1
|
Rieck S, Sharma K, Altringer C, Hesse M, Triantafyllou C, Zhang Y, Busskamp V, Fleischmann BK. Forward programming of human induced pluripotent stem cells via the ETS variant transcription factor 2: rapid, reproducible, and cost-effective generation of highly enriched, functional endothelial cells. Cardiovasc Res 2024; 120:1472-1484. [PMID: 38916487 DOI: 10.1093/cvr/cvae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
AIMS Endothelial cell (EC) dysfunction plays a key role in the initiation and progression of cardiovascular disease. However, studying these disorders in ECs from patients is challenging; hence, the use of human induced pluripotent stem cells (hiPSCs) and their in vitro differentiation into ECs represents a very promising approach. Still, the generation of hiPSC-derived ECs (hECs) remains demanding as a cocktail of growth factors and an intermediate purification step are required for hEC enrichment. Therefore, we probed the utility of a forward programming approach using transgenic hiPSC lines. METHODS AND RESULTS We have used the transgenic hiPSC line PGP1 ETV2 isoform 2 to explore the in vitro differentiation of hECs via doxycycline-dependent induction of the ETS variant transcription factor 2 (ETV2) and compared these with a standard differentiation protocol for hECs using non-transgenic control hiPSCs. The transgenic hECs were highly enriched without an intermediate purification step and expressed-as non-transgenic hECs and human umbilical vein endothelial cells-characteristic EC markers. The viability and yield of transgenic hECs were strongly improved by applying EC growth medium during differentiation. This protocol was successfully applied in two more transgenic hiPSC lines yielding reproducible results with low line-to-line variability. Transgenic hECs displayed typical functional properties, such as tube formation and LDL uptake, and a more mature phenotype than non-transgenic hECs. Transgenic hiPSCs preferentially differentiated into the arterial lineage; this was further enhanced by adding a high concentration of vascular endothelial growth factor to the medium. We also demonstrate that complexing lentivirus with magnetic nanoparticles and application of a magnetic field enables efficient transduction of transgenic hECs. CONCLUSION We have established a highly efficient, cost-effective, and reproducible differentiation protocol for the generation of functional hECs via forward programming. The transgenic hECs can be genetically modified and are a powerful tool for disease modelling, tissue engineering, and translational purposes.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kritika Sharma
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Carlotta Altringer
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christos Triantafyllou
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Yanhui Zhang
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
2
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Local anti-angiogenic therapy by magnet-assisted downregulation of SHP2 phosphatase. J Control Release 2019; 305:155-164. [PMID: 31121282 DOI: 10.1016/j.jconrel.2019.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/22/2022]
Abstract
Anti-angiogenic therapies are promising options for diseases with enhanced vessel formation such as tumors or retinopathies. In most cases, a site-specific local effect on vessel growth is required, while the current focus on systemic distribution of angiogenesis inhibitors may cause severe unwanted side-effects. Therefore, in the current study we have developed an approach for the local inhibition of vascularization, using complexes of lentivirus and magnetic nanoparticles in combination with magnetic fields. Using this strategy in the murine embryonic stem cell (ESC) system, we were able to site-specifically downregulate the protein tyrosine phosphatase SHP2 by RNAi technology in areas with active vessel formation. This resulted in a reduction of vessel development, as shown by reduced vascular tube length, branching points and vascular loops. The anti-angiogenic effect could also be recapitulated in the dorsal skinfold chamber of mice in vivo. Here, site-specific downregulation of SHP2 reduced re-vascularization after wound induction. Thus, we have developed a magnet-assisted, RNAi-based strategy for the efficient local inhibition of angiogenesis in ESCs in vitro and also in vivo.
Collapse
|
4
|
Heun Y, Pircher J, Czermak T, Bluem P, Hupel G, Bohmer M, Kraemer BF, Pogoda K, Pfeifer A, Woernle M, Ribeiro A, Hübner M, Kreth S, Claus RA, Weis S, Ungelenk L, Krötz F, Pohl U, Mannell H. Inactivation of the tyrosine phosphatase SHP-2 drives vascular dysfunction in Sepsis. EBioMedicine 2019; 42:120-132. [PMID: 30905847 PMCID: PMC6491420 DOI: 10.1016/j.ebiom.2019.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Background Sepsis, the most severe form of infection, involves endothelial dysfunction which contributes to organ failure. To improve therapeutic prospects, elucidation of molecular mechanisms underlying endothelial vascular failure is of essence. Methods Polymicrobial contamination induced sepsis mouse model and primary endothelial cells incubated with sepsis serum were used to study SHP-2 in sepsis-induced endothelial inflammation. SHP-2 activity was assessed by dephosphorylation of pNPP, ROS production was measured by DCF oxidation and protein interactions were assessed by proximity ligation assay. Vascular inflammation was studied in the mouse cremaster model and in an in vitro flow assay. Findings We identified ROS-dependent inactivation of the tyrosine phosphatase SHP-2 to be decisive for endothelial activation in sepsis. Using in vivo and in vitro sepsis models, we observed a significant reduction of endothelial SHP-2 activity, accompanied by enhanced adhesion molecule expression. The impaired SHP-2 activity was restored by ROS inhibitors and an IL-1 receptor antagonist. SHP-2 activity inversely correlated with the adhesive phenotype of endothelial cells exposed to IL-1β as well as sepsis serum via p38 MAPK and NF-κB. In vivo, SHP-2 inhibition accelerated IL-1β-induced leukocyte adhesion, extravasation and vascular permeability. Mechanistically, SHP-2 directly interacts with the IL-1R1 adaptor protein MyD88 via its tyrosine 257, resulting in reduced binding of p85/PI3-K to MyD88. Interpretation Our data show that SHP-2 inactivation by ROS in sepsis releases a protective break, resulting in endothelial activation. Fund German Research Foundation, LMU Mentoring excellence and FöFoLe Programme, Verein zur Förderung von Wissenschaft und Forschung, German Ministry of Education and Research.
Collapse
Affiliation(s)
- Yvonn Heun
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, Munich 81377, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Czermak
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, Munich 81377, Germany
| | - Philipp Bluem
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Georg Hupel
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Monica Bohmer
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Bjoern F Kraemer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, Munich 81377, Germany
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center University of Bonn, Sigmund-Freud-Straße 25, Bonn 53105, Germany
| | - Markus Woernle
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr.1, Munich 80336, Germany
| | - Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr.1, Munich 80336, Germany
| | - Max Hübner
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Department of Anesthesiology, Klinikum der Universität München, Marchioninistraße 15, München 81377, Germany
| | - Simone Kreth
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Department of Anesthesiology, Klinikum der Universität München, Marchioninistraße 15, München 81377, Germany
| | - Ralf A Claus
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena 07747, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Luisa Ungelenk
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
| | - Florian Krötz
- Interventional Cardiology, Starnberg Community Hospital, Oßwaldstr. 1, Starnberg 82319, Germany
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, Munich, Germany; Munich Cluster for Systems Neurology, (SyNergy), Munich, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Marchioninistr 27, München 81377, Germany; Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, Planegg 82152, Germany; Hospital Pharmacy, University Hospital, Ludwig-Maximilians-University, Marchioninistraße 15, München 81377, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
5
|
Rajagopal P, Duraiswamy S, Sethuraman S, Giridhara Rao J, Krishnan UM. Polymer-coated viral vectors: hybrid nanosystems for gene therapy. J Gene Med 2018; 20:e3011. [PMID: 29423922 DOI: 10.1002/jgm.3011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 12/30/2022] Open
Abstract
The advantages and critical aspects of nanodimensional polymer-coated viral vector systems potentially applicable for gene delivery are reviewed. Various viral and nonviral vectors have been explored for gene therapy. Viral gene transfer methods, although highly efficient, are limited by their immunogenicity. Nonviral vectors have a lower transfection efficiency as a result of their inability to escape from the endosome. To overcome these drawbacks, novel nanotechnology-mediated interventions that involve the coating or modification of virus using polymers have emerged as a new paradigm in gene therapy. These alterations not only modify the tropism of the virus, but also reduce their undesirable interactions with the biological system. Also, co-encapsulation of other therapeutic agents in the polymeric coating may serve to augment the treatment efficacy. The viral particles can aid endosomal escape, as well as nuclear targeting, thereby enhancing the transfection efficiency. The integration of the desirable properties of both viral and nonviral vectors has been found beneficial for gene therapy by enhancing the transduction efficiency and minimizing the immune response. However, it is essential to ensure that these attempts should not compromise on the inherent ability of viruses to target and internalize into the cells and escape the endosomes.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Sowmiya Duraiswamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Jayandharan Giridhara Rao
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| |
Collapse
|
6
|
Borroni E, Miola M, Ferraris S, Ricci G, Žužek Rožman K, Kostevšek N, Catizone A, Rimondini L, Prat M, Verné E, Follenzi A. Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomater 2017; 59:303-316. [PMID: 28688987 DOI: 10.1016/j.actbio.2017.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023]
Abstract
Nanomaterials conjugated or complexed with biological moieties such as antibodies, polymers or peptides appear to be suitable not only for drug delivery but also for specific cancer treatment. Here, biocompatible iron oxide magnetic nanoparticles (MNPs) with or without a silica shell coupled with lentiviral vectors (LVs) are proposed as a combined therapeutic approach to specifically target gene expression in a cancer mouse model. Initially, four different MNPs were synthesized and their physical properties were characterized to establish and discriminate their behaviors. MNPs and LVs strictly interacted and transduced cells in vitro as well as in vivo, with no toxicity or inflammatory responses. By injecting LV-MNPs complexes intravenously, green fluorescent protein (GFP) resulted in a sustained long-term expression. Furthermore, by applying a magnetic field on the abdomen of intravenous injected mice, GFP positive cells increased in livers and spleens. In liver, LV-MNPs were able to target both hepatocytes and non-parenchymal cells, while in a mouse model with a grafted tumor, intra-tumor LV-MNPs injection and magnetic plaque application next to the tumor demonstrated the efficient uptake of LV-MNPs complexes with high number of transduced cells and iron accumulation in the tumor site. More important, LV-MNPs with the application of the magnetic plaque spread in all the tumor parenchyma and dissemination through the body was prevented confirming the efficient uptake of LV-MNPs complexes in the tumor. Thus, these LV-MNPs complexes could be used as multifunctional and efficient tools to selectively induce transgene expression in solid tumor for therapeutic purposes. STATEMENT OF SIGNIFICANCE Our study describes a novel approach of combining magnetic properties of nanomaterials with gene therapy. Magnetic nanoparticles (MNPs) coated with or without a silica shell coupled with lentiviral vectors (LVs) were used as vehicle to target biological active molecules in a mouse cancer model. After in situ injection, the presence of MNP under the magnetic field improve the vector distribution in the tumor mass and after systemic administration, the application of the magnetic field favor targeting of specific organs for LV transduction and specifically can direct LV in specific cells (or avoiding them). Thus, our findings suggest that LV-MNPs complexes could be used as multifunctional and efficient tools to selectively induce transgene expression in solid tumor for therapeutic purposes.
Collapse
|
7
|
Heun Y, Pogoda K, Anton M, Pircher J, Pfeifer A, Woernle M, Ribeiro A, Kameritsch P, Mykhaylyk O, Plank C, Kroetz F, Pohl U, Mannell H. HIF-1α Dependent Wound Healing Angiogenesis In Vivo Can Be Controlled by Site-Specific Lentiviral Magnetic Targeting of SHP-2. Mol Ther 2017; 25:1616-1627. [PMID: 28434868 DOI: 10.1016/j.ymthe.2017.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 11/26/2022] Open
Abstract
Hypoxia promotes vascularization by stabilization and activation of the hypoxia inducible factor 1α (HIF-1α), which constitutes a target for angiogenic gene therapy. However, gene therapy is hampered by low gene delivery efficiency and non-specific side effects. Here, we developed a gene transfer technique based on magnetic targeting of magnetic nanoparticle-lentivirus (MNP-LV) complexes allowing site-directed gene delivery to individual wounds in the dorsal skin of mice. Using this technique, we were able to control HIF-1α dependent wound healing angiogenesis in vivo via site-specific modulation of the tyrosine phosphatase activity of SHP-2. We thus uncover a novel physiological role of SHP-2 in protecting HIF-1α from proteasomal degradation via a Src kinase dependent mechanism, resulting in HIF-1α DNA-binding and transcriptional activity in vitro and in vivo. Excitingly, using targeting of MNP-LV complexes, we achieved simultaneous expression of constitutively active as well as inactive SHP-2 mutant proteins in separate wounds in vivo and hereby specifically and locally controlled HIF-1α activity as well as the angiogenic wound healing response in vivo. Therefore, magnetically targeted lentiviral induced modulation of SHP-2 activity may be an attractive approach for controlling patho-physiological conditions relying on hypoxic vessel growth at specific sites.
Collapse
Affiliation(s)
- Yvonn Heun
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany
| | - Martina Anton
- Institut für Molekulare Immunologie - Experimentelle Onkologie, Klinikum rechts der Isar der TUM, Ismaninger Strasse 22, 81675 München, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, 81377 Munich, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Markus Woernle
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, 80336 Munich, Germany
| | - Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, 80336 Munich, Germany
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany
| | - Olga Mykhaylyk
- Institut für Molekulare Immunologie - Experimentelle Onkologie, Klinikum rechts der Isar der TUM, Ismaninger Strasse 22, 81675 München, Germany
| | - Christian Plank
- Institut für Molekulare Immunologie - Experimentelle Onkologie, Klinikum rechts der Isar der TUM, Ismaninger Strasse 22, 81675 München, Germany
| | - Florian Kroetz
- Interventional Cardiology, Starnberg Community Hospital, Osswaldstrasse 1, 82319 Starnberg, Germany
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany; Munich Cluster for Systems Neurology, (SyNergy), 81377 Munich, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, BMC, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152 Planegg, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 81377 Munich, Germany.
| |
Collapse
|
8
|
Catalano E, Miola M, Ferraris S, Novak S, Oltolina F, Cochis A, Prat M, Vernè E, Rimondini L, Follenzi A. Magnetite and silica-coated magnetite nanoparticles are highly biocompatible on endothelial cells
in vitro. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa62cc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Heun Y, Hildebrand S, Heidsieck A, Gleich B, Anton M, Pircher J, Ribeiro A, Mykhaylyk O, Eberbeck D, Wenzel D, Pfeifer A, Woernle M, Krötz F, Pohl U, Mannell H. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo. Theranostics 2017; 7:295-307. [PMID: 28042335 PMCID: PMC5197065 DOI: 10.7150/thno.16192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro. Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo, we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy.
Collapse
|
10
|
Castellani S, Orlando C, Carbone A, Di Gioia S, Conese M. Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers. Genes (Basel) 2016; 7:genes7110103. [PMID: 27886077 PMCID: PMC5126789 DOI: 10.3390/genes7110103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 02/03/2023] Open
Abstract
Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, V. L. Pinto 1, 71122 Foggia, Italy.
| | - Clara Orlando
- Brainlab AG, Kapellenstrasse 12, 85622 Feldkirchen, Germany.
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, V. L. Pinto 1, 71122 Foggia, Italy.
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, V. L. Pinto 1, 71122 Foggia, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, V. L. Pinto 1, 71122 Foggia, Italy.
| |
Collapse
|
11
|
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Plank C, Gleich B, Pfeifer A, Fleischmann BK, Wenzel D. Improvement of vascular function by magnetic nanoparticle-assisted circumferential gene transfer into the native endothelium. J Control Release 2016; 241:164-173. [PMID: 27667178 DOI: 10.1016/j.jconrel.2016.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Gene therapy is a promising approach for chronic disorders that require continuous treatment such as cardiovascular disease. Overexpression of vasoprotective genes has generated encouraging results in animal models, but not in clinical trials. One major problem in humans is the delivery of sufficient amounts of genetic vectors to the endothelium which is impeded by blood flow, whereas prolonged stop-flow conditions impose the risk of ischemia. In the current study we have therefore developed a strategy for the efficient circumferential lentiviral gene transfer in the native endothelium under constant flow conditions. For that purpose we perfused vessels that were exposed to specially designed magnetic fields with complexes of lentivirus and magnetic nanoparticles thereby enabling overexpression of therapeutic genes such as endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF). This treatment enhanced NO and VEGF production in the transduced endothelium and resulted in a reduction of vascular tone and increased angiogenesis. Thus, the combination of MNPs with magnetic fields is an innovative strategy for site-specific and efficient vascular gene therapy.
Collapse
Affiliation(s)
- Sarah Vosen
- Institute of Physiology I, Life & Brain Center, University Clinic of Bonn, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life & Brain Center, University Clinic of Bonn, Germany
| | | | - Olga Mykhaylyk
- Institute of Experimental Oncology and Therapy Research, TU München, Germany
| | - Katrin Zimmermann
- Institute of Pharmacology and Toxicology, University Clinic of Bonn, Germany
| | - Christian Plank
- Institute of Experimental Oncology and Therapy Research, TU München, Germany
| | - Bernhard Gleich
- Zentralinstitut für Medizintechnik (IMETUM), TU München, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Clinic of Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University Clinic of Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, University Clinic of Bonn, Germany.
| |
Collapse
|
12
|
Balkow A, Hoffmann LS, Klepac K, Glöde A, Gnad T, Zimmermann K, Pfeifer A. Direct lentivirus injection for fast and efficient gene transfer into brown and beige adipose tissue. J Biol Methods 2016; 3:e48. [PMID: 31453213 PMCID: PMC6706150 DOI: 10.14440/jbm.2016.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 11/23/2022] Open
Abstract
Brown adipose tissue is a special type of fat contributing to energy expenditure in human newborns and adults. Moreover, subcutaneous white adipose tissue has a high capacity to adapt an energy-consuming, brown-like/beige phenotype. Here, we developed an easy to handle and fast to accomplish method to efficiently transfer genes into brown and beige fat pads in vivo. Lentiviral vectors are directly injected into the target fat pad of anesthetized mice through a small incision using a modified, small needle connected to a microsyringe, which is well suited for infiltration of adipose tissues. Expression of the target gene can be detected in brown/beige fat one week after injection. The method can be applied within minutes to efficiently deliver transgenes into subcutaneous adipose tissues. Thus, this protocol allows for studying genes of interest in a timely manner in murine brown/beige fat and could potentially lead to new gene therapies for obesity.
Collapse
Affiliation(s)
- Aileen Balkow
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Linda S Hoffmann
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Katarina Klepac
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany.,Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Anja Glöde
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany.,BIGS DrugS International Graduate School, University of Bonn, 53127 Bonn, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Katrin Zimmermann
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany.,Research Training Group 1873, University of Bonn, 53127 Bonn, Germany.,BIGS DrugS International Graduate School, University of Bonn, 53127 Bonn, Germany.,PharmaCenter, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
13
|
Wenzel D. Magnetic nanoparticles: novel options for vascular repair? Nanomedicine (Lond) 2016; 11:869-72. [DOI: 10.2217/nnm-2016-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Daniela Wenzel
- Institute of Physiology I, University Clinic Bonn, Bonn, Germany
| |
Collapse
|
14
|
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Bloch W, Eberbeck D, Plank C, Gleich B, Pfeifer A, Fleischmann BK, Wenzel D. Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets. ACS NANO 2016; 10:369-376. [PMID: 26736067 DOI: 10.1021/acsnano.5b04996] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS(-/-) mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.
Collapse
Affiliation(s)
| | | | - Alexandra Heidsieck
- Zentralinstitut für Medizintechnik (IMETUM), TU München , München 85748, Germany
| | - Olga Mykhaylyk
- Institute of Experimental Oncology and Therapy Research, TU München , München 81675, Germany
| | | | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne 50735, Germany
| | - Dietmar Eberbeck
- Physikalisch-Technische Bundesanstalt Berlin , Berlin 10587, Germany
| | - Christian Plank
- Institute of Experimental Oncology and Therapy Research, TU München , München 81675, Germany
| | - Bernhard Gleich
- Zentralinstitut für Medizintechnik (IMETUM), TU München , München 85748, Germany
| | | | | | | |
Collapse
|
15
|
Grasso G, Deriu MA, Prat M, Rimondini L, Vernè E, Follenzi A, Danani A. Cell Penetrating Peptide Adsorption on Magnetite and Silica Surfaces: A Computational Investigation. J Phys Chem B 2015; 119:8239-46. [PMID: 26042722 DOI: 10.1021/jp512782e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic nanoparticles (MNPs) represent one of the most promising materials as they can act as a versatile platform in the field of bionanotechnology for enhanced imaging, diagnosis, and treatment of various diseases. Silica is the most common compound for preparing coated iron oxide NPs since it improves colloidal stability and the binding affinity for various organic molecules. Biomolecules such as cell penetrating peptides (CPPs) might be employed to decorate MNPs, combining their promising physicochemical properties with a cell penetrating ability. In this work, a computational investigation on adsorption of Antennapedia homeodomain-derived penetrating peptide (pAntp) on silica and magnetite (MAG) surfaces is presented. By employing umbrella sampling molecular dynamics, we provided a quantitative estimation of the pAntp-surface adsorption free energy to highlight the influence of surface hydroxylation state on the adsorption mechanism. The interaction between peptide and surface has shown to be mainly driven by electrostatics. In case of MAG surface, also an important contribution of van der Waals (VdW) attraction was observed. Our data suggest that a competitive mechanism between MNPs and cell membrane might partially inhibit the CPP to carry out its membrane penetrating function.
Collapse
Affiliation(s)
- Gianvito Grasso
- †Department of Innovative Technologies, University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno CH-6928, Switzerland.,‡Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", via Paolo Solaroli 17, Novara IT-28100, Italy
| | - Marco A Deriu
- †Department of Innovative Technologies, University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Maria Prat
- ‡Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", via Paolo Solaroli 17, Novara IT-28100, Italy
| | - Lia Rimondini
- ‡Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", via Paolo Solaroli 17, Novara IT-28100, Italy
| | - Enrica Vernè
- §Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino IT-10129, Italy
| | - Antonia Follenzi
- ‡Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", via Paolo Solaroli 17, Novara IT-28100, Italy
| | - Andrea Danani
- †Department of Innovative Technologies, University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno CH-6928, Switzerland
| |
Collapse
|
16
|
Almstätter I, Mykhaylyk O, Settles M, Altomonte J, Aichler M, Walch A, Rummeny EJ, Ebert O, Plank C, Braren R. Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics 2015; 5:667-85. [PMID: 25897333 PMCID: PMC4402492 DOI: 10.7150/thno.10438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/07/2015] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2* relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2* compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy.
Collapse
|
17
|
Wang X, Zhang H, Jing H, Cui L. Highly Efficient Labeling of Human Lung Cancer Cells Using Cationic Poly-l-lysine-Assisted Magnetic Iron Oxide Nanoparticles. NANO-MICRO LETTERS 2015; 7:374-384. [PMID: 30464985 PMCID: PMC6223914 DOI: 10.1007/s40820-015-0053-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/23/2015] [Indexed: 05/18/2023]
Abstract
Cell labeling with magnetic iron oxide nanoparticles (IONPs) is increasingly a routine approach in the cell-based cancer treatment. However, cell labeling with magnetic IONPs and their leading effects on the biological properties of human lung carcinoma cells remain scarcely reported. Therefore, in the present study the magnetic γ-Fe2O3 nanoparticles (MNPs) were firstly synthesized and surface-modified with cationic poly-l-lysine (PLL) to construct the PLL-MNPs, which were then used to magnetically label human A549 lung cancer cells. Cell viability and proliferation were evaluated with propidium iodide/fluorescein diacetate double staining and standard 3-(4,5-dimethylthiazol-2-diphenyl-tetrazolium) bromide assay, and the cytoskeleton was immunocytochemically stained. The cell cycle of the PLL-MNP-labeled A549 lung cancer cells was analyzed using flow cytometry. Apoptotic cells were fluorescently analyzed with nuclear-specific staining after the PLL-MNP labeling. The results showed that the constructed PLL-MNPs efficiently magnetically labeled A549 lung cancer cells and that, at low concentrations, labeling did not affect cellular viability, proliferation capability, cell cycle, and apoptosis. Furthermore, the cytoskeleton in the treated cells was detected intact in comparison with the untreated counterparts. However, the results also showed that at high concentration (400 µg mL-1), the PLL-MNPs would slightly impair cell viability, proliferation, cell cycle, and apoptosis and disrupt the cytoskeleton in the treated A549 lung cancer cells. Therefore, the present results indicated that the PLL-MNPs at adequate concentrations can be efficiently used for labeling A549 lung cancer cells and could be considered as a feasible approach for magnetic targeted anti-cancer drug/gene delivery, targeted diagnosis, and therapy in lung cancer treatment.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 Henan People’s Republic of China
| | - Huiru Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hongjuan Jing
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 Henan People’s Republic of China
| | - Liuqing Cui
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
18
|
Rieck S, Zimmermann K, Wenzel D. Transduction of murine embryonic stem cells by magnetic nanoparticle-assisted lentiviral gene transfer. Methods Mol Biol 2014; 1058:89-96. [PMID: 23592033 DOI: 10.1007/7651_2013_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Genetic modification of embryonic stem (ES) cells is a valuable technique when combined with cell replacement strategies. Obtaining stable transgene expression and low-cytotoxicity lentiviral transduction of ES cells is advantageous. It has been shown that the efficiency of transfection and transduction approaches can be increased by magnetic nanoparticles (MNPs). Here, we present a protocol for MNP-assisted lentiviral transduction of adherent mouse ES cells. The application of MNPs increased transduction efficiency and provided the opportunity of cell positioning by a magnetic field.
Collapse
Affiliation(s)
- Sarah Rieck
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
19
|
Angrisani N, Foth F, Kietzmann M, Schumacher S, Angrisani GL, Christel A, Behrens P, Reifenrath J. Increased accumulation of magnetic nanoparticles by magnetizable implant materials for the treatment of implant-associated complications. J Nanobiotechnology 2013; 11:34. [PMID: 24112871 PMCID: PMC3852484 DOI: 10.1186/1477-3155-11-34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022] Open
Abstract
Background In orthopaedic surgery, accumulation of agents such as anti-infectives in the bone as target tissue is difficult. The use of magnetic nanoparticles (MNPs) as carriers principally enables their accumulation via an externally applied magnetic field. Magnetizable implants are principally able to increase the strength of an externally applied magnetic field to reach also deep-seated parts in the body. Therefore, the integration of bone-addressed therapeutics in MNPs and their accumulation at a magnetic orthopaedic implant could improve the treatment of implant related infections. In this study a martensitic steel platelet as implant placeholder was used to examine its accumulation and retention capacity of MNPs in an in vitro experimental set up considering different experimental frame conditions as magnet quantity and distance to each other, implant thickness and flow velocity. Results The magnetic field strength increased to approximately 112% when a martensitic stainless steel platelet was located between the magnet poles. Therewith a significantly higher amount of magnetic nanoparticles could be accumulated in the area of the platelet compared to the sole magnetic field. During flushing of the tube system mimicking the in vivo blood flow, the magnetized platelet was able to retain a higher amount of MNPs without an external magnetic field compared to the set up with no mounted platelet during flushing of the system. Generally, a higher flow velocity led to lower amounts of accumulated MNPs. A higher quantity of magnets and a lower distance between magnets led to a higher magnetic field strength. Albeit not significantly the magnetic field strength tended to increase with thicker platelets. Conclusion A martensitic steel platelet significantly improved the attachment of magnetic nanoparticles in an in vitro flow system and therewith indicates the potential of magnetic implant materials in orthopaedic surgery. The use of a remanent magnetic implant material could improve the efficiency of capturing MNPs especially when the external magnetic field is turned off thus facilitating and prolonging the effect. In this way higher drug levels in the target area might be attained resulting in lower inconveniences for the patient.
Collapse
Affiliation(s)
- Nina Angrisani
- Small Animal Clinic, University of Veterinary Medicine, Foundation, Bünteweg 9, 30559 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Targeted Endothelial Gene Delivery by Ultrasonic Destruction of Magnetic Microbubbles Carrying Lentiviral Vectors. Pharm Res 2012; 29:1282-94. [DOI: 10.1007/s11095-012-0678-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/06/2012] [Indexed: 12/01/2022]
|
21
|
Kilgus C, Heidsieck A, Ottersbach A, Roell W, Trueck C, Fleischmann BK, Gleich B, Sasse P. Local gene targeting and cell positioning using magnetic nanoparticles and magnetic tips: comparison of mathematical simulations with experiments. Pharm Res 2011; 29:1380-91. [PMID: 22207208 DOI: 10.1007/s11095-011-0647-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/05/2011] [Indexed: 12/23/2022]
Abstract
PURPOSE Magnetic nanoparticles (MNPs) and magnets can be used to enhance gene transfer or cell attachment but gene or cell delivery to confined areas has not been addressed. We therefore searched for an optimal method to simulate and perform local gene targeting and cell delivery in vitro. METHODS Localized gene transfer or cell positioning was achieved using permanent magnets with newly designed soft iron tips and MNP/lentivirus complexes or MNP-loaded cells, respectively. Their distribution was simulated with a mathematical model calculating magnetic flux density gradients and particle trajectories. RESULTS Soft iron tips generated strong confined magnetic fields and could be reliably used for local (~500 μm diameter) gene targeting and positioning of bone marrow cells or cardiomyocytes. The calculated distribution of MNP/lentivirus complexes and MNP-loaded cells concurred very well with the experimental results of local gene expression and cell attachment, respectively. CONCLUSION MNP-based gene targeting and cell positioning can be reliably performed in vitro using magnetic soft iron tips, and computer simulations are effective methods to predict and optimize experimental results.
Collapse
Affiliation(s)
- Carsten Kilgus
- Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|