
Collapse
|
34
|
Yin X, Chi Y, Guo C, Feng S, Liu J, Sun K, Wu Z. Chitooligosaccharides Modified Reduction-Sensitive Liposomes: Enhanced Cytoplasmic Drug Delivery and Osteosarcomas-Tumor Inhibition in Animal Models. Pharm Res 2017; 34:2172-2184. [DOI: 10.1007/s11095-017-2225-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023]
|
35
|
Muzzalupo R, Pérez L, Pinazo A, Tavano L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. Int J Pharm 2017; 529:245-252. [PMID: 28668583 DOI: 10.1016/j.ijpharm.2017.06.083] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022]
Abstract
The natural capability shown by cationic vesicles in interacting with negatively charged surfaces or biomolecules has recently attracted increased interest. Important pharmacological advantages include the selective targeting of the tumour vasculature, the promotion of permeation across cell membranes, as well as the influence of cationic vesicles on drug delivery. Accordingly, cationic amphiphiles derived from amino acids may represent an alternative to traditional synthetic cationic surfactants due to their lower cytotoxicity. The importance of a synthesized lysine-based gemini surfactant (labelledC6(LL)2) was evaluated in drug delivery by designing cationic niosomes as usable pharmaceutical tools of chemotherapeutics and antibiotics, respectively like methotrexate and tetracycline. The influence of formulation factors on the vesicles' physical-chemical properties, drug entrapment efficiency, in vitro release and ex-vivo skin permeation were investigated. A niosomal gel containing the gemini surfactant was also tested as a viable multi-component topical formulation. Results indicate that in the presence of cholesterol, C6(LL)2 was able to form stable and nanosized niosomes, loading hydrophilic or hydrophobic molecules. Furthermore, in vitro release studies and ex-vivo permeation profiles showed that C6(LL)2-based vesicles behave as sustained and controlled delivery systems in the case of parenteral administration, and as drug percutaneous permeation enhancers after topical application. Finally, cationic C6(LL)2 acts as a carrier constituent, conferring peculiar and interesting functionality to the final formulation.
Collapse
Affiliation(s)
- Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy
| | - Lourdes Pérez
- Department of Chemical and Surfactants Technology, IQACCSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Aurora Pinazo
- Department of Chemical and Surfactants Technology, IQACCSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lorena Tavano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Ed. Polifunzionale, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
36
|
Suchaoin W, Mahmood A, Netsomboon K, Bernkop-Schnürch A. Zeta-potential-changing nanoparticles conjugated with cell-penetrating peptides for enhanced transfection efficiency. Nanomedicine (Lond) 2017; 12:963-975. [DOI: 10.2217/nnm-2016-0345] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study was to develop zeta-potential-changing nanoparticles (NPs) combining cell-penetrating peptides for gene delivery. Methods & materials: NPs were formed using phosphorylated carboxymethyl cellulose–glucosamine 6-phosphate (CMC–G6P) and polyethylene imine–polyarginine conjugates. Phosphate release was evaluated using intestinal alkaline phosphatase and cell lines. Transfection studies with plasmid DNA were then performed. Results: The zeta potential of CMC-G6P/branched PEI NPs was -3 mV and switched to +4 mV after intestinal alkaline phosphatase cleavage. The released phosphate in human colon adenocarcinoma cell line was more pronounced than human embryonic kidney cell line 293. Transfection studies demonstrated the greatest expression of plasmid DNA when being incorporated into CMC–G6P/polyethylene imine–polyarginine NPs. Conclusion: Novel zeta potential changing NPs combining cell-penetrating peptides are a promising tool to deliver DNA drugs to target cells.
Collapse
Affiliation(s)
- Wongsakorn Suchaoin
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Arshad Mahmood
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Kesinee Netsomboon
- Faculty of Pharmacy, Thammasat University, Rungsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
37
|
Multi-functional vesicles for cancer therapy: The ultimate magic bullet. Colloids Surf B Biointerfaces 2016; 147:161-171. [DOI: 10.1016/j.colsurfb.2016.07.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023]
|
38
|
Obaid G, Broekgaarden M, Bulin AL, Huang HC, Kuriakose J, Liu J, Hasan T. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology. NANOSCALE 2016; 8:12471-503. [PMID: 27328309 PMCID: PMC4956486 DOI: 10.1039/c5nr08691d] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As clinical nanomedicine has emerged over the past two decades, phototherapeutic advancements using nanotechnology have also evolved and impacted disease management. Because of unique features attributable to the light activation process of molecules, photonanomedicine (PNM) holds significant promise as a personalized, image-guided therapeutic approach for cancer and non-cancer pathologies. The convergence of advanced photochemical therapies such as photodynamic therapy (PDT) and imaging modalities with sophisticated nanotechnologies is enabling the ongoing evolution of fundamental PNM formulations, such as Visudyne®, into progressive forward-looking platforms that integrate theranostics (therapeutics and diagnostics), molecular selectivity, the spatiotemporally controlled release of synergistic therapeutics, along with regulated, sustained drug dosing. Considering that the envisioned goal of these integrated platforms is proving to be realistic, this review will discuss how PNM has evolved over the years as a preclinical and clinical amalgamation of nanotechnology with PDT. The encouraging investigations that emphasize the potent synergy between photochemistry and nanotherapeutics, in addition to the growing realization of the value of these multi-faceted theranostic nanoplatforms, will assist in driving PNM formulations into mainstream oncological clinical practice as a necessary tool in the medical armamentarium.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tayyaba Hasan
- Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Science and Technology, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Itakura S, Hama S, Matsui R, Kogure K. Effective cytoplasmic release of siRNA from liposomal carriers by controlling the electrostatic interaction of siRNA with a charge-invertible peptide, in response to cytoplasmic pH. NANOSCALE 2016; 8:10649-10658. [PMID: 27145993 DOI: 10.1039/c5nr08365f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is effectively released via electrostatic repulsion of siRNA with negatively charged SAPSP at cytoplasmic pH (7.4). The condensed complex of siRNA and positively-charged SAPSP at acidic pH (siRNA/SAPSP) was found to result in almost complete release of siRNA upon charge inversion of SAPSP at pH 7.4, with the resultant negatively-charged SAPSP having no undesirable interactions with endogenous mRNA. Moreover, liposomes encapsulating siRNA/SAPSP demonstrated knockdown efficiencies comparable to those of commercially available siRNA carriers. Taken together, SAPSP may be very useful as a siRNA condenser, as it facilitates effective cytoplasmic release of siRNA, and subsequent induction of specific RNAi effects.
Collapse
Affiliation(s)
- Shoko Itakura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Susumu Hama
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Ryo Matsui
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Kentaro Kogure
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
40
|
Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials 2016; 94:9-19. [PMID: 27088406 DOI: 10.1016/j.biomaterials.2016.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 01/23/2023]
Abstract
Chemotherapy resistance has become a major challenge in the clinical treatment of lung cancer which is the leading cancer type for the estimated deaths. Recent studies have shown that nanoparticles as drug carriers can raise intracellular drug concentration by achieving effectively cellular uptake and rapid drug release, and therefore reverse the acquired chemoresistance of tumors. In this context, nanoparticles-based chemotherapy represents a promising strategy for treating malignancies with chemoresistance. In the present study, we developed cationic lipid assisted nanoparticles (CLAN) to deliver polylactide-cisplatin prodrugs to drug resistant lung cancer cells. The nanoparticles were formulated through self-assembly of a biodegradable poly(ethylene glycol)-block-poly(lactide) (PEG-PLA), a hydrophobic polylactide-cisplatin prodrug, and a cationic lipid. The cationic nanoparticles were proven to significantly improve cell uptake of cisplatin, leading to an increased DNA-Pt adduct and significantly promoted DNA damage in vitro. Moreover, our study reveals that cationic nanoparticles, although are slightly inferior in blood circulation and tumor accumulation, are more effective in blood vessel extravasation. The CLANs ultimately enhances the cellular drug availability and leads to the reversal of cisplatin resistance.
Collapse
|
41
|
Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. NANOMATERIALS 2015; 5:1163-1180. [PMID: 28347058 PMCID: PMC5304638 DOI: 10.3390/nano5031163] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022]
Abstract
Nanoparticles are emerging as a useful tool for a wide variety of biomedical, consumer and instrumental applications that include drug delivery systems, biosensors and environmental sensors. In particular, nanoparticles have been shown to offer greater specificity with enhanced bioavailability and less detrimental side effects as compared to the existing conventional therapies in nanomedicine. Hence, bionanotechnology has been receiving immense attention in recent years. However, despite the extensive use of nanoparticles today, there is still a limited understanding of nanoparticle-mediated toxicity. Both in vivo and in vitro studies have shown that nanoparticles are closely associated with toxicity by increasing intracellular reactive oxygen species (ROS) levels and/or the levels of pro-inflammatory mediators. The homeostatic redox state of the host becomes disrupted upon ROS induction by nanoparticles. Nanoparticles are also known to up-regulate the transcription of various pro-inflammatory genes, including tumor necrosis factor-α and IL (interleukins)-1, IL-6 and IL-8, by activating nuclear factor-kappa B (NF-κB) signaling. These sequential molecular and cellular events are known to cause oxidative stress, followed by severe cellular genotoxicity and then programmed cell death. However, the exact molecular mechanisms underlying nanotoxicity are not fully understood. This lack of knowledge is a significant impediment in the use of nanoparticles in vivo. In this review, we will provide an assessment of signaling pathways that are involved in the nanoparticle- induced oxidative stress and propose possible strategies to circumvent nanotoxicity.
Collapse
Affiliation(s)
- Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Cynthia Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117 597, Singapore.
| |
Collapse
|
42
|
Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J Control Release 2015; 206:67-74. [DOI: 10.1016/j.jconrel.2015.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
|
43
|
Cationic liposomes evoke proinflammatory mediator release and neutrophil extracellular traps (NETs) toward human neutrophils. Colloids Surf B Biointerfaces 2015; 128:119-126. [DOI: 10.1016/j.colsurfb.2015.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/10/2023]
|
44
|
Itakura S, Hama S, Ohgita T, Kogure K. Development of nanoparticles incorporating a novel liposomal membrane destabilization peptide for efficient release of cargos into cancer cells. PLoS One 2014; 9:e111181. [PMID: 25343714 PMCID: PMC4208851 DOI: 10.1371/journal.pone.0111181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/26/2014] [Indexed: 01/21/2023] Open
Abstract
In anti-cancer therapy mediated by a nanoparticle-based drug delivery system (DDS), overall efficacy depends on the release efficiency of cargos from the nanoparticles in the cancer cells as well as the specificity of delivery to tumor tissue. However, conventional liposome-based DDS have no mechanism for specifically releasing the encapsulated cargos inside the cancer cells. To overcome this barrier, we developed nanoparticles containing a novel liposomal membrane destabilization peptide (LMDP) that can destabilize membranes by cleavage with intramembranous proteases on/in cancer cells. Calcein encapsulated in liposomes modified with LMDP (LMDP-lipo) was effectively released in the presence of a membrane fraction containing an LMDP-cleavable protease. The release was inhibited by a protease inhibitor, suggesting that LMDP-lipo could effectively release its cargo into cells in response to a cancer-specific protease. Moreover, when LMDP-lipo contained fusogenic lipids, the release of cargo was accelerated, suggesting that the fusion of LMDP-lipo with cellular membranes was the initial step in the intracellular delivery. Time-lapse microscopic observations showed that the release of cargo from LMDP-lipo occurred immediately after association of LMDP-lipo with target cells. Consequently, LMDP-lipo could be a useful nanoparticle capable of effective release of cargos specifically into targeted cancer cells.
Collapse
Affiliation(s)
- Shoko Itakura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Susumu Hama
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kentaro Kogure
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
45
|
Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomedicine 2014; 9:4387-98. [PMID: 25258529 PMCID: PMC4172103 DOI: 10.2147/ijn.s49297] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.
Collapse
Affiliation(s)
- Barbara Kneidl
- Department of Internal Medicine III, University Hospital Munich, Germany ; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Michael Peller
- Institute for Clinical Radiology, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Lars H Lindner
- Department of Internal Medicine III, University Hospital Munich, Germany
| | - Martin Hossann
- Department of Internal Medicine III, University Hospital Munich, Germany
| |
Collapse
|
46
|
Yue PJ, He L, Qiu SW, Li Y, Liao YJ, Li XP, Xie D, Peng Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol Cancer 2014; 13:191. [PMID: 25128329 PMCID: PMC4137094 DOI: 10.1186/1476-4598-13-191] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 08/08/2014] [Indexed: 12/31/2022] Open
Abstract
Background The successful gene delivery into the brain is a major challenge due to the presence of the blood–brain barrier (BBB). In order to transport plasmid DNA across the BBB and target the brain glioma, the PEGylated liposomes (PLs) modified with OX26 and chlorotoxin (CTX) were developed as a dual-targeting gene delivery system, and the therapeutic efficacy of OX26/CTX-PL/pC27 against glioma was evaluated using in vitro and in vivo experimental models. Methods The PEGylated liposome complexes were prepared by the reverse phase evaporation method, and their physicochemical properties were examined. The transfection efficiency, intracellular distribution, in vitro effects of OX26/CTX-PL/pC27 were determined on C6, F98 and HEK293T cell lines. The dual-targeting therapeutic efficacy of OX26/CTX-PL/pC27 against glioma were assessed using the BMVECs/C6 cells co-culture model and the rat orthotopic glioma model. Results The OX26/CTX-PL/pDNA complexes exhibited a subglobose shape, and possessed notably low toxicities to HEK293T and C6 cells post 4 h incubation. In the in vitro transfection experiment, gene expressions of hTERTC27 from C6 and F98 cells were significantly improved by OX26 and CTX modification. Our in vitro results also showed that OX26 endowed the PLs with the transport ability across the BBB. Using the BMVECs/C6 cells co-culture model, the viability of C6 cells was decreased to 46.0% after OX26/CTX-PL/pC27 transfection. The OX26/CTX-PL/pC27 complexes exhibited enhanced therapeutic effects on C6 cells. Moreover, the dual-targeting therapeutic effects were further conformed with diminished tumor volumes (18.81 ± 6.15 mm3) and extended median survival time (46 days) in C6 glioma-bearing rats. Immunohistochemical analysis revealed the therapeutic effects derived from enhanced hTERTC27 expression in the tumor site. Conclusions The PEGylated liposomes modified with OX26 and CTX are able to significantly promote cell transfection, increase the transport of plasmid DNA across the BBB and afterwards target the brain glioma cells in vitro and in vivo, exhibit the most significant therapeutic efficacy. The ligand OX26 plays a critical role in transporting the lipoplexes across the BBB, and CTX acts as a major role in targeting brain glioma cells. The results would encourage further developments for non-invasive targeting therapy of brain gliomas by intravenous injection. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-191) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, NO,107, Yan Jiang Xi Road of Guangzhou, Guangzhou 510120, China.
| |
Collapse
|
47
|
Karami L, Jalili S. Effects of cholesterol concentration on the interaction of cytarabine with lipid membranes: a molecular dynamics simulation study. J Biomol Struct Dyn 2014; 33:1254-68. [PMID: 25068451 DOI: 10.1080/07391102.2014.941936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Liposomal cytarabine, DepoCyt, is a chemotherapy agent which is used in cancer treatment. This form of cytarabine has more efficacy and fewer side effects relative to the other forms. Since DepoCyt contains the cytarabine encapsulated within phosphatidylcholine and the sterol molecules, we modeled dioleoylphosphatidylcholine (DOPC)/cholesterol bilayer membrane as a carrier for cytarabine to study drug-bilayer interactions. For this purpose, we performed a series of united-atom molecular dynamics (MD) simulations for 25 ns to investigate the interactions between cytarabine and cholesterol-containing DOPC lipid bilayers. Only the uncharged form of cytarabine molecule was investigated. In this study, different levels of the cholesterol content (0, 20, and 40%) were used. MD simulations allowed us to determine dynamical and structural properties of the bilayer membrane and to estimate the preferred location and orientation of the cytarabine molecule inside the bilayer membrane. Properties such as membrane thickness, area per lipid, diffusion coefficient, mass density, bilayer packing, order parameters, and intermolecular interactions were examined. The results show that by increasing the cholesterol concentration in the lipid bilayers, the bilayer thickness increases and area per lipid decreases. Moreover, in accordance with the experiments, our calculations show that cholesterol molecules have ordering effect on the hydrocarbon acyl chains. Furthermore, the cytarabine molecule preferentially occupies the polar region of the lipid head groups to form specific interactions (hydrogen bonds). Our results fully support the experimental data. Our finding about drug-bilayer interaction is crucial for the liposomal drug design.
Collapse
Affiliation(s)
- Leila Karami
- a Department of Chemistry , K.N. Toosi University of Technology , P. O. Box 15875-4416, Tehran , Iran
| | | |
Collapse
|
48
|
Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, Wilke C, Piccart M. A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 2014; 25:824-831. [PMID: 24667715 DOI: 10.1093/annonc/mdu025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND EndoTAG-1, composed of paclitaxel embedded in liposomal membranes targeting tumor endothelial cells, was evaluated for safety and efficacy in advanced triple-negative breast cancer (TNBC). PATIENTS AND METHODS One hundred and forty patients were treated with weekly EndoTAG-1 (22 mg/m(2)) plus paclitaxel (70 mg/m(2)), twice weekly EndoTAG-1 (2× 44 mg/m(2)), or weekly paclitaxel (90 mg/m(2)) for greater than or equal to four cycles (3-week treatment + 1-week rest) or until progression/toxicity. Primary end point was progression-free survival (PFS) rate evaluated centrally after four cycles of therapy (week 16). The study was not powered for intergroup comparisons. RESULTS The PFS rate at week 16 was 59.1% [one-sided 95% CI: 45.6, ∞] on combination treatment, 34.2% [21.6, ∞] on EndoTAG-1, and 48.0% [30.5, ∞] on paclitaxel. Median PFS reached 4.2, 3.4, and 3.7 months, respectively. After complete treatment (week 41 analysis), median overall survival (OS) was 13.0, 11.9, and 13.1 months for the modified Intention-to-Treat (ITT) population and 15.1, 12.5, and 8.9 months for the per-protocol population, respectively. The clinical benefit rate was 53%, 31%, and 36% for the treatment groups. Safety analysis revealed known toxicities of the drugs with slight increases of grade 3/4 neutropenia on combination therapy. CONCLUSION Treatment of advanced TNBC with a combination of EndoTAG-1 and standard paclitaxel [Taxol® (Bristol-Myers Squibb GmbH), or equivalent generic formulation] was well tolerated and showed antitumor efficacy. The positive trend needs to be confirmed in a randomized phase III trial. STUDY REGISTRATION European Clinical Trials Database: EudraCT number 2006-002221-23. ClinicalTrials.gov identifier: NCT00448305.
Collapse
Affiliation(s)
- A Awada
- Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium.
| | - I N Bondarenko
- Dnepropetrovsk State Medical Academy, Dnepropetrovsk, Ukraine
| | - J Bonneterre
- Oscar Lambret Center of Fight Against Cancer, Lille, France
| | - E Nowara
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - J M Ferrero
- Antoine Lacassagne Center of Fight Against Cancer, Nice, France
| | - A V Bakshi
- Kaushalya Medical Foundation, Thane, India
| | - C Wilke
- Medigene AG, Martinsried, Germany
| | - M Piccart
- Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
49
|
Teo BM, van der Westen R, Hosta-Rigau L, Städler B. Cell response to PEGylated poly(dopamine) coated liposomes considering shear stress. Biochim Biophys Acta Gen Subj 2013; 1830:4838-47. [DOI: 10.1016/j.bbagen.2013.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022]
|
50
|
Gonçalves G, Vila M, Portolés MT, Vallet-Regi M, Gracio J, Marques PAAP. Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv Healthc Mater 2013; 2:1072-90. [PMID: 23526812 DOI: 10.1002/adhm.201300023] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 11/09/2022]
Abstract
Nano-GO is a graphene derivative with a 2D atomic layer of sp² bonded carbon atoms in hexagonal conformation together with sp³ domains with carbon atoms linked to oxygen functional groups. The supremacy of nano-GO resides essentially in its own intrinsic chemical and physical structure, which confers an extraordinary chemical versatility, high aspect ratio and unusual physical properties. The chemical versatility of nano-GO arises from the oxygen functional groups on the carbon structure that make possible its relatively easy functionalization, under mild conditions, with organic molecules or biological structures in covalent or non-covalent linkage. The synergistic effects resulting from the assembly of well-defined structures at nano-GO surface, in addition to its intrinsic optical, mechanical and electronic properties, allow the development of new multifunctional hybrid materials with a high potential in multimodal cancer therapy. Herein, a comprehensive review of the fundamental properties of nano-GO requirements for cancer therapy and the first developments of nano-GO as a platform for this purpose is presented.
Collapse
Affiliation(s)
- Gil Gonçalves
- TEMA-NRD, Mechanical Engineering Department and Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|