1
|
Kutumova EO, Akberdin IR, Egorova VS, Kolesova EP, Parodi A, Pokrovsky VS, Zamyatnin, Jr AA, Kolpakov FA. Physiologically based pharmacokinetic model for predicting the biodistribution of albumin nanoparticles after induction and recovery from acute lung injury. Heliyon 2024; 10:e30962. [PMID: 38803942 PMCID: PMC11128879 DOI: 10.1016/j.heliyon.2024.e30962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The application of nanomedicine in the treatment of acute lung injury (ALI) has great potential for the development of new therapeutic strategies. To gain insight into the kinetics of nanocarrier distribution upon time-dependent changes in tissue permeability after ALI induction in mice, we developed a physiologically based pharmacokinetic model for albumin nanoparticles (ANP). The model was calibrated using data from mice treated with intraperitoneal LPS (6 mg/kg), followed by intravenous ANP (0.5 mg/mouse or about 20.8 mg/kg) at 0.5, 6, and 24 h. The simulation results reproduced the experimental observations and indicated that the accumulation of ANP in the lungs increased, reaching a peak 6 h after LPS injury, whereas it decreased in the liver, kidney, and spleen. The model predicted that LPS caused an immediate (within the first 30 min) dramatic increase in lung and kidney tissue permeability, whereas splenic tissue permeability gradually increased over 24 h after LPS injection. This information can be used to design new therapies targeting specific organs affected by bacterial infections and potentially by other inflammatory insults.
Collapse
Affiliation(s)
- Elena O. Kutumova
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Vera S. Egorova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Ekaterina P. Kolesova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Alessandro Parodi
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin Medical Research Center of Oncology, 115522, Moscow, Russia
- Patrice Lumumba People's Friendship University, 117198, Moscow, Russia
| | - Andrey A. Zamyatnin, Jr
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Fedor A. Kolpakov
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| |
Collapse
|
2
|
Cen H, Sun M, Zheng B, Peng W, Wen Q, Lin Z, Zhang X, Zhou N, Zhu G, Yu X, Zhang L, Liang L. Hyaluronic acid modified nanocarriers for aerosolized delivery of verteporfin in the treatment of acute lung injury. Int J Biol Macromol 2024; 267:131386. [PMID: 38582458 DOI: 10.1016/j.ijbiomac.2024.131386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.
Collapse
Affiliation(s)
- Huiyu Cen
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Mingna Sun
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Bingyu Zheng
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weijie Peng
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiqi Wen
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhongxiao Lin
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau
| | - Guanxiong Zhu
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China; Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, PR China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Lingmin Zhang
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Lu Liang
- The Fifth Affiliated Hospital, Guangdong Province, NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
3
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
4
|
Zhang J, Guo Y, Mak M, Tao Z. Translational medicine for acute lung injury. J Transl Med 2024; 22:25. [PMID: 38183140 PMCID: PMC10768317 DOI: 10.1186/s12967-023-04828-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Acute lung injury (ALI) is a complex disease with numerous causes. This review begins with a discussion of disease development from direct or indirect pulmonary insults, as well as varied pathogenesis. The heterogeneous nature of ALI is then elaborated upon, including its epidemiology, clinical manifestations, potential biomarkers, and genetic contributions. Although no medication is currently approved for this devastating illness, supportive care and pharmacological intervention for ALI treatment are summarized, followed by an assessment of the pathophysiological gap between human ALI and animal models. Lastly, current research progress on advanced nanomedicines for ALI therapeutics in preclinical and clinical settings is reviewed, demonstrating new opportunities towards developing an effective treatment for ALI.
Collapse
Affiliation(s)
- Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yumeng Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA
| | - Zhimin Tao
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Cases A. Glucagon-like peptide 1(GLP-1) receptor agonists in the management of the patient with type 2diabetes mellitus and chronic kidney disease: an approach for the nephrologist. Nefrologia 2023; 43:399-412. [PMID: 37813741 DOI: 10.1016/j.nefroe.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 10/11/2023] Open
Abstract
Diabetic kidney disease, a common complication in patients with type 2 diabetes mellitus, is associated with a markedly increased morbidity and mortality, especially of cardiovascular origin, and faster progression to end-stage renal disease. To date, reducing cardiovascular and renal risk in this population was based on strict control of cardiovascular risk factors and the renin-angiotensin system blockade. More recently, sodium-glucose cotransporter type 2 inhibitors have demonstrated to offer cardiovascular and renal protection, but the residual risk remains high and their antihyperglycemic efficacy is limited in moderate-severe CKD. Therefore, drugs with a potent antihyperglycemic effect, independent of the glomerular filtration rate, with a low risk of hypoglycemia, that reduce weight in overweight/obese patients and that provide cardiovascular and renal protection, such as GLP-1 receptor agonists, are needed. However, these drugs require subcutaneous administration, which may limit their early use. The recent availability of oral semaglutide may facilitate the early introduction of this family with proven cardiovascular and renal benefits and excellent safety profile. In this review the family is analyzed as well as their cardiovascular and renal effects.
Collapse
Affiliation(s)
- Aleix Cases
- Departament de Medicina, Facultat de Medicina, Campus Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Ji Y, Sun L, Liu Y, Li Y, Li T, Gong J, Liu X, Ma H, Wang J, Chen B, Fung SY, Yang H. Dual Functioned Hexapeptide-Coated Lipid-Core Nanomicelles Suppress Toll-Like Receptor-Mediated Inflammatory Responses through Endotoxin Scavenging and Endosomal pH Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301230. [PMID: 37078808 DOI: 10.1002/advs.202301230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Excessive activation of Toll-like receptor (TLR) signaling pathways and the circulating endotoxin are key players in the pathogenesis of many acute and chronic inflammatory diseases. Regulation of TLR-mediated inflammatory responses by bioactive nanodevices represents a promising strategy for treating these diseases. In searching for novel, clinically applicable nanodevices with potent TLR inhibitory activities, three types of hexapeptide-modified nano-hybrids with different cores of phospholipid nanomicelles, liposomes, and poly(lactic-co-glycolic acid) nanoparticles are constructed. Interestingly, only the peptide-modified lipid-core nanomicelles (M-P12) display potent TLR inhibitory activities. Further mechanistic studies disclose that lipid-core nanomicelles have a generic property to bind to and scavenge lipophilic TLR ligands including lipopolysaccharide to block the ligand-receptor interaction and down-regulate the TLR signaling extracellularly. In addition, the peptide modification enables M-P12 a unique capability to modulate endosomal acidification upon being endocytosed into macrophages, which subsequently regulates the endosomal TLR signal transduction. In an acute lung injury mouse model, intratracheal administration of M-P12 can effectively target lung macrophages and reduce lung inflammation and injuries. This work defines a dual mechanism of action of the peptide-modified lipid-core nanomicelles in regulating TLR signaling, and provides new strategies for the development of therapeutic nanodevices for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yuting Ji
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Liya Sun
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Yuan Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Yanhui Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Tongxuan Li
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Jiameng Gong
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Xiali Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Huiqiang Ma
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Jingying Wang
- Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Bing Chen
- Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Shan-Yu Fung
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| | - Hong Yang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, Tianjin Medical University, No. 22 Qixiangtai Road, Heping district, Tianjin, 300070, China
| |
Collapse
|
7
|
Balk-Møller E, Hebsgaard MMB, Lilleør NB, Møller CH, Gøtze JP, Kissow H. Glucagon-like peptide-1 stimulates acute secretion of pro-atrial natriuretic peptide from the isolated, perfused pig lung exposed to warm ischemia. FRONTIERS IN TRANSPLANTATION 2022; 1:1082634. [PMID: 38994393 PMCID: PMC11235333 DOI: 10.3389/frtra.2022.1082634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 07/13/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) has proven to be protective in animal models of lung disease but the underlying mechanisms are unclear. Atrial natriuretic peptide (ANP) is mainly produced in the heart. As ANP possesses potent vaso- and bronchodilatory effects in pulmonary disease, we hypothesised that the protective functions of GLP-1 could involve potentiation of local ANP secretion from the lung. We examined whether the GLP-1 receptor agonist liraglutide was able to improve oxygenation in lungs exposed to 2 h of warm ischemia and if liraglutide stimulated ANP secretion from the lungs in the porcine ex vivo lung perfusion (EVLP) model. Pigs were given a bolus of 40 µg/kg liraglutide or saline 1 h prior to sacrifice. The lungs were then left in vivo for 2 h, removed en bloc and placed in the EVLP machinery. Lungs from the liraglutide treated group were further exposed to liraglutide in the perfusion buffer (1.125 mg). Main endpoints were oxygenation capacity, and plasma and perfusate concentrations of proANP and inflammatory markers. Lung oxygenation capacity, plasma concentrations of proANP or concentrations of inflammatory markers were not different between groups. ProANP secretion from the isolated perfused lungs were markedly higher in the liraglutide treated group (area under curve for the first 30 min in the liraglutide group: 635 ± 237 vs. 38 ± 38 pmol/L x min in the saline group) (p < 0.05). From these results, we concluded that liraglutide potentiated local ANP secretion from the lungs.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathilde M. B. Hebsgaard
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj B. Lilleør
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian H. Møller
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens P. Gøtze
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
9
|
Curcumin-Encapsulated Nanomicelles Improve Cellular Uptake and Cytotoxicity in Cisplatin-Resistant Human Oral Cancer Cells. J Funct Biomater 2022; 13:jfb13040158. [PMID: 36278627 PMCID: PMC9589971 DOI: 10.3390/jfb13040158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer has a high mortality rate, which is mostly determined by the stage of the disease at the time of admission. Around half of all patients with oral cancer report with advanced illness. Hitherto, chemotherapy is preferred to treat oral cancer, but the emergence of resistance to anti-cancer drugs is likely to occur after a sequence of treatments. Curcumin is renowned for its anticancer potential but its marred water solubility and poor bioavailability limit its use in treating multidrug-resistant cancers. As part of this investigation, we prepared and characterized Curcumin nanomicelles (CUR-NMs) using DSPE-PEG-2000 and evaluated the anticancer properties of cisplatin-resistant cancer cell lines. The prepared CUR-NMs were sphere-shaped and unilamellar in structure, with a size of 32.60 ± 4.2 nm. CUR-NMs exhibited high entrapment efficiency (82.2%), entrapment content (147.96 µg/mL), and a mean zeta potential of −17.5ζ which is considered moderately stable. The cellular uptake and cytotoxicity studies revealed that CUR-NMs had significantly higher cytotoxicity and cellular uptake in cisplatin drug-resistant oral cancer cell lines and parental oral cancer cells compared to plain curcumin (CUR). The DAPI and FACS analysis corroborated a high percentage of apoptotic cells with CUR-NMs (31.14%) compared to neat CUR (19.72%) treatment. Conclusively, CUR-NMs can potentially be used as an alternative carrier system to improve the therapeutic effects of curcumin in the treatment of cisplatin-resistant human oral cancer.
Collapse
|
10
|
Agonistas del receptor de péptido similar al glucagón tipo 1 (GLP-1) en el manejo del paciente con diabetes mellitus tipo 2. Una aproximación para el nefrólogo. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Pang J, Feng JN, Ling W, Jin T. The anti-inflammatory feature of glucagon-like peptide-1 and its based diabetes drugs—Therapeutic potential exploration in lung injury. Acta Pharm Sin B 2022; 12:4040-4055. [PMID: 36386481 PMCID: PMC9643154 DOI: 10.1016/j.apsb.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Since 2005, GLP-1 receptor (GLP-1R) agonists (GLP-1RAs) have been developed as therapeutic agents for type 2 diabetes (T2D). GLP-1R is not only expressed in pancreatic islets but also other organs, especially the lung. However, controversy on extra-pancreatic GLP-1R expression still needs to be further resolved, utilizing different tools including the use of more reliable GLP-1R antibodies in immune-staining and co-immune-staining. Extra-pancreatic expression of GLP-1R has triggered extensive investigations on extra-pancreatic functions of GLP-1RAs, aiming to repurpose them into therapeutic agents for other disorders. Extensive studies have demonstrated promising anti-inflammatory features of GLP-1RAs. Whether those features are directly mediated by GLP-1R expressed in immune cells also remains controversial. Following a brief review on GLP-1 as an incretin hormone and the development of GLP-1RAs as therapeutic agents for T2D, we have summarized our current understanding of the anti-inflammatory features of GLP-1RAs and commented on the controversy on extra-pancreatic GLP-1R expression. The main part of this review is a literature discussion on GLP-1RA utilization in animal models with chronic airway diseases and acute lung injuries, including studies on the combined use of mesenchymal stem cell (MSC) based therapy. This is followed by a brief summary.
Collapse
|
12
|
Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential. Inflammation 2022; 45:2124-2141. [PMID: 35641717 PMCID: PMC9154210 DOI: 10.1007/s10753-022-01692-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by progressive lung impairment typically triggered by inflammatory processes. The mortality toll for ARDS/ALI yet remains high because of the poor prognosis, lack of disease-specific inflammation management therapies, and prolonged hospitalizations. The urgency for the development of new effective therapeutic strategies has become acutely evident for patients with coronavirus disease 2019 (COVID-19) who are highly susceptible to ARDS/ALI. We propose that the lack of target specificity in ARDS/ALI of current treatments is one of the reasons for poor patient outcomes. Unlike traditional therapeutics, nanomedicine offers precise drug targeting to inflamed tissues, the capacity to surmount pulmonary barriers, enhanced interactions with lung epithelium, and the potential to reduce off-target and systemic adverse effects. In this article, we focus on the key cellular drivers of inflammation in ARDS/ALI: macrophages. We propose that as macrophages are involved in the etiology of ARDS/ALI and regulate inflammatory cascades, they are a promising target for new therapeutic development. In this review, we offer a survey of multiple nanomedicines that are currently being investigated with promising macrophage targeting potential and strategies for pulmonary delivery. Specifically, we will focus on nanomedicines that have shown engagement with proinflammatory macrophage targets and have the potential to reduce inflammation and reverse tissue damage in ARDS/ALI.
Collapse
|
13
|
Liu D, Long M, Gao L, Chen Y, Li F, Shi Y, Gu N. Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/02/2025]
Abstract
AbstractThe respiratory system holds crucial importance in the biology of vertebrate animals. Injuries of the respiratory system caused by viral infections (e.g., by COVID‐19, MERS, and SARS) can lead to severe or lethal conditions. So far there are no effective treatments for respiratory injuries. This represents a highly unmet clinical need, e.g., during the current COVID‐19 pandemic. Nanomedicines have high potential in the treatment of respiratory injuries. In this review, the pathology and clinical treatments of major respiratory injuries, acute lung injury, and acute respiratory distress syndrome are briefly summarized. The review primarily focuses on nanomedicines based on liposomes, solid lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, which are tested in preclinical models for the treatment of respiratory injuries. These nanomedicines are utilized to deliver a variety of therapeutic agents, including corticosteroids, statins, and nucleic acids. Furthermore, nanomedicines are also investigated for other respiratory diseases including chronic obstructive pulmonary disease and asthma. The promising preclinical results of various nanoformulations from these studies suggest the potential of nanomedicines for future clinical management of respiratory viral infections and diseases.
Collapse
Affiliation(s)
- Dong Liu
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Mengmeng Long
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| | - Leilei Gao
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yanjun Chen
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Fang Li
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yang Shi
- Institute for Experimental Molecular Imaging Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering Faculty of Medicine RWTH Aachen University 52074 Aachen Germany
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| |
Collapse
|
14
|
Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. NANO-MICRO LETTERS 2021; 13:88. [PMID: 33717630 PMCID: PMC7938387 DOI: 10.1007/s40820-021-00598-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
Sepsis, a highly life-threatening organ dysfunction caused by uncontrollable immune responses to infection, is a leading contributor to mortality in intensive care units. Sepsis-related deaths have been reported to account for 19.7% of all global deaths. However, no effective and specific therapeutic for clinical sepsis management is available due to the complex pathogenesis. Concurrently eliminating infections and restoring immune homeostasis are regarded as the core strategies to manage sepsis. Sophisticated nanoplatforms guided by supramolecular and medicinal chemistry, targeting infection and/or imbalanced immune responses, have emerged as potent tools to combat sepsis by supporting more accurate diagnosis and precision treatment. Nanoplatforms can overcome the barriers faced by clinical strategies, including delayed diagnosis, drug resistance and incapacity to manage immune disorders. Here, we present a comprehensive review highlighting the pathogenetic characteristics of sepsis and future therapeutic concepts, summarizing the progress of these well-designed nanoplatforms in sepsis management and discussing the ongoing challenges and perspectives regarding future potential therapies. Based on these state-of-the-art studies, this review will advance multidisciplinary collaboration and drive clinical translation to remedy sepsis.
Collapse
Affiliation(s)
- Gan Luo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Jue Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Ya Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Hanbin Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| |
Collapse
|
15
|
Kim S, Kim SY, Rho SJ, Kim SH, Song SH, Kim CH, Lee H, Kim SK. Biocompatible N-acetyl-nanoconstruct alleviates lipopolysaccharide-induced acute lung injury in vivo. Sci Rep 2021; 11:22662. [PMID: 34811378 PMCID: PMC8608841 DOI: 10.1038/s41598-021-01624-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays important roles in inflammatory responses during acute lung injury (ALI). Recently, nanoconstruct (Nano)-based drug-delivery systems have shown promise in many models of inflammation. In this study, we evaluated the anti-inflammatory effects of N-acetylcysteine (NAC) loaded in a biocompatible Nano using a rat model of ALI. We synthesized a Nano with a good NAC-releasing capacity using porous silica Nano, which was used to produce Nano/NAC complexes. For in vivo experiments, Sprague–Dawley rats were intraperitoneally administered NAC or Nano/NAC 30 min after intratracheal instillation of lipopolysaccharide. After 6 h, bronchoalveolar lavage fluids and lung tissues were collected. The anti-oxidative effect of the Nano/NAC complex was confirmed by demonstrating reduced levels of reactive oxygen species after treatment with the Nano/NAC in vitro. In vivo experiments also showed that the Nano/NAC treatment may protect against LPS‐induced ALI thorough anti‐oxidative and anti‐inflammatory effects, which may be attributed to the inactivation of the NF‐κB and MAPK pathways. In addition, the effects of Nano/NAC treatment were shown to be superior to those of NAC alone. We suggest the therapeutic potential of Nano/NAC treatment as an anti‐inflammatory agent against ALI. Furthermore, our study can provide basic data for developing nanotechnology-based pharmacotherapeutics for ALI.
Collapse
Affiliation(s)
- Seongchan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Shin Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea
| | - Seung Joon Rho
- Research Institute of Medical Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Seung Hoon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea
| | - So Hyang Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea
| | - Chi Hong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea
| | - Hyojin Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - Sung Kyoung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea.
| |
Collapse
|
16
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
17
|
Muhammad W, Zhai Z, Wang S, Gao C. Inflammation-modulating nanoparticles for pneumonia therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1763. [PMID: 34713969 DOI: 10.1002/wnan.1763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Pneumonia is a common but serious infectious disease, and is the sixth leading cause for death. The foreign pathogens such as viruses, fungi, and bacteria establish an inflammation response after interaction with lung, leading to the filling of bronchioles and alveoli with fluids. Although the pharmacotherapies have shown their great effectiveness to combat pathogens, advanced methods are under developing to treat complicated cases such as virus-infection and lung inflammation or acute lung injury (ALI). The inflammation modulation nanoparticles (NPs) can effectively suppress immune cells and inhibit inflammatory molecules in the lung site, and thereby alleviate pneumonia and ALI. In this review, the pathological inflammatory microenvironments in pneumonia, which are instructive for the design of biomaterials therapy, are summarized. The focus is then paid to the inflammation-modulating NPs that modulate the inflammatory cells, cytokines and chemokines, and microenvironments of pneumonia for better therapeutic effects. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Prasanna P, Rathee S, Upadhyay A, Sulakshana S. Nanotherapeutics in the treatment of acute respiratory distress syndrome. Life Sci 2021; 276:119428. [PMID: 33785346 PMCID: PMC7999693 DOI: 10.1016/j.lfs.2021.119428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a form of oxygenation failure primarily characterized by rapid inflammation resulting from a direct pulmonary or indirect systemic insult. ARDS has been a major cause of death in the recent COVID-19 outbreak wherein asymptomatic respiratory tract infection progresses to ARDS from pneumonia have emphasized the need for a reliable therapy for the disease. The disease has a high mortality rate of approximately 30-50%. Despite the high mortality rate, a dearth of effective pharmacotherapy exists that demands extensive research in this area. The complex ARDS pathophysiology which remains to be understood completely and the multifactorial etiology of the disease has led to the poor diagnosis, impeded drug-delivery to the deeper pulmonary tissues, and delayed treatment of the ARDS patients. Besides, critically ill patients are unable to tolerate the off-target side effects. The vast domain of nanobiotechnology presents several drug delivery systems offering numerous benefits such as targeted delivery, prolonged drug release, and uniform drug-distribution. The present review presents a brief insight into the ARDS pathophysiology and summarizes conventional pharmacotherapies available to date. Furthermore, the review provides an updated report of major developments in the nanomedicinal approaches for the treatment of ARDS. We also discuss different nano-formulations studied extensively in the ARDS preclinical models along with underlining the advantages as well as challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Arun Upadhyay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sulakshana Sulakshana
- Department of Anesthesiology and Critical Care, Sri Ram Murti Smarak Institute of Medical Sciences (SRMS-IMS), Bareilly, Uttar Pradesh 243202, India.
| |
Collapse
|
19
|
Balk-Møller E, Windeløv JA, Svendsen B, Hunt J, Ghiasi SM, Sørensen CM, Holst JJ, Kissow H. Glucagon-Like Peptide 1 and Atrial Natriuretic Peptide in a Female Mouse Model of Obstructive Pulmonary Disease. J Endocr Soc 2019; 4:bvz034. [PMID: 32010874 PMCID: PMC6984785 DOI: 10.1210/jendso/bvz034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is protective in lung disease models but the underlying mechanisms remain elusive. Because the hormone atrial natriuretic peptide (ANP) also has beneficial effects in lung disease, we hypothesized that GLP-1 effects may be mediated by ANP expression. To study this putative link, we used a mouse model of chronic obstructive pulmonary disease (COPD) and assessed lung function by unrestrained whole-body plethysmography. In 1 study, we investigated the role of endogenous GLP-1 by genetic GLP-1 receptor (GLP-1R) knockout (KO) and pharmaceutical blockade of the GLP-1R with the antagonist exendin-9 to -39 (EX-9). In another study the effects of exogenous GLP-1 were assessed. Lastly, we investigated the bronchodilatory properties of ANP and a GLP-1R agonist on isolated bronchial sections from healthy and COPD mice. Lung function did not differ between mice receiving phosphate-buffered saline (PBS) and EX-9 or between GLP-1R KO mice and their wild-type littermates. The COPD mice receiving GLP-1R agonist improved pulmonary function (P < .01) with less inflammation, but no less emphysema compared to PBS-treated mice. Compared with the PBS-treated mice, treatment with GLP-1 agonist increased ANP (nppa) gene expression by 10-fold (P < .01) and decreased endothelin-1 (P < .01), a peptide associated with bronchoconstriction. ANP had moderate bronchodilatory effects in isolated bronchial sections and GLP-1R agonist also showed bronchodilatory properties but less than ANP. Responses to both peptides were significantly increased in COPD mice (P < .05, P < .01). Taken together, our study suggests a link between GLP-1 and ANP in COPD.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section for Cell Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Mehlin Sørensen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Fang G, Zhang Q, Pang Y, Thu HE, Hussain Z. Nanomedicines for improved targetability to inflamed synovium for treatment of rheumatoid arthritis: Multi-functionalization as an emerging strategy to optimize therapeutic efficacy. J Control Release 2019; 303:181-208. [DOI: 10.1016/j.jconrel.2019.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
|
21
|
Abstract
Sterically stabilized micelle (SSM) is a self-assembled nanoparticle ideal for the delivery of therapeutic peptides. The PEGylated phospholipid forming the particle, DSPE-PEG2000, is a safe, biocompatible, and biodegradable ingredient already approved for human use in the marketed product Doxil®. SSM can overcome formulation difficulties such as instability associated with peptide drugs, enabling their development for clinical application. The key advantage of this lipid-based nanocarrier is its simple preparation even at large scales, which allows easy transition to the clinics and the pharmaceutical market. In this chapter, we describe methods for preparation and characterization of peptides self-associated with SSM (peptide-SSM). We also discuss approaches to evaluate the biological activity of the peptide nanomedicines in vitro and in vivo.
Collapse
Affiliation(s)
- Karina Esparza
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dulari Jayawardena
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Hayat Onyuksel
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Jayawardena D, Anbazhagan AN, Guzman G, Dudeja PK, Onyuksel H. Vasoactive Intestinal Peptide Nanomedicine for the Management of Inflammatory Bowel Disease. Mol Pharm 2017; 14:3698-3708. [PMID: 28991483 DOI: 10.1021/acs.molpharmaceut.7b00452] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the intestine, with increasing incidence worldwide. At present, the management of IBD is an unmet medical need due to the ineffectiveness of currently available drugs in treating all patients, and there is strong demand for novel therapeutics. In this regard, vasoactive intestinal peptide, a potent anti-inflammatory endogenous hormone, has shown promise in managing multiple immune disorders in animal models. However, when administered in the free form, VIP undergoes rapid degradation in vivo, and with continuous infusion, it causes severe dose limiting side effects. To overcome these barriers, we have developed a superior mode to deliver VIP in its native form, using sterically stabilized micelles (VIP-SSM). Our previous studies demonstrated that, VIP, when administered in SSM, prevented joint damage and inflammation in a mouse model of rheumatoid arthritis at a significantly lower dose than the free peptide, completely abrogating the serious side effect of hypotension associated with VIP. In the current study, we demonstrate the therapeutic benefit of VIP-SSM over free peptide in reversing severe colitis associated with IBD. First, we conducted preliminary studies with dextran sulfate sodium (DSS) induced colitis in mice, to determine the effectiveness of VIP administered on alternate days in reducing disease severity. Thereafter, a single intra peritoneal injection of VIP-SSM or the free peptide was used to determine its therapeutic effect on the reversal of colitis and associated diarrhea. The results demonstrated that when administered on alternate days, both VIP-SSM and VIP were capable of alleviating DSS colitis in mice. However, when administered as a single dose, in a therapeutic setting, VIP-SSM showed superior benefits compared to the free peptide in ameliorating colitis phenotype. Namely, the loss of solid fecal pellets and increased fluid accumulation in colon resulting from DSS insult was abrogated in VIP-SSM treated mice and not with free VIP. Furthermore, reduced protein and mRNA levels of the major chloride bicarbonate exchanger, down regulated in adenoma (DRA), seen with DSS was reversed with VIP-SSM, but not with the free peptide. Similarly, VIP-SSM treatment significantly reduced the elevated mRNA levels of pro-inflammatory cytokines and showed significant histologic recovery when compared to mice treated with free VIP. Therefore, these results demonstrated that as a single dose, the anti-inflammatory and antidiarrheal effects of VIP can be achieved effectively when administered as a nanomedicine. Therefore, we propose VIP-SSM to be developed as a potential therapeutic tool for treating ulcerative colitis, a type of IBD.
Collapse
Affiliation(s)
| | | | | | - Pradeep K Dudeja
- Jesse Brown VA Medical Center , Chicago Illinois 60612, United States
| | | |
Collapse
|
23
|
Han J, Fei Y, Zhou F, Chen X, Zheng W, Fu J. Micellar Nanomedicine of Novel Fatty Acid Modified Xenopus Glucagon-like Peptide-1: Improved Physicochemical Characteristics and Therapeutic Utilities for Type 2 Diabetes. Mol Pharm 2017; 14:3954-3967. [DOI: 10.1021/acs.molpharmaceut.7b00632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jing Han
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yingying Fei
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Feng Zhou
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xinyu Chen
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Weiwei Zheng
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Junjie Fu
- Department
of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
24
|
Sadikot RT, Kolanjiyil AV, Kleinstreuer C, Rubinstein I. Nanomedicine for Treatment of Acute Lung Injury and Acute Respiratory Distress Syndrome. Biomed Hub 2017; 2:1-12. [PMID: 31988911 PMCID: PMC6945951 DOI: 10.1159/000477086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/24/2017] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ARDS) represent a heterogenous group of lung disease in critically ill patients that continues to have high mortality. Despite the increased understanding of the molecular pathogenesis of ARDS, specific targeted treatments for ARDS have yet to be developed. ARDS represents an unmet medical need with an urgency to develop effective pharmacotherapies. Multiple promising targets have been identified that could lead to the development of potential therapies for ARDS; however, they have been limited because of difficulty with the mode of delivery, especially in critically ill patients. Nanobiotechnology is the basis of innovative techniques to deliver drugs targeted to the site of inflamed organs, such as the lungs. Nanoscale drug delivery systems have the ability to improve the pharmacokinetics and pharmacodynamics of agents, allowing an increase in the biodistribution of therapeutic agents to target organs and resulting in improved efficacy with reduction in drug toxicity. Although attractive, delivering nanomedicine to lungs can be challenging as it requires sophisticated systems. Here we review the potential of novel nanomedicine approaches that may prove to be therapeutically beneficial for the treatment of this devastating condition.
Collapse
Affiliation(s)
- Ruxana T Sadikot
- Department of Veterans Affairs, Atlanta VAMC, Atlanta, GA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arun V Kolanjiyil
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.,Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| | - Clement Kleinstreuer
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.,Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
| | - Israel Rubinstein
- Division of Pulmonary, Critical Care Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Veterans Affairs, Jesse Brown VAMC, Chicago, IL, USA
| |
Collapse
|
25
|
Hu W, Mao A, Wong P, Larsen A, Yazaki PJ, Wong JYC, Shively JE. Characterization of 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[Methoxy(polyethylene glycerol)-2000] and Its Complex with Doxorubicin Using Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics. Bioconjug Chem 2017; 28:1777-1790. [PMID: 28520406 PMCID: PMC8802905 DOI: 10.1021/acs.bioconjchem.7b00238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyethylene glycol (PEG) lipid nanoparticles (LNPs) spontaneously assemble in water, forming uniformly sized nanoparticles incorporating drugs with prolonged blood clearance compared to drugs alone. Previously, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycerol)-2000] (DSPE-PEG2000) and several drug adducts, including doxorubicin, were analyzed by a combination of physical and molecular dynamic (MD) studies. In this study, a complete chemical shift assignment of DSPE-PEG2000 plus or minus doxorubicin was achieved using nuclear magnetic resonance (NMR), one-dimensional selective nuclear Overhauser spectroscopy (1D-selNOESY), NOESY, correlation spectroscopy (COSY), total correlated spectroscopy (TOCSY), heteronuclear single quantum coherence (HSQC), and HSQC-TOCSY. Chemical shift perturbation, titration, relaxation enhancement, and NOESY analysis combined with MD reveal detailed structural information at the atomic level, including the location of doxorubicin in the micelle, its binding constant, the hydrophilic shell organization, and the mobility of the PEG2000 tail, demonstrating that NMR spectroscopy can characterize drug-DSPE-PEG2000 micelles with molecular weights above 180 kDa. The MD study revealed that an initial spherical organization led to a more-disorganized oblate structure in an aqueous environment and agreed with the NMR study in the details of the fine structure, in which methyl group(s) of the stearic acid in the hydrophobic core of the micelle are in contact with the phosphate headgroup of the lipid. Although the molecular size of the LNP drug complex is about 180 kDa, atomic resolution can be achieved by NMR-based methods that reveal distinct features of the drug-lipid interactions. Because many drugs have unfavorable blood clearance that may benefit from incorporation into LNPs, a thorough knowledge of their physical and chemical properties is essential to moving them into a clinical setting. This study provides an advanced basic approach that can be used to study a wide range of drug-LNP interactions.
Collapse
Affiliation(s)
| | | | - Patty Wong
- Department of Radiation Oncology, City of Hope National Medical Center , Duarte, California 91010, United States
| | | | | | - Jeffrey Y C Wong
- Department of Radiation Oncology, City of Hope National Medical Center , Duarte, California 91010, United States
| | | |
Collapse
|
26
|
Anbazhagan AN, Thaqi M, Priyamvada S, Jayawardena D, Kumar A, Gujral T, Chatterjee I, Mugarza E, Saksena S, Onyuksel H, Dudeja PK. GLP-1 nanomedicine alleviates gut inflammation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:659-665. [PMID: 27553076 PMCID: PMC5501083 DOI: 10.1016/j.nano.2016.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 07/20/2016] [Accepted: 08/04/2016] [Indexed: 01/15/2023]
Abstract
The gut hormone, glucagon like peptide-1 (GLP-1) exerts anti-inflammatory effects. However, its clinical use is limited by its short half-life. Previously, we have shown that GLP-1 as a nanomedicine (GLP-1 in sterically stabilized phospholipid micelles, GLP-1-SSM) has increased in vivo stability. The current study was aimed at testing the efficacy of this GLP-1 nanomedicine in alleviating colonic inflammation and associated diarrhea in dextran sodium sulfate (DSS) induced mouse colitis model. Our results show that GLP-1-SSM treatment markedly alleviated the colitis phenotype by reducing the expression of pro-inflammatory cytokine IL-1β, increasing goblet cells and preserving intestinal epithelial architecture in colitis model. Further, GLP-1-SSM alleviated diarrhea (as assessed by luminal fluid) by increasing protein expression of intestinal chloride transporter DRA (down regulated in adenoma). Our results indicate that GLP-1 nanomedicine may act as a novel therapeutic tool in alleviating gut inflammation and associated diarrhea in inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Mentor Thaqi
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Shubha Priyamvada
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Dulari Jayawardena
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Anoop Kumar
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Tarunmeet Gujral
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Ishita Chatterjee
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Edurne Mugarza
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Seema Saksena
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Hayat Onyuksel
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Pradeep K Dudeja
- Department of Medicine, Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
27
|
Shi Y, Zhu H, Ren Y, Li K, Tian B, Han J, Feng D. Preparation of protein-loaded PEG-PLA micelles and the effects of ultrasonication on particle size. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-4002-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Corbi-Verge C, Garton M, Nim S, Kim PM. Strategies to Develop Inhibitors of Motif-Mediated Protein-Protein Interactions as Drug Leads. Annu Rev Pharmacol Toxicol 2016; 57:39-60. [PMID: 27618737 DOI: 10.1146/annurev-pharmtox-010716-104805] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions are fundamental for virtually all functions of the cell. A large fraction of these interactions involve short peptide motifs, and there has been increased interest in targeting them using peptide-based therapeutics. Peptides benefit from being specific, relatively safe, and easy to produce. They are also easy to modify using chemical synthesis and molecular biology techniques. However, significant challenges remain regarding the use of peptides as therapeutic agents. Identification of peptide motifs is difficult, and peptides typically display low cell permeability and sensitivity to enzymatic degradation. In this review, we outline the principal high-throughput methodologies for motif discovery and describe current methods for overcoming pharmacokinetic and bioavailability limitations.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Michael Garton
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , , .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
29
|
Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, Saulnier P. Lipid-based nanoformulations for peptide delivery. Int J Pharm 2016; 502:80-97. [DOI: 10.1016/j.ijpharm.2016.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
|
30
|
Cui X, Meng Q, Chu Y, Gu X, Tang Y, Zhou F, Fei Y, Fu J, Han J. Glucagon-like peptide-1 loaded phospholipid micelles for the treatment of type 2 diabetes: improved pharmacokinetic behaviours and prolonged glucose-lowering effects. RSC Adv 2016. [DOI: 10.1039/c6ra22648e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
GLP-1-SSM, a sterically stabilized GLP-1 in phospholipid micelles, exhibited improved hypoglycemic activity and long-acting antidiabetic ability.
Collapse
Affiliation(s)
- Xu Cui
- Department of Anesthesiology
- The Second People's Hospital of Lianyungang
- Lianyungang 222023
- PR China
| | - Qinghua Meng
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Yingying Chu
- Department of Chemistry
- Faculty of Natural Sciences
- Imperial College London
- London
- UK
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou 221004
- PR China
| | - Yan Tang
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Feng Zhou
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Yingying Fei
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| | - Junjie Fu
- Department of Medicinal Chemistry
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- PR China
| | - Jing Han
- School of Chemistry and Chemical Engineering
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- PR China
| |
Collapse
|
31
|
Yuan Z, Syed M, Panchal D, Joo M, Bedi C, Lim S, Onyuksel H, Rubinstein I, Colonna M, Sadikot RT. TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine. Am J Physiol Lung Cell Mol Physiol 2015; 310:L426-38. [PMID: 26684249 DOI: 10.1152/ajplung.00195.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Triggering receptors expressed on myeloid cell-1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells. Synergy between TREM-1 and Toll-like receptor amplifies the inflammatory response; however, the mechanisms by which TREM-1 accentuates inflammation are not fully understood. In this study, we investigated the role of TREM-1 in a model of LPS-induced lung injury and neutrophilic inflammation. We show that TREM-1 is induced in lungs of mice with LPS-induced acute neutrophilic inflammation. TREM-1 knockout mice showed an improved survival after lethal doses of LPS with an attenuated inflammatory response in the lungs. Deletion of TREM-1 gene resulted in significantly reduced neutrophils and proinflammatory cytokines and chemokines, particularly IL-1β, TNF-α, and IL-6. Physiologically deletion of TREM-1 conferred an immunometabolic advantage with low oxygen consumption rate (OCR) sparing the respiratory capacity of macrophages challenged with LPS. Furthermore, we show that TREM-1 deletion results in significant attenuation of expression of miR-155 in macrophages and lungs of mice treated with LPS. Experiments with antagomir-155 confirmed that TREM-1-mediated changes were indeed dependent on miR-155 and are mediated by downregulation of suppressor of cytokine signaling-1 (SOCS-1) a key miR-155 target. These data for the first time show that TREM-1 accentuates inflammatory response by inducing the expression of miR-155 in macrophages and suggest a novel mechanism by which TREM-1 signaling contributes to lung injury. Inhibition of TREM-1 using a nanomicellar approach resulted in ablation of neutrophilic inflammation suggesting that TREM-1 inhibition is a potential therapeutic target for neutrophilic lung inflammation and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Zhihong Yuan
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia; Division of Pulmonary and Critical Care Medicine, Emory University, Atlanta, Georgia
| | - Mansoor Syed
- Division of Pulmonary and Critical Medicine, Yale University, New Haven, Connecticut
| | - Dipti Panchal
- Division of Pulmonary and Critical Care Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Myungsoo Joo
- Department of Immunology, Pusan University, Yangsan, Korea
| | - Chetna Bedi
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Sokbee Lim
- School of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hayat Onyuksel
- School of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Israel Rubinstein
- Division of Pulmonary and Critical Care Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Veterans Affairs, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Ruxana T Sadikot
- Department of Veterans Affairs, Atlanta Veterans Affairs Medical Center, Decatur, Georgia; Division of Pulmonary and Critical Care Medicine, Emory University, Atlanta, Georgia;
| |
Collapse
|
32
|
Chung BL, Toth MJ, Kamaly N, Sei YJ, Becraft J, Mulder WJM, Fayad ZA, Farokhzad OC, Kim Y, Langer R. Nanomedicines for Endothelial Disorders. NANO TODAY 2015; 10:759-776. [PMID: 26955397 PMCID: PMC4778260 DOI: 10.1016/j.nantod.2015.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The endothelium lines the internal surfaces of blood and lymphatic vessels and has a critical role in maintaining homeostasis. Endothelial dysfunction is involved in the pathology of many diseases and conditions, including disorders such as diabetes, cardiovascular diseases, and cancer. Given this common etiology in a range of diseases, medicines targeting an impaired endothelium can strengthen the arsenal of therapeutics. Nanomedicine - the application of nanotechnology to healthcare - presents novel opportunities and potential for the treatment of diseases associated with an impaired endothelium. This review discusses therapies currently available for the treatment of these disorders and highlights the application of nanomedicine for the therapy of these major disease complications.
Collapse
Affiliation(s)
- Bomy Lee Chung
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
- Department of Chemical Engineering, Massachusetts Institute of Technology
| | - Michael J. Toth
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology (IEN), Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Georgia Institute of Technology
| | - Nazila Kamaly
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, Harvard Medical School
| | - Yoshitaka J. Sei
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology (IEN), Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Georgia Institute of Technology
| | - Jacob Becraft
- Department of Biological Engineering, Massachusetts Institute of Technology
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, Harvard Medical School
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology (IEN), Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Georgia Institute of Technology
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
- Department of Chemical Engineering, Massachusetts Institute of Technology
- Department of Biological Engineering, Massachusetts Institute of Technology
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology
| |
Collapse
|
33
|
Abstract
During the last decades increasing attention has been paid to peptides as potential therapeutics. However, clinical applications of peptide drugs suffer from susceptibility to degradation, rather short circulation half-life, limited ability to cross physiological barriers and potential immunogenicity. These challenges can be addressed by using polymeric materials as peptide delivery systems, owing to their versatile structures and properties. A number of polymer-based vehicles have been developed to stabilize the peptides and to control their release rates. Unfortunately, no single polymer or formulation strategy has been considered ideal for all types of peptide drugs. In this review, currently used and potential polymer-based systems for the peptide delivery will be discussed.
Collapse
|
34
|
Eastwood MP, Kampmeijer A, Jimenez J, Zia S, Vanbree R, Verbist G, Toelen J, Deprest JA. The Effect of Transplacental Administration of Glucagon-Like Peptide-1 on Fetal Lung Development in the Rabbit Model of Congenital Diaphragmatic Hernia. Fetal Diagn Ther 2015; 39:125-33. [DOI: 10.1159/000436962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/12/2015] [Indexed: 11/19/2022]
Abstract
Objective: Glucagon-like peptide-1 (GLP-1) increases surfactant protein expression in type 2 pneumocytes. Herein, we determine if transplacental GLP-1 treatment accelerates lung growth in the fetal rabbit model of congenital diaphragmatic hernia (DH). Methods: Time-mated does had an induction of DH on day 23 followed by daily GLP-1 or placebo injection until term. At that time, the does were weighed, fetal blood was obtained for GLP-1 assay, and the lungs were dissected. Fetal outcome measures were lung-to-body-weight ratio (LBWR), morphometry, and Ki67 and surfactant protein B (SPB) expression. Results: Maternal weight loss in the GLP-1 group was 7.1%. Fetal survival was lower in GLP-1 fetuses compared to placebo controls (27/85, 32% vs. 35/57, 61%; p < 0.05). Fetal GLP-1 levels were increased 3.6-fold. The LBWR of GLP-1 DH fetuses fell within the range of DH placebo fetuses (1.166 ± 0.207% vs. 1.312 ± 0.418%), being significantly lower than that of placebo-exposed unoperated fetuses (2.280 ± 0.522%; p < 0.001). GLP-1 did not improve airway morphometry. GLP-1 DH lungs had a reduced adventitial and medial thickness within the range of controls, and lesser muscularization of vessels measuring 30-60 µm. There were no differences in Ki67 and SPB expression. Conclusion: GLP-1 at this dosage improves peripheric pulmonary vessel morphology in intra-acinar vessels with no effect on airway morphometry but with significant maternal and fetal side effects. Thus, it is an unlikely medical strategy.
Collapse
|
35
|
Gülçür E, Thaqi M, Khaja F, Kuzmis A, Önyüksel H. Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells. Drug Deliv Transl Res 2015; 3. [PMID: 24363979 DOI: 10.1007/s13346-013-0167-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Breast cancer is a leading cause of cancer deaths among women in the US, with 40 % chance of relapse after treatment. Recent studies outline the role of cancer stem cells (CSCs) in tumor initiation, propagation, and regeneration of cancer. Moreover, it has been established that breast CSCs reside in a quiescent state that makes them more resistant to conventional cancer therapies than bulk cancer cells resulting in tumor relapse. In this study, we establish that CSCs are associated with the overexpression of vasoactive intestinal peptide (VIP) receptors which can be used to actively target these cells. We investigated the potential of using a novel curcumin nanomedicine (C-SSM) surface conjugated with VIP to target and hinder breast cancer with CSCs. Here, we formulated, characterized, and evaluated the feasibility of C-SSM nanomedicine in vitro. We investigated the cytotoxicity of C-SSM on breast cancer cells and CSCs by tumorsphere formation assay. Our results suggest that curcumin can be encapsulated in SSM up to 200 μg/ml with 1 mM lipid concentration. C-SSM nanomedicine is easy to prepare and maintains its original physicochemical properties after lyophilization, with an IC50 that is significantly improved from that of free curcumin (14.2±1.2 vs. 26.1±3.0 μM). Furthermore, C-SSM-VIP resulted in up to 20 % inhibition of tumorsphere formation at a dose of 5 μM. To this end, our findings demonstrate the feasibility of employing our actively targeted nanomedicine as a potential therapy for CSCs-enriched breast cancer.
Collapse
Affiliation(s)
- Ece Gülçür
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mentor Thaqi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Fatima Khaja
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Antonina Kuzmis
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hayat Önyüksel
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Biopharmaceutical Sciences (M/C 865) College of Pharmacy, University of Illinois at Chicago, 833 South Wood St., Chicago, IL 60612-7231, USA
| |
Collapse
|
36
|
Kaur K, Kush P, Pandey RS, Madan J, Jain UK, Katare OP. Stealth lipid coated aquasomes bearing recombinant human interferon-α-2b offered prolonged release and enhanced cytotoxicity in ovarian cancer cells. Biomed Pharmacother 2014; 69:267-76. [PMID: 25661369 DOI: 10.1016/j.biopha.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 12/26/2022] Open
Abstract
PURPOSE In present investigation, recombinant human interferon-α-2b (rhINF-α-2b) loaded aquasomes were prepared, optimized and overlaid with PEGylated phospholipid to offer prolong release and high therapeutic index against ovarian cancer, SKOV3 cells. METHODS AND RESULTS Central Composite Design (CCD) and Response Surface Methodology (RSM) were employed to calculate the optimized conditions, 1:3 core to coat ratio, sonication power of 12.5W and time of about 55min for preparation of aquasomes. Consequently, rhINF-α-2b-Py-5-P-Aq.somes exhibited higher protein loading capacity and retained structural conformations of rhINF-α-2b, as compared to rhINF-α-2b-Cellob-Aq.somes, rhINF-α-2b-Tre-Aq.somes and rhINF-α-2b-Core (CaHPO4). Further, optimized rhINF-α-2b-Py-5-P-Aq.somes was superimposed with phospholipid-PEG2000 to prolong the release pattern of rhINF-α-2b from aquasomes. The rhINF-α-2b-core (CaHPO4) released 97.3% of protein in 1h, while 95.3% of rhINF-α-2b was released by rhINF-α-2b-Tre-Aq.somes in 4h. Concurrently, rhINF-α-2b-Cellob-Aq.somes and rhINF-α-2b-Py-5-P-Aq.somes released 96.2% and 97.8% of rhINF-α-2b respectively in 6 and 8h. Ultimately, rhINF-α-2b-Py-5-P-Aq.somes-P-PEG2000 displayed evidence of its prolonged release pattern and released 98.1% of rhINF-α-2b in 336h. FT-IR and XRD substantiated the involvement of vigorous intermolecular hydrogen bonding and amorphous geometry in rhINF-α-2b-Py-5-P-Aq.somes. In last, rhINF-α-2b-Py-5-P-Aq.somes-P-PEG2000 exhibited the∼4.55, 1.92, 2.3, 2.8, and 3.84 fold reductions in IC50 as compared to free rhINF-α-2b, rhINF-α-2b-Py-5-P-Aq.somes, rhINF-α-2b-Cellob-Aq.somes, rhINF-α-2b-Tre-Aq.somes and rhINF-α-2b-Core (CaHPO4), respectively. CONCLUSION Therefore, rhINF-α-2b-Py-5-P-Aq.somes-P-PEG2000 warrant further in depth in vitro and in vivo antitumor study to scale up the technology for clinical intervention.
Collapse
Affiliation(s)
- Kamaljeet Kaur
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali (Panjab) India
| | - Preeti Kush
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali (Panjab) India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Jitender Madan
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali (Panjab) India.
| | - Upendra Kumar Jain
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali (Panjab) India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
37
|
Sadikot RT. The potential role of nano- and micro-technology in the management of critical illnesses. Adv Drug Deliv Rev 2014; 77:27-31. [PMID: 25204519 DOI: 10.1016/j.addr.2014.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/27/2014] [Accepted: 07/08/2014] [Indexed: 10/24/2022]
Abstract
In recent years nanomedicine has become an attractive concept for the targeted delivery of therapeutic and diagnostic compounds to injured or inflamed organs. Nanoscale drug delivery systems have the ability to improve the pharmacokinetics and increase the biodistribution of therapeutic agents to target organs, thereby resulting in improved efficacy and reduced drug toxicity. These systems are exploited for therapeutic purposes to carry the drug in the body in a controlled manner from the site of administration to the therapeutic target. The mortality in many of the critical illnesses such as sepsis and acute respiratory distress syndrome continues to remain high despite of an increased understanding of the molecular pathogenesis of these diseases. Several promising targets that have been identified as potential therapies for these devastating diseases have been limited because of difficulty with delivery systems. In particular, delivery of peptides, proteins, and miRNAs to the lung is an ongoing challenge. Hence, it is an attractive strategy to test potential targets by employing nanotechnology. Here some of the novel nanomedicine approaches that have been proposed and studied in recent years to facilitate the delivery of therapeutic agents in the setting of critical illnesses such as acute respiratory distress syndrome, sepsis and ventilator associated pneumonia are reviewed.
Collapse
|
38
|
Tanaka T, Higashijima Y, Wada T, Nangaku M. The potential for renoprotection with incretin-based drugs. Kidney Int 2014; 86:701-11. [PMID: 25007170 DOI: 10.1038/ki.2014.236] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/26/2014] [Accepted: 05/15/2014] [Indexed: 01/18/2023]
Abstract
Incretin-based drugs, i.e., glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are widely used for the treatment of type 2 diabetes. In addition to the primary role of incretins in stimulating insulin secretion from pancreatic β-cells, they have extra pancreatic functions beyond glycemic control. Indeed, recent studies highlight the potential beneficial effects of incretin-based therapy in diabetic kidney disease (DKD). Experimental studies using various diabetic models suggest that incretins protect the vascular endothelium from injury by binding to GLP-1 receptors, thereby ameliorating oxidative stress and the local inflammatory response, which reduces albuminuria and inhibits glomerular sclerosis. In addition, there is some evidence that GLP-1 receptor agonists and DPP-4 inhibitors mediate sodium excretion and diuresis to lower blood pressure. The pleiotropic actions of DPP-4 inhibitors are ascribed primarily to their effects on GLP-1 signaling, but other substrates of DPP-4, such as brain natriuretic peptide and stromal-derived factor-1α, may have roles. In this review, we summarize recent studies of the roles of incretin-based therapy in ameliorating DKD and its complications.
Collapse
Affiliation(s)
- Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Higashijima
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Zupančič Š, Kocbek P, Zariwala MG, Renshaw D, Gul MO, Elsaid Z, Taylor KMG, Somavarapu S. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation. Mol Pharm 2014; 11:2334-45. [PMID: 24852198 DOI: 10.1021/mp500003q] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin has potent antioxidant and anti-inflammatory properties but poor absorption following oral administration owing to its low aqueous solubility. Development of novel formulations to improve its in vivo efficacy is therefore challenging. In this study, formulation of curcumin-loaded DQAsomes (vesicles formed from the amphiphile, dequalinium) for pulmonary delivery is presented for the first time. The vesicles demonstrated mean hydrodynamic diameters between 170 and 200 nm, with a ζ potential of approximately +50 mV, high drug loading (up to 61%) and encapsulation efficiency (90%), resulting in enhanced curcumin aqueous solubility. Curcumin encapsulation in DQAsomes in the amorphous state was confirmed by X-ray diffraction and differential scanning calorimetry analysis. The existence of hydrogen bonds and cation-π interaction between curcumin and vesicle building blocks, namely dequalinium molecules, were shown in lyophilized DQAsomes using FT-IR analysis. Encapsulation of curcumin in DQAsomes enhanced the antioxidant activity of curcumin compared to free curcumin. DQAsome dispersion was successfully nebulized with the majority of the delivered dose deposited in the second stage of the twin-stage impinger. The vesicles showed potential for mitochondrial targeting. Curcumin-loaded DQAsomes thus represent a promising inhalation formulation with improved stability characteristics and mitochondrial targeting ability, indicating a novel approach for efficient curcumin delivery for effective treatment of acute lung injury and the rationale for future in vivo studies.
Collapse
Affiliation(s)
- Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Muralidharan P, Mallory E, Malapit M, Hayes D, Mansour HM. Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers. Pharmaceutics 2014; 6:333-53. [PMID: 24955820 PMCID: PMC4085602 DOI: 10.3390/pharmaceutics6020333] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/25/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022] Open
Abstract
Nanomedicine is making groundbreaking achievements in drug delivery. The versatility of nanoparticles has given rise to its use in respiratory delivery that includes inhalation aerosol delivery by the nasal route and the pulmonary route. Due to the unique features of the respiratory route, research in exploring the respiratory route for delivery of poorly absorbed and systemically unstable drugs has been increasing. The respiratory route has been successfully used for the delivery of macromolecules like proteins, peptides, and vaccines, and continues to be examined for use with small molecules, DNA, siRNA, and gene therapy. Phospholipid nanocarriers are an attractive drug delivery system for inhalation aerosol delivery in particular. Protecting these phospholipid nanocarriers from pulmonary immune system attack by surface modification by polyethylene glycol (PEG)ylation, enhancing mucopenetration by PEGylation, and sustaining drug release for controlled drug delivery are some of the advantages of PEGylated liposomal and proliposomal inhalation aerosol delivery. This review discusses the advantages of using PEGylated phospholipid nanocarriers and PEGylated therapeutics for respiratory delivery through the nasal and pulmonary routes as inhalation aerosols.
Collapse
Affiliation(s)
- Priya Muralidharan
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Evan Mallory
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Monica Malapit
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Don Hayes
- Lung and Heart-Lung Transplant Programs, Departments of Pediatrics and Internal Medicine, the Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Nathalie Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy; Université Libre de Bruxelles (ULB); Brussels Belgium
| | - Karim Amighi
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy; Université Libre de Bruxelles (ULB); Brussels Belgium
| |
Collapse
|
42
|
Abstract
Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration.
Collapse
|
43
|
Vuković L, Madriaga A, Kuzmis A, Banerjee A, Tang A, Tao K, Shah N, Král P, Onyuksel H. Solubilization of therapeutic agents in micellar nanomedicines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15747-15754. [PMID: 24283508 PMCID: PMC3962120 DOI: 10.1021/la403264w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We use atomistic molecular dynamics simulations to reveal the binding mechanisms of therapeutic agents in PEG-ylated micellar nanocarriers (SSM). In our experiments, SSM in buffer solutions can solubilize either ≈11 small bexarotene molecules or ≈6 (2 in low ionic strength buffer) human vasoactive intestinal peptide (VIP) molecules. Free energy calculations reveal that molecules of the poorly water-soluble drug bexarotene can reside at the micellar ionic interface of the PEG corona, with their polar ends pointing out. Alternatively, they can reside in the alkane core center, where several bexarotene molecules can self-stabilize by forming a cluster held together by a network of hydrogen bonds. We also show that highly charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the negatively charged phosphate headgroups of the lipids. The obtained results illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines.
Collapse
Affiliation(s)
- Lela Vuković
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Antonett Madriaga
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Antonina Kuzmis
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Amrita Banerjee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Alan Tang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Kevin Tao
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Neil Shah
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Hayat Onyuksel
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States
| |
Collapse
|
44
|
Tian Y, Chen J, Zahtabi F, Keijzer R, Xing M. Nanomedicine as an innovative therapeutic strategy for pediatric lung diseases. Pediatr Pulmonol 2013; 48:1098-111. [PMID: 23997035 DOI: 10.1002/ppul.22657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly emerging technology and represents an innovative field for therapy. Nanomaterials have intrinsically defined features for biomedical applications due to the high specific surface area, the amazing diversity, versatility in structure and function and the possibility of surface charge. In particular, the functionalization of targeting or stimuli-responsive unit on the surface of these materials gives them specific targeted therapeutic properties. There are many pediatric lung diseases that could potentially benefit from nanomedicine. Herein, we aim to review various drug carrier systems and release systems specifically targeting pediatric lung diseases. The injection of nanomedicine into in vivo models and their elimination will also be discussed. Finally, the potential toxicity of nanomaterials will be addressed.
Collapse
Affiliation(s)
- Ye Tian
- Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba; Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
45
|
Joo KW, Kim S, Ahn SY, Chin HJ, Chae DW, Lee J, Han JS, Na KY. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney. BMC Nephrol 2013; 14:98. [PMID: 23621921 PMCID: PMC3648384 DOI: 10.1186/1471-2369-14-98] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/24/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The inhibition of dipeptidyl peptidase (DPP) IV shows protective effects on tissue injury of the heart, lung, and kidney. Forkhead box O (FoxO) transcriptional factors regulate cellular differentiation, growth, survival, the cell cycle, metabolism, and oxidative stress. The aims of this study were to investigate whether the DPP IV inhibitor sitagliptin could attenuate kidney injury and to evaluate the status of FoxO3a signaling in the rat remnant kidney model. METHODS Rats were received two-step surgery of 5/6 renal mass reduction and fed on an oral dose of 200 mg/kg/day sitagliptin for 8 weeks. Before and after the administration of sitagliptin, physiologic parameters were measured. After 8 weeks of treatment, the kidneys were harvested. RESULTS The sitagliptin treatment attenuated renal dysfunction. A histological evaluation revealed that glomerulosclerosis and tubulointerstitial injury were significantly decreased by sitagliptin. Sitagliptin decreased DPP IV activity and increased the renal expression of glucagon-like peptide-1 receptor (GLP-1R). The subtotal nephrectomy led to the activation of phosphatidylinositol 3-kinase (PI3K)-Akt and FoxO3a phosphorylation, whereas sitagliptin treatment reversed these changes, resulting in PI3K-Akt pathway inactivation and FoxO3a dephosphorylation. The renal expression of catalase was increased and the phosphorylation of c-Jun N-terminal kinase (JNK) was decreased by sitagliptin. Sitagliptin treatment reduced apoptosis by decreasing cleaved caspase-3 and -9 and Bax levels and decreased macrophage infiltration. CONCLUSIONS In rat remnant kidneys, DPP IV inhibitor attenuated renal dysfunction and structural damage. A reduction of apoptosis, inflammation and an increase of antioxidant could be suggested as a renoprotective mechanism together with the activation of FoxO3a signaling. Therefore, DPP IV inhibitors might provide a promising approach for treating CKD, but their application in clinical practice remains to be investigated.
Collapse
Affiliation(s)
- Kwon Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm 2013; 10:728-38. [PMID: 23211088 DOI: 10.1021/mp300539f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite advances in rheumatoid arthritis (RA) treatment, efficacious and safe disease-modifying therapy still represents an unmet medical need. Here, we describe an innovative strategy to treat RA by targeting low doses of vasoactive intestinal peptide (VIP) self-associated with sterically stabilized micelles (SSMs). This spontaneous interaction of VIP with SSM protects the peptide from degradation or inactivation in biological fluids and prolongs circulation half-life. Treatment with targeted low doses of nanosized SSM-VIP but not free VIP in buffer significantly reduced the incidence and severity of arthritis in an experimental model, completely abrogating joint swelling and destruction of cartilage and bone. In addition, SSM associated VIP, unlike free VIP, had no side-effects on the systemic functions due to selective targeting to inflamed joints. Finally, low doses of VIP in SSM successfully downregulated both inflammatory and autoimmune components of RA. Collectively, our data clearly indicate that VIP-SSM should be developed to be used as a novel nanomedicine for the treatment of RA.
Collapse
Affiliation(s)
- Varun Sethi
- Department of Biopharmaceutical Sciences, Jesse Brown VA Medical Center, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
47
|
A novel peptide nanomedicine for treatment of pancreatogenic diabetes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:722-8. [PMID: 23347897 DOI: 10.1016/j.nano.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/26/2012] [Accepted: 12/31/2012] [Indexed: 01/25/2023]
Abstract
UNLABELLED Pancreatogenic diabetes (PD) is a potentially fatal disease that occurs secondary to pancreatic disorders. The current anti-diabetic therapy for PD is fraught with adverse effects that can increase morbidity. Here we investigated the efficacy of novel peptide nanomedicine: pancreatic polypeptide (PP) in sterically stabilized micelles (SSM) for management of PD. PP exhibits significant anti-diabetic efficacy but its short plasma half-life curtails its therapeutic application. To prolong and improve activity of PP in vivo, we evaluated the delivery of PP in SSM. PP-SSM administered to rats with PD, significantly improved glucose tolerance, insulin sensitivity and hepatic glycogen content compared to peptide in buffer. The studies established the importance of micellar nanocarriers in protecting enzyme-labile peptides in vivo and delivering them to target site, thereby enhancing their therapeutic efficacy. In summary, this study demonstrated that PP-SSM is a promising novel anti-diabetic nanomedicine and therefore should be further developed for management of PD. FROM THE CLINICAL EDITOR Pancreatic peptide was earlier demonstrated to address pancreatogenic diabetes, but its short half-life represented major difficulties in further development for therapeutic use. PP-SSM (pancreatic polypeptide in sterically stabilized micelles) is a promising novel anti-diabetic nanomedicine that enables prolonged half-life and increased bioactivity of PP, as shown in this novel study, paving the way toward clinical studies in the near future.
Collapse
|
48
|
Meenach SA, Vogt FG, Anderson KW, Hilt JZ, McGarry RC, Mansour HM. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int J Nanomedicine 2013; 8:275-93. [PMID: 23355776 PMCID: PMC3552552 DOI: 10.2147/ijn.s30724] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved.
Collapse
Affiliation(s)
- Samantha A Meenach
- Department of Pharmaceutical Sciences-Drug Development Division, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
49
|
Banerjee A, Onyuksel H. Peptide delivery using phospholipid micelles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:562-74. [PMID: 22847908 DOI: 10.1002/wnan.1185] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide based drugs are an important class of therapeutic agents but their development into commercial products is often hampered due to their inherent physico-chemical and biological instabilities. Phospholipid micelles can be used to address these delivery concerns. Peptides self-associate with micelles that serve to thwart the aggregation of these biomolecules. Self-association with micelles does not modify the peptide chemically; therefore the process does not denature or compromise the bioactivity of peptides. Additionally, many amphiphilic peptides adopt α-helical conformation in phospholipid micelles which is not only the most favorable conformation for receptor interaction but also improves their stability against proteolytic degradation, thus making them long-circulating. Furthermore, the nanosize of micelles enables passive targeting of peptides to the desired site of action through leaky vasculature present at tumor and inflamed tissues. All these factors alter the pharmacokinetic and biodistribution profiles of peptides therefore enhance their efficacy, reduce the dose required to obtain a therapeutic response and prevent adverse effects due to interaction of the peptide with receptors present in other physiological sites of the body. These phospholipid micelle based peptide nanomedicines can be easily scaled-up and lyophilized, thus setting the stage for further development of the formulation for clinical use. All things considered, it can be concluded that phospholipid micelles are a safe, stable and effective delivery option for peptide drugs and they form a great promise for future peptide nanomedicines.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
50
|
Banerjee A, Onyuksel H. Human pancreatic polypeptide in a phospholipid-based micellar formulation. Pharm Res 2012; 29:1698-711. [PMID: 22399387 DOI: 10.1007/s11095-012-0718-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/20/2012] [Indexed: 01/24/2023]
Abstract
PURPOSE Pancreatic polypeptide (PP) has important glucoregulatory functions and thereby holds significance in the treatment of diabetes and obesity. However, short plasma half-life and aggregation propensity of PP in aqueous solution, limits its therapeutic application. To address these issues, we prepared and characterized a formulation of PP in sterically stabilized micelles (SSM) that protects and stabilizes PP in its active conformation. METHODS PP-SSM was prepared by incubating PP with SSM dispersion in buffer. Peptide-micelle association and freeze-drying efficacy of the formulation was characterized in phosphate buffers with or without sodium chloride using dynamic light scattering, fluorescence spectroscopy and circular dichroism. The degradation kinetics of PP-SSM in presence of proteolytic enzyme was determined using HPLC and bioactivity of the formulation was evaluated by in vitro cAMP inhibition study. RESULTS PP self-associated with SSM and this interaction was influenced by presence/absence of sodium chloride in the buffer. The formulation was effectively lyophilized, demonstrating feasibility for its long-term storage. The stability of peptide against proteolytic degradation was significantly improved and PP in SSM retained its bioactivity in vitro. CONCLUSIONS Self-association of PP with phospholipid micelles addressed the delivery issues of the peptide. This nanomedicine should be further developed for the treatment of diabetes.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|