1
|
Kimball WD, Lanzaro A, Hurd C, Jhaveri N, Huang J, Lewandowski J, Qian KK, Woldeyes MA, Majumdar R, Witek MA, Feng J, Gillilan RE, Huang Q, Marras AE, Truskett TM, Johnston KP. Growth of Clusters toward Liquid-Liquid Phase Separation of Monoclonal Antibodies as Characterized by Small-Angle X-ray Scattering and Molecular Dynamics Simulation. J Phys Chem B 2025; 129:2856-2871. [PMID: 40053704 DOI: 10.1021/acs.jpcb.4c07064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
In concentrated protein solutions, short-range attractions (SRAs) contribute to liquid-liquid phase separation (LLPS) as a function of temperature and salinity, particularly when the charge and thus long-range repulsions are low near the isoelectric point pI. Herein, we study how SRA and solution morphology vary with the approach to LLPS from increased SRA for two monoclonal antibodies (mAbs) as salt concentration is reduced near the pI. These properties are quantified using small-angle X-ray scattering (SAXS) interpreted via coarse-grained (CG) molecular dynamics (MD) simulations and compared with less descriptive properties from static and dynamic light scattering. Experimental structure factors are fit with a library of MD simulations for a CG 12-bead mAb model to determine the SRA strength (K) and cluster size distributions. Proximity to LLPS and clustering characteristics in mAb solutions are impacted by both net charge, which are modified by pH, and the strength of anisotropic electrostatic SRA (charge-charge, charge-dipole, hydrogen bonding, etc.), which are screened and weakened by added salts. The trends in LLPS are consistent with the reduced diffusion interaction parameter kD/B22ex for dilute solutions. However, greater insight is provided with SAXS along with CG-MD simulations; in particular, the growth of clusters is observed with the approach to LLPS with decreasing salinity over a wide range of concentrations.
Collapse
Affiliation(s)
- William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christian Hurd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neel Jhaveri
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jintian Huang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joshua Lewandowski
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Jiangyan Feng
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Alexander E Marras
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Petrov GV, Galkina DA, Koldina AM, Grebennikova TV, Eliseeva OV, Chernoryzh YY, Lebedeva VV, Syroeshkin AV. Controlling the Quality of Nanodrugs According to Their New Property-Radiothermal Emission. Pharmaceutics 2024; 16:180. [PMID: 38399241 PMCID: PMC10891502 DOI: 10.3390/pharmaceutics16020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Previous studies have shown that complexly shaped nanoparticles (NPs) have their intrinsic radiothermal emission in the millimeter range. This article presents a method for controlling the quality of nanodrugs-immunobiological preparations (IBPs)-based on the detection of their intrinsic radiothermal emissions. The emissivity of interferon (IFN) medicals, determined without opening the primary package, is as follows (µW/m2): IFN-α2b-80 ± 9 (105 IU per package), IFN-β1a-40 ± 5 (24 × 106 IU per package), IFN-γ-30 ± 4 (105 IU per package). The emissivity of virus-like particles (VLP), determined using vaccines Gam-VLP-multivac (120 μg) in an injection bottle (crimp cap vials), was as follows: 12 ± 1 µW/m2, Gam-VLP-rota vaccines-9 ± 1 µW/m2. This study shows the reproducibility of emissivity over the course of a year, subject to the storage conditions of the immunobiological products. It has been shown that accelerated aging and a longer shelf life are accompanied by the coagulation of active NPs, and lead to a manyfold drop in emissivity. The dependence of radiothermal emission on temperature has a complex, non-monotonic nature. The emission intensity depends on the form of dosage, but remains within the order of magnitude for IFN-α2b for intranasal aqueous solution, ointments, and suppositories. The possibility of the remote quantitative control of the first phases of the immune response (increased synthesis of IFNs) to the intranasal administration of VLP vaccines has been demonstrated in experimental animals.
Collapse
Affiliation(s)
- Gleb V. Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Daria A. Galkina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alena M. Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Tatiana V. Grebennikova
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Olesya V. Eliseeva
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Yana Yu. Chernoryzh
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Varvara V. Lebedeva
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Anton V. Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
3
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
4
|
Rojekar S, Pallapati AR, Gimenez-Roig J, Korkmaz F, Sultana F, Sant D, Haeck C, Macdonald A, Kim SM, Rosen CJ, Barak O, Meseck M, Caminis J, Lizneva D, Yuen T, Zaidi M. Development and Biophysical Characterization of a Humanized FSH-Blocking Monoclonal Antibody Therapeutic Formulated at an Ultra-High Concentration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540323. [PMID: 37214886 PMCID: PMC10197643 DOI: 10.1101/2023.05.11.540323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Highly concentrated antibody formulations are oftentimes required for subcutaneous, self-administered biologics. Here, we report the creation of a unique formulation for our first-in- class FSH-blocking humanized antibody, MS-Hu6, which we propose to move to the clinic for osteoporosis, obesity, and Alzheimer's disease. The studies were carried out using our Good Laboratory Practice (GLP) platform, compliant with the Code of Federal Regulations (Title 21, Part 58). We first used protein thermal shift, size exclusion chromatography, and dynamic light scattering to examine MS-Hu6 concentrations between 1 and 100 mg/mL. We found that thermal, monomeric, and colloidal stability of formulated MS-Hu6 was maintained at a concentration of 100 mg/mL. The addition of the antioxidant L-methionine and chelating agent disodium EDTA improved the formulation's long-term colloidal and thermal stability. Thermal stability was further confirmed by Nano differential scanning calorimetry (DSC). Physiochemical properties of formulated MS-Hu6, including viscosity, turbidity, and clarity, conformed with acceptable industry standards. That the structural integrity of MS-Hu6 in formulation was maintained was proven through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. Three rapid freeze-thaw cycles at -80°C/25°C or -80°C/37°C further revealed excellent thermal and colloidal stability. Furthermore, formulated MS-Hu6, particularly its Fab domain, displayed thermal and monomeric storage stability for more than 90 days at 4°C and 25°C. Finally, the unfolding temperature (T m ) for formulated MS-Hu6 increased by >4.80°C upon binding to recombinant FSH, indicating highly specific ligand binding. Overall, we document the feasibility of developing a stable, manufacturable and transportable MS-Hu6 formulation at a ultra-high concentration at industry standards. The study should become a resource for developing biologic formulations in academic medical centers.
Collapse
|
5
|
Orr AA, Tao A, Guvench O, MacKerell AD. Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction. Mol Pharm 2023; 20:2600-2611. [PMID: 37017675 PMCID: PMC10159941 DOI: 10.1021/acs.molpharmaceut.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Protein-based therapeutics typically require high concentrations of the active protein, which can lead to protein aggregation and high solution viscosity. Such solution behaviors can limit the stability, bioavailability, and manufacturability of protein-based therapeutics and are directly influenced by the charge of a protein. Protein charge is a system property affected by its environment, including the buffer composition, pH, and temperature. Thus, the charge calculated by summing the charges of each residue in a protein, as is commonly done in computational methods, may significantly differ from the effective charge of the protein as these calculations do not account for contributions from bound ions. Here, we present an extension of the structure-based approach termed site identification by ligand competitive saturation-biologics (SILCS-Biologics) to predict the effective charge of proteins. The SILCS-Biologics approach was applied on a range of protein targets in different salt environments for which membrane-confined electrophoresis-determined charges were previously reported. SILCS-Biologics maps the 3D distribution and predicted occupancy of ions, buffer molecules, and excipient molecules bound to the protein surface in a given salt environment. Using this information, the effective charge of the protein is predicted such that the concentrations of the ions and the presence of excipients or buffers are accounted for. Additionally, SILCS-Biologics also produces 3D structures of the binding sites of ions on the proteins, which enable further analyses such as the characterization of protein surface charge distribution and dipole moments in different environments. Notable is the capability of the method to account for competition between salts, excipients, and buffers on the calculated electrostatic properties in different protein formulations. Our study demonstrates the ability of the SILCS-Biologics approach to predict the effective charge of proteins and its applicability in uncovering protein-ion interactions and their contributions to protein solubility and function.
Collapse
Affiliation(s)
- Asuka A. Orr
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| | - Aoxiang Tao
- SilcsBio LLC, 1100 Wicomico Street, Suite 323, Baltimore, MD, USA
| | - Olgun Guvench
- SilcsBio LLC, 1100 Wicomico Street, Suite 323, Baltimore, MD, USA
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
6
|
Ghosh I, Gutka H, Krause ME, Clemens R, Kashi RS. A systematic review of commercial high concentration antibody drug products approved in the US: formulation composition, dosage form design and primary packaging considerations. MAbs 2023; 15:2205540. [PMID: 37243580 DOI: 10.1080/19420862.2023.2205540] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/29/2023] Open
Abstract
Three critical aspects that define high concentration antibody products (HCAPs) are as follows: 1) formulation composition, 2) dosage form, and 3) primary packaging configuration. HCAPs have become successful in the therapeutic sector due to their unique advantage of allowing subcutaneous self-administration. Technical challenges, such as physical and chemical instability, viscosity, delivery volume limitations, and product immunogenicity, can hinder successful development and commercialization of HCAPs. Such challenges can be overcome by robust formulation and process development strategies, as well as rational selection of excipients and packaging components. We compiled and analyzed data from US Food and Drug Administration-approved and marketed HCAPs that are ≥100 mg/mL to identify trends in formulation composition and quality target product profile. This review presents our findings and discusses novel formulation and processing technologies that enable the development of improved HCAPs at ≥200 mg/mL. The observed trends can be used as a guide for further advancements in the development of HCAPs as more complex antibody-based modalities enter biologics product development.
Collapse
Affiliation(s)
- Indrajit Ghosh
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Hiten Gutka
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Mary E Krause
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Ryan Clemens
- College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Ramesh S Kashi
- Sterile Product Development, Bristol Myers Squibb, Summit, NJ, USA
| |
Collapse
|
7
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
8
|
Yang D, Chen X, Li Z, Yang C. Mechanistic Study of Release Characteristics of Two Active Ingredients in Transdermal Patch Containing Lidocaine-Flurbiprofen Ionic Liquid. Pharmaceutics 2022; 14:2158. [PMID: 36297593 PMCID: PMC9610533 DOI: 10.3390/pharmaceutics14102158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023] Open
Abstract
Ionic liquids (ILs) have been proven to be an efficient technology for enhancing drug skin permeability. However, the question of whether the two components of ILs are released synchronously in transdermal preparations has remained unclear. Thus, this study aimed to investigate the release characteristics of two components of ILs and their underlying molecular mechanism. The ILs containing flurbiprofen (FLU) and lidocaine (LID) were synthesized and characterized. The four typical acrylates pressure sensitive adhesives (PSAs) with different functional groups were synthesized and characterized. The effects of PSAs on the release characteristics of two components of ILs were investigated by drug release tests and verified by skin permeation experiments. The action mechanisms were revealed by FTIR, Raman, dielectric spectrum, and molecular docking. The results showed that the average release amount of FLU (0.29 μmol/cm2) and LID (0.11 μmol/cm2) of ILs in the four PSAs was significantly different (p < 0.05), which illustrated that the two components did not release synchronously. The PSA−none and PSA−OH with low permittivity (7.37, 9.82) interacted with drugs mainly by dipole-dipole interactions and hydrogen bonds. The PSA−COOH and PSA−CONH2 with high permittivity (11.19, 15.32) interacted with drugs mainly by ionic bonds and ionic hydrogen bonds. Thus, this study provides scientific guidance for the application of ILs in transdermal preparations.
Collapse
Affiliation(s)
- Degong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Xuejun Chen
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| |
Collapse
|
9
|
Nakauchi Y, Nishinami S, Murakami Y, Ogura T, Kano H, Shiraki K. Opalescence Arising from Network Assembly in Antibody Solution. Mol Pharm 2022; 19:1160-1167. [PMID: 35274955 DOI: 10.1021/acs.molpharmaceut.1c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Opalescence of therapeutic antibody solutions is one of the concerns in drug formulation. However, the mechanistic insights into the opalescence of antibody solutions remain unclear. Here, we investigated the assembly states of antibody molecules as a function of antibody concentration. The solutions of bovine gamma globulin and human immunoglobulin G at around 100 mg/mL showed the formation of submicron-scale network assemblies. The network assembly resulted in the appearance of opalescence with a transparent blue color without the precipitates of antibodies. Furthermore, the addition of trehalose and arginine, previously known to act as protein stabilizers and protein aggregation suppressors, was able to suppress the opalescence arising from the network assembly. These results will provide an important information for evaluating and improving protein formulations.
Collapse
Affiliation(s)
- Yoshitaka Nakauchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Suguru Nishinami
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Yusuke Murakami
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Hideaki Kano
- Department of Chemistry, Kyusyu University, 744, Motooka, Nishi-ku, Fukuoka-shi 819-0395, Fukuoka, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| |
Collapse
|
10
|
Gupta P, Makowski EK, Kumar S, Zhang Y, Scheer JM, Tessier PM. Antibodies with Weakly Basic Isoelectric Points Minimize Trade-offs between Formulation and Physiological Colloidal Properties. Mol Pharm 2022; 19:775-787. [PMID: 35108018 PMCID: PMC9350878 DOI: 10.1021/acs.molpharmaceut.1c00373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread interest in antibody therapeutics has led to much focus on identifying antibody candidates with favorable developability properties. In particular, there is broad interest in identifying antibody candidates with highly repulsive self-interactions in standard formulations (e.g., low ionic strength buffers at pH 5-6) for high solubility and low viscosity. Likewise, there is also broad interest in identifying antibody candidates with low levels of non-specific interactions in physiological solution conditions (PBS, pH 7.4) to promote favorable pharmacokinetic properties. To what extent antibodies that possess both highly repulsive self-interactions in standard formulations and weak non-specific interactions in physiological solution conditions can be systematically identified remains unclear and is a potential impediment to successful therapeutic drug development. Here, we evaluate these two properties for 42 IgG1 variants based on the variable fragments (Fvs) from four clinical-stage antibodies and complementarity-determining regions from 10 clinical-stage antibodies. Interestingly, we find that antibodies with the strongest repulsive self-interactions in a standard formulation (pH 6 and 10 mM histidine) display the strongest non-specific interactions in physiological solution conditions. Conversely, antibodies with the weakest non-specific interactions under physiological conditions display the least repulsive self-interactions in standard formulations. This behavior can be largely explained by the antibody isoelectric point, as highly basic antibodies that are highly positively charged under standard formulation conditions (pH 5-6) promote repulsive self-interactions that mediate high colloidal stability but also mediate strong non-specific interactions with negatively charged biomolecules at physiological pH and vice versa for antibodies with negatively charged Fv regions. Therefore, IgG1s with weakly basic isoelectric points between 8 and 8.5 and Fv isoelectric points between 7.5 and 9 typically display the best combinations of strong repulsive self-interactions and weak non-specific interactions. We expect that these findings will improve the identification and engineering of antibody candidates with drug-like biophysical properties.
Collapse
Affiliation(s)
- Priyanka Gupta
- Biochemistry and Biophysics Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Emily K Makowski
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sandeep Kumar
- Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Yulei Zhang
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Justin M Scheer
- Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States.,Janssen R&D, South San Francisco, California 94080, United States
| | - Peter M Tessier
- Biochemistry and Biophysics Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Hartl J, Friesen S, Johannsmann D, Buchner R, Hinderberger D, Blech M, Garidel P. Dipolar Interactions and Protein Hydration in Highly Concentrated Antibody Formulations. Mol Pharm 2022; 19:494-507. [PMID: 35073097 DOI: 10.1021/acs.molpharmaceut.1c00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular interaction mechanisms in high-concentrated protein systems are of fundamental importance for the rational development of biopharmaceuticals such as monoclonal antibody (mAb) formulations. In such high-concentrated protein systems, the intermolecular distances between mAb molecules are reduced to the size of the protein diameter (approx. 10 nm). Thus, protein-protein interactions are more pronounced at high concentrations; so a direct extrapolation of physicochemical properties obtained from measurements at a low protein concentration of the corresponding properties at a high protein concentration is highly questionable. Besides the charge-charge interaction, the effects of molecular crowding, dipolar interaction, changes in protein hydration, and self-assembling tendency become more relevant. Here, protein hydration, protein dipole moment, and protein-protein interactions were studied in protein concentrations up to 200 mg/mL (= 1.3 mM) in different formulations for selected mAbs using dielectric relaxation spectroscopy (DRS). These data are correlated with the second virial coefficient, A2, the diffusion interaction parameter, kD, the elastic shear modulus, G', and the dynamic viscosity, η. When large contributions of dipolar protein-protein interactions were observed, the tendency of self-assembling and an increase in solution viscosity were detected. These effects were examined using specific buffer conditions. Furthermore, different types of protein-water interactions were identified via DRS, whereby the effect of high protein concentration on protein hydration was investigated for different high-concentrated liquid formulations (HCLFs).
Collapse
Affiliation(s)
- Josef Hartl
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sergej Friesen
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Richard Buchner
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, 88397 Biberach an der Riss, Germany
| |
Collapse
|
12
|
Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. Proc Natl Acad Sci U S A 2021; 118:2020577118. [PMID: 34504010 PMCID: PMC8449350 DOI: 10.1073/pnas.2020577118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 01/28/2023] Open
Abstract
Successful biologic drug discovery and development involves finding functional as well as developable candidates. Once a candidate has been demonstrated to be functional, the next step is to determine whether it can be translated into a drug product. This requires that the candidate can withstand stresses encountered during manufacturing, shipping, and storage. Additionally, it must be safe, efficacious, and possess good pharmacology. In silico analyses of the variable regions of 77 marketed antibody-based biotherapeutics have revealed five nonredundant physicochemical descriptors. Distributions of these descriptors, observed for marketed biotherapeutics, can help prioritize a drug candidate for experimental testing at early discovery stages, guide engineering efforts to further optimize it, and help increase the productivity of biologic drug discovery and development. Feeding biopharma pipelines with biotherapeutic candidates that possess desirable developability profiles can help improve the productivity of biologic drug discovery and development. Here, we have derived an in silico profile by analyzing computed physicochemical descriptors for the variable regions (Fv) found in 77 marketed antibody-based biotherapeutics. Fv regions of these biotherapeutics demonstrate significant diversities in their germlines, complementarity determining region loop lengths, hydrophobicity, and charge distributions. Furthermore, an analysis of 24 physicochemical descriptors, calculated using homology-based molecular models, has yielded five nonredundant descriptors whose distributions represent stability, isoelectric point, and molecular surface characteristics of their Fv regions. Fv regions of candidates from our internal discovery campaigns, human next-generation sequencing repertoires, and those in clinical-stages (CST) were assessed for similarity with the physicochemical profile derived here. The Fv regions in 33% of CST antibodies show physicochemical properties that are dissimilar to currently marketed biotherapeutics. In comparison, physicochemical characteristics of ∼29% of the Fv regions in human antibodies and ∼27% of our internal hits deviated significantly from those of marketed biotherapeutics. The early availability of this information can help guide hit selection, lead identification, and optimization of biotherapeutic candidates. Insights from this work can also help support portfolio risk assessment, in-licensing, and biopharma collaborations.
Collapse
|
13
|
Horkay F, Chremos A, Douglas JF, Jones R, Lou J, Xia Y. Comparative experimental and computational study of synthetic and natural bottlebrush polyelectrolyte solutions. J Chem Phys 2021; 155:074901. [PMID: 34418934 PMCID: PMC8491617 DOI: 10.1063/5.0061649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022] Open
Abstract
We systematically investigate model synthetic and natural bottlebrush polyelectrolyte solutions through an array of experimental techniques (osmometry and neutron and dynamic light scattering) along with molecular dynamics simulations to characterize and contrast their structures over a wide range of spatial and time scales. In particular, we perform measurements on solutions of aggrecan and the synthetic bottlebrush polymer, poly(sodium acrylate), and simulations of solutions of highly coarse-grained charged bottlebrush molecules having different degrees of side-branch density and inclusion of an explicit solvent and ion hydration effects. While both systems exhibit a general tendency toward supramolecular organization in solution, bottlebrush poly(sodium acrylate) solutions exhibit a distinctive "polyelectrolyte peak" in their structure factor, but no such peak is observed in aggrecan solutions. This qualitative difference in scattering properties, and thus polyelectrolyte solution organization, is attributed to a concerted effect of the bottlebrush polymer topology and the solvation of the polymer backbone and counterions. The coupling of the polyelectrolyte topological structure with the counterion distribution about the charged polymer molecules along with direct polymer segmental hydration makes their solution organization and properties "tunable," a phenomenon that has significant ramifications for biological function and disease as well as for numerous materials applications.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jack F. Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ronald Jones
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Junzhe Lou
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
14
|
Pathak JA, Nugent S, Bender MF, Roberts CJ, Curtis RJ, Douglas JF. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers (Basel) 2021; 13:601. [PMID: 33671342 PMCID: PMC7922252 DOI: 10.3390/polym13040601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
The Huggins coefficient kH is a well-known metric for quantifying the increase in solution viscosity arising from intermolecular interactions in relatively dilute macromolecular solutions, and there has been much interest in this solution property in connection with developing improved antibody therapeutics. While numerous kH measurements have been reported for select monoclonal antibodies (mAbs) solutions, there has been limited study of kH in terms of the fundamental molecular interactions that determine this property. In this paper, we compare measurements of the osmotic second virial coefficient B22, a common metric of intermolecular and interparticle interaction strength, to measurements of kH for model antibody solutions. This comparison is motivated by the seminal work of Russel for hard sphere particles having a short-range "sticky" interparticle interaction, and we also compare our data with known results for uncharged flexible polymers having variable excluded volume interactions because proteins are polypeptide chains. Our observations indicate that neither the adhesive hard sphere model, a common colloidal model of globular proteins, nor the familiar uncharged flexible polymer model, an excellent model of intrinsically disordered proteins, describes the dependence of kH of these antibodies on B22. Clearly, an improved understanding of protein and ion solvation by water as well as dipole-dipole and charge-dipole effects is required to understand the significance of kH from the standpoint of fundamental protein-protein interactions. Despite shortcomings in our theoretical understanding of kH for antibody solutions, this quantity provides a useful practical measure of the strength of interprotein interactions at elevated protein concentrations that is of direct significance for the development of antibody formulations that minimize the solution viscosity.
Collapse
Affiliation(s)
- Jai A. Pathak
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Sean Nugent
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Michael F. Bender
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Christopher J. Roberts
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Robin J. Curtis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Jack F. Douglas
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8544, USA
| |
Collapse
|
15
|
Banks DD, Cordia JF. Suppression of Electrostatic Mediated Antibody Liquid-Liquid Phase Separation by Charged and Noncharged Preferentially Excluded Excipients. Mol Pharm 2021; 18:1285-1292. [PMID: 33555888 DOI: 10.1021/acs.molpharmaceut.0c01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotonic concentrations of inert cosolutes or excipients are routinely used in protein therapeutic formulations to minimize physical instabilities including aggregation, particulation, and precipitation that are often manifested during drug substance/product manufacture and long-term storage. Despite their prevalent use within the biopharmaceutical industry, a more detailed understanding for how excipients modulate the specific protein-protein interactions responsible for these instabilities is still needed so that informed formulation decisions can be made at the earliest stages of development when protein supply and time are limited. In the present report, subisotonic concentrations of the five common formulation excipients, sucrose, proline, sorbitol, glycerol, arginine hydrochloride, and the denaturant urea, were studied for their effect on the room temperature liquid-liquid phase separation of a model monoclonal antibody (mAb-B). Although each excipient lowered the onset temperatures of mAb-B liquid-liquid phase separation to different extents, all six were found to be preferentially excluded from the native state monomer by vapor pressure osmometry, and no apparent correlations to the excipient dependence of mAb-B melting temperatures were observed. These results and those of the effects of solution pH, addition of salt, and impact of a small number of charge mutations were most consistent with a mechanism of local excipient accumulation, to an extent dependent on their type, with the specific residues that mediate mAb-B electrostatic protein-protein interactions. These findings suggest that selection of excipients on the basis of their interaction with the solvent exposed residues of the native state may at times be a more effective strategy for limiting protein-protein interactions at pharmaceutically relevant storage conditions than choosing those that are excluded from the residues of the native state interior.
Collapse
Affiliation(s)
- Douglas D Banks
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, 4242 Campus Point Court, Suite 700, San Diego, California 92121, United States
| | - Jon F Cordia
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, 4242 Campus Point Court, Suite 700, San Diego, California 92121, United States
| |
Collapse
|
16
|
Somani S, Jo S, Thirumangalathu R, Rodrigues D, Tanenbaum LM, Amin K, MacKerell AD, Thakkar SV. Toward Biotherapeutics Formulation Composition Engineering using Site-Identification by Ligand Competitive Saturation (SILCS). J Pharm Sci 2020; 110:1103-1110. [PMID: 33137372 DOI: 10.1016/j.xphs.2020.10.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Formulation of protein-based therapeutics employ advanced formulation and analytical technologies for screening various parameters such as buffer, pH, and excipients. At a molecular level, physico-chemical properties of a protein formulation depend on self-interaction between protein molecules, protein-solvent and protein-excipient interactions. This work describes a novel in silico approach, SILCS-Biologics, for structure-based modeling of protein formulations. SILCS Biologics is based on the Site-Identification by Ligand Competitive Saturation (SILCS) technology and enables modeling of interactions among different components of a formulation at an atomistic level while accounting for protein flexibility. It predicts potential hotspot regions on the protein surface for protein-protein and protein-excipient interactions. Here we apply SILCS-Biologics on a Fab domain of a monoclonal antibody (mAbN) to model Fab-Fab interactions and interactions with three amino acid excipients, namely, arginine HCl, proline and lysine HCl. Experiments on 100 mg/ml formulations of mAbN showed that arginine increased, lysine reduced, and proline did not impact viscosity. We use SILCS-Biologics modeling to explore a structure-based hypothesis for the viscosity modulating effect of these excipients. Current efforts are aimed at further validation of this novel computational framework and expanding the scope to model full mAb and other protein therapeutics.
Collapse
Affiliation(s)
- Sandeep Somani
- Discovery Sciences, Janssen Research and Development (Janssen R&D), Spring House, PA 19477, USA
| | | | - Renuka Thirumangalathu
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Danika Rodrigues
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Laura M Tanenbaum
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Ketan Amin
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Alexander D MacKerell
- SilcsBio LLC, Baltimore, MD 21202, USA; Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA.
| | - Santosh V Thakkar
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA; BioTherapeutics Cell and Developability Sciences (BioTD CDS), Janssen Research and Development (Janssen R&D), Spring House, PA 19477, USA.
| |
Collapse
|
17
|
Song Y, Zhou T, Liu Q, Liu Z, Li D. Nanoparticle and microorganism detection with a side-micron-orifice-based resistive pulse sensor. Analyst 2020; 145:5466-5474. [PMID: 32578584 DOI: 10.1039/d0an00679c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper presents the detection of nanoparticles and microorganisms using a recently developed side-orifice-based resistive pulse sensor (SO-RPS). By decreasing the channel height of the detection section of the SO-RPS, the detection sensitivity was increased and an average signal to noise ratio (S/N) of about 3 was achieved for 100 nm polystyrene particles. It was also found that spherical particles generate symmetrical signals. Algae with irregular shapes generate signals with more complex patterns. A scatter plot of signal magnitude versus signal width was proven to be reliable for differentiating bacteria from the nanoparticles and two types of algae. The side orifice for detecting heterogeneous nanoparticles and microorganisms is advantageous to avoid orifice clogging and the large flow resistance.
Collapse
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | | | | | | | | |
Collapse
|
18
|
The Molecular Interaction Process. J Pharm Sci 2020; 109:154-160. [DOI: 10.1016/j.xphs.2019.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023]
|
19
|
Vázquez NAR. Adsorption of terbium ion on Fc/dymethylacrylamide: application of Monte Carlo simulation. POLIMEROS 2020. [DOI: 10.1590/0104-1428.08419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
21
|
Calero-Rubio C, Saluja A, Sahin E, Roberts CJ. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions. J Phys Chem B 2019; 123:5709-5720. [PMID: 31241333 DOI: 10.1021/acs.jpcb.9b03779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonspecific protein-protein interactions of a monoclonal antibody were quantified experimentally using light scattering from low to high protein concentrations (c2) and compared with prior work for a different antibody that yielded qualitatively different behavior. The c2 dependence of the excess Rayleigh ratio (Rex) provided the osmotic second virial coefficient (B22) at low c2 and the static structure factor (Sq=0) at high c2, as a function of solution pH, total ionic strength (TIS), and sucrose concentration. Net repulsive interactions were observed at pH 5, with weaker repulsions at higher TIS. Conversely, attractive electrostatic interactions were observed at pH 6.5, with weaker attractions at higher TIS. Refined coarse-grained models were used to fit model parameters using experimental B22 versus TIS data. The parameters were used to predict high-c2 Rex values via Monte Carlo simulations and separately with Mayer-sampling calculations of higher-order virial coefficients. For both methods, predictions for repulsive to mildly attractive conditions were quantitatively accurate. However, only qualitatively accurate predictions were practical for strongly attractive conditions. An alternative, higher resolution model was used to show semiquantitatively and quantitatively accurate predictions of strong electrostatic attractions at low c2 and low ionic strength.
Collapse
Affiliation(s)
- Cesar Calero-Rubio
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Atul Saluja
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | - Erinc Sahin
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
22
|
Sifniotis V, Cruz E, Eroglu B, Kayser V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies (Basel) 2019; 8:E36. [PMID: 31544842 PMCID: PMC6640721 DOI: 10.3390/antib8020036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Therapeutic antibody technology heavily dominates the biologics market and continues to present as a significant industrial interest in developing novel and improved antibody treatment strategies. Many noteworthy advancements in the last decades have propelled the success of antibody development; however, there are still opportunities for improvement. In considering such interest to develop antibody therapies, this review summarizes the array of challenges and considerations faced in the design, manufacture, and formulation of therapeutic antibodies, such as stability, bioavailability and immunological engagement. We discuss the advancement of technologies that address these challenges, highlighting key antibody engineered formats that have been adapted. Furthermore, we examine the implication of novel formulation technologies such as nanocarrier delivery systems for the potential to formulate for pulmonary delivery. Finally, we comprehensively discuss developments in computational approaches for the strategic design of antibodies with modulated functions.
Collapse
Affiliation(s)
- Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Barbaros Eroglu
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
23
|
Houghtaling J, Ying C, Eggenberger OM, Fennouri A, Nandivada S, Acharjee M, Li J, Hall AR, Mayer M. Estimation of Shape, Volume, and Dipole Moment of Individual Proteins Freely Transiting a Synthetic Nanopore. ACS NANO 2019; 13:5231-5242. [PMID: 30995394 DOI: 10.1021/acsnano.8b09555] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This paper demonstrates that high-bandwidth current recordings in combination with low-noise silicon nitride nanopores make it possible to determine the molecular volume, approximate shape, and dipole moment of single native proteins in solution without the need for labeling, tethering, or other chemical modifications of these proteins. The analysis is based on current modulations caused by the translation and rotation of single proteins through a uniform electric field inside of a nanopore. We applied this technique to nine proteins and show that the measured protein parameters agree well with reference values but only if the nanopore walls were coated with a nonstick fluid lipid bilayer. One potential challenge with this approach is that an untethered protein is able to diffuse laterally while transiting a nanopore, which generates increasingly asymmetric disruptions in the electric field as it approaches the nanopore walls. These "off-axis" effects add an additional noise-like element to the electrical recordings, which can be exacerbated by nonspecific interactions with pore walls that are not coated by a fluid lipid bilayer. We performed finite element simulations to quantify the influence of these effects on subsequent analyses. Examining the size, approximate shape, and dipole moment of unperturbed, native proteins in aqueous solution on a single-molecule level in real time while they translocate through a nanopore may enable applications such as identifying or characterizing proteins in a mixture, or monitoring the assembly or disassembly of transient protein complexes based on their shape, volume, or dipole moment.
Collapse
Affiliation(s)
- Jared Houghtaling
- Department of Biomedical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Adolphe Merkle Insitute, University of Fribourg , CH-1700 Fribourg , Switzerland
| | - Cuifeng Ying
- Adolphe Merkle Insitute, University of Fribourg , CH-1700 Fribourg , Switzerland
| | - Olivia M Eggenberger
- Adolphe Merkle Insitute, University of Fribourg , CH-1700 Fribourg , Switzerland
| | - Aziz Fennouri
- Adolphe Merkle Insitute, University of Fribourg , CH-1700 Fribourg , Switzerland
| | - Santoshi Nandivada
- Department of Physics , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Mitu Acharjee
- Department of Physics , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Jiali Li
- Department of Physics , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Adam R Hall
- Wake Forest University School of Medicine , Winston Salem , North Carolina 27157 , United States
| | - Michael Mayer
- Adolphe Merkle Insitute, University of Fribourg , CH-1700 Fribourg , Switzerland
| |
Collapse
|
24
|
Bieberbach M, Kosiol P, Seay A, Bennecke M, Hansmann B, Hepbildikler S, Thom V. Investigation of fouling mechanisms of virus filters during the filtration of protein solutions using a high throughput filtration screening device. Biotechnol Prog 2019; 35:e2776. [DOI: 10.1002/btpr.2776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/19/2018] [Indexed: 01/20/2023]
Affiliation(s)
| | - Peter Kosiol
- Sartorius Stedim Biotech GmbH, 37079 Göttingen Germany
| | | | | | | | | | - Volkmar Thom
- Sartorius Stedim Biotech GmbH, 37079 Göttingen Germany
| |
Collapse
|
25
|
Zhu LF, Chen X, Ahmad Z, Li JS, Chang MW. Engineering of Ganoderma lucidum polysaccharide loaded polyvinyl alcohol nanofibers for biopharmaceutical delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
IgG Charge: Practical and Biological Implications. Antibodies (Basel) 2019; 8:antib8010024. [PMID: 31544830 PMCID: PMC6640702 DOI: 10.3390/antib8010024] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Practically, IgG charge can contribute significantly to thermodynamic nonideality, and hence to solubility and viscosity. Biologically, IgG charge isomers exhibit differences in clearance and potency. It has been known since the 1930s that all immunoglobulins carry a weak negative charge in physiological solvents. However, there has been no systematic exploration of this fundamental property. Accurate charge measurements have been made using membrane confined electrophoresis in two solvents (pH 5.0 and pH 7.4) on a panel of twelve mAb IgGs, as well as their F(ab’)2 and Fc fragments. The following observations were made at pH 5.0: (1) the measured charge differs from the calculated charge by ~40 for the intact IgGs, and by ~20 for the Fcs; (2) the intact IgG charge depends on both Fv and Fc sequences, but does not equal the sum of the F(ab)’2 and Fc charge; (3) the Fc charge is consistent within a class. In phosphate buffered saline, pH 7.4: (1) the intact IgG charges ranged from 0 to −13; (2) the F(ab’)2 fragments are nearly neutral for IgG1s and IgG2s, and about −5 for some of the IgG4s; (3) all Fc fragments are weakly anionic, with IgG1 < IgG2 < IgG4; (4) the charge on the intact IgGs does not equal the sum of the F(ab’)2 and Fc charge. In no case is the calculated charge, based solely on H+ binding, remotely close to the measured charge. Some mAbs carried a charge in physiological salt that was outside the range observed for serum-purified human poly IgG. To best match physiological properties, a therapeutic mAb should have a measured charge that falls within the range observed for serum-derived human IgGs. A thermodynamically rigorous, concentration-dependent protein–protein interaction parameter is introduced. Based on readily measured properties, interaction curves may be generated to aid in the selection of proteins and solvent conditions. Example curves are provided.
Collapse
|
27
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
28
|
Viola M, Sequeira J, Seiça R, Veiga F, Serra J, Santos AC, Ribeiro AJ. Subcutaneous delivery of monoclonal antibodies: How do we get there? J Control Release 2018; 286:301-314. [DOI: 10.1016/j.jconrel.2018.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
|
29
|
Woldeyes MA, Josephson LL, Leiske DL, Galush WJ, Roberts CJ, Furst EM. Viscosities and Protein Interactions of Bispecific Antibodies and Their Monospecific Mixtures. Mol Pharm 2018; 15:4745-4755. [DOI: 10.1021/acs.molpharmaceut.8b00706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mahlet A. Woldeyes
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lilian L. Josephson
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Danielle L. Leiske
- Early Stage Pharmaceutical Development, Genentech Inc., A Member of the Roche Group, South San Francisco, California 94080, United States
| | - William J. Galush
- Early Stage Pharmaceutical Development, Genentech Inc., A Member of the Roche Group, South San Francisco, California 94080, United States
| | - Christopher J. Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Eric M. Furst
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
30
|
In Silico Prediction of Diffusion Interaction Parameter (kD), a Key Indicator of Antibody Solution Behaviors. Pharm Res 2018; 35:193. [DOI: 10.1007/s11095-018-2466-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
|
31
|
Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases 2018; 13:040801. [DOI: 10.1116/1.5037582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Pindrus MA, Shire SJ, Yadav S, Kalonia DS. The Effect of Low Ionic Strength on Diffusion and Viscosity of Monoclonal Antibodies. Mol Pharm 2018; 15:3133-3142. [DOI: 10.1021/acs.molpharmaceut.8b00210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariya A. Pindrus
- Department of Pharmaceutical Sciences, University of Connecticut, U-3092, Storrs, Connecticut 06269, United States
| | - Steven J. Shire
- Late Stage Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sandeep Yadav
- Late Stage Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Devendra S. Kalonia
- Department of Pharmaceutical Sciences, University of Connecticut, U-3092, Storrs, Connecticut 06269, United States
| |
Collapse
|
33
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Hong T, Iwashita K, Shiraki K. Viscosity Control of Protein Solution by Small Solutes: A Review. Curr Protein Pept Sci 2018; 19:746-758. [PMID: 29237380 PMCID: PMC6182935 DOI: 10.2174/1389203719666171213114919] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
Viscosity of protein solution is one of the most troublesome issues for the high-concentration formulation of protein drugs. In this review, we summarize the practical methods that suppress the viscosity of protein solution using small molecular additives. The small amount of salts decreases the viscosity that results from electrostatic repulsion and attraction. The chaotrope suppresses the hydrophobic attraction and cluster formation, which can lower the solution viscosity. Arginine hydrochloride (ArgHCl) also suppresses the solution viscosity due to the hydrophobic and aromatic interactions between protein molecules. The small molecular additives are the simplest resolution of the high viscosity of protein solution as well as understanding of the primary cause in complex phenomena of protein interactions.
Collapse
Affiliation(s)
- Taehun Hong
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8573, Japan
| | - Kazuki Iwashita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8573, Japan
| |
Collapse
|
35
|
Jain T, Boland T, Lilov A, Burnina I, Brown M, Xu Y, Vásquez M. Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning. Bioinformatics 2017; 33:3758-3766. [DOI: 10.1093/bioinformatics/btx519] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tushar Jain
- Computational Biology, Adimab, Palo Alto, CA, USA
| | - Todd Boland
- Computational Biology, Adimab, Palo Alto, CA, USA
| | | | | | | | - Yingda Xu
- Protein Analytics, Adimab, Lebanon, NH, USA
| | | |
Collapse
|
36
|
Whitaker N, Xiong J, Pace SE, Kumar V, Middaugh CR, Joshi SB, Volkin DB. A Formulation Development Approach to Identify and Select Stable Ultra-High-Concentration Monoclonal Antibody Formulations With Reduced Viscosities. J Pharm Sci 2017; 106:3230-3241. [PMID: 28668340 DOI: 10.1016/j.xphs.2017.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
High protein concentration formulations are required for low-volume administration of therapeutic antibodies targeted for subcutaneous, self-administration by patients. Ultra-high concentrations (≥150 mg/mL) can lead to dramatically increased solution viscosities, which in turn can lead to stability, manufacturing, and delivery challenges. In this study, various categories and individual types of pharmaceutical excipients and other additives (56 in total) were screened for their viscosity reducing effects on 2 different mAbs. The physicochemical stability profile, as well as viscosity ranges, of several candidate antibody formulations, identified and designed based on the results of the excipient screening, were evaluated over a 6-month time period under accelerated and real-time storage conditions. In addition to reducing the solution viscosities to acceptable levels for parenteral administration (using currently available and acceptable delivery devices), the candidate formulations did not result in notable losses of physicochemical stability of the 2 antibodies on storage for 6 months at 25°C. The experiments described here demonstrate the feasibility of a formulation development and selection approach to identify candidate high-concentration antibody formulations with viscosities within pharmaceutically acceptable ranges that do not adversely affect their physicochemical storage stability.
Collapse
Affiliation(s)
- Neal Whitaker
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Jian Xiong
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Samantha E Pace
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Vineet Kumar
- Drug Product Development-Large Molecules, Janssen Biotech Inc., Malvern, Pennsylvania 19355
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
37
|
Yusko EC, Bruhn BR, Eggenberger OM, Houghtaling J, Rollings RC, Walsh NC, Nandivada S, Pindrus M, Hall AR, Sept D, Li J, Kalonia DS, Mayer M. Real-time shape approximation and fingerprinting of single proteins using a nanopore. NATURE NANOTECHNOLOGY 2017; 12:360-367. [PMID: 27992411 DOI: 10.1038/nnano.2016.267] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/03/2016] [Indexed: 05/18/2023]
Abstract
Established methods for characterizing proteins typically require physical or chemical modification steps or cannot be used to examine individual molecules in solution. Ionic current measurements through electrolyte-filled nanopores can characterize single native proteins in an aqueous environment, but currently offer only limited capabilities. Here we show that the zeptolitre sensing volume of bilayer-coated solid-state nanopores can be used to determine the approximate shape, volume, charge, rotational diffusion coefficient and dipole moment of individual proteins. To do this, we developed a theory for the quantitative understanding of modulations in ionic current that arise from the rotational dynamics of single proteins as they move through the electric field inside the nanopore. The approach allows us to measure the five parameters simultaneously, and we show that they can be used to identify, characterize and quantify proteins and protein complexes with potential implications for structural biology, proteomics, biomarker detection and routine protein analysis.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brandon R Bruhn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Olivia M Eggenberger
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Ryan C Rollings
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Nathan C Walsh
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Santoshi Nandivada
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Mariya Pindrus
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Adam R Hall
- Department of Biomedical Engineering and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jiali Li
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Devendra S Kalonia
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael Mayer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
38
|
Woldeyes MA, Calero-Rubio C, Furst EM, Roberts CJ. Predicting Protein Interactions of Concentrated Globular Protein Solutions Using Colloidal Models. J Phys Chem B 2017; 121:4756-4767. [DOI: 10.1021/acs.jpcb.7b02183] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahlet A. Woldeyes
- Department of Chemical and
Biomolecular Engineering. University of Delaware, Newark, Delaware 19716, United States
| | - Cesar Calero-Rubio
- Department of Chemical and
Biomolecular Engineering. University of Delaware, Newark, Delaware 19716, United States
| | - Eric M. Furst
- Department of Chemical and
Biomolecular Engineering. University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J. Roberts
- Department of Chemical and
Biomolecular Engineering. University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
39
|
Fukuda M, Watanabe A, Hayasaka A, Muraoka M, Hori Y, Yamazaki T, Imaeda Y, Koga A. Small-scale screening method for low-viscosity antibody solutions using small-angle X-ray scattering. Eur J Pharm Biopharm 2017; 112:132-137. [DOI: 10.1016/j.ejpb.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/28/2022]
|
40
|
Wang B, Zheng H, Chang MW, Ahmad Z, Li JS. Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release. Colloids Surf B Biointerfaces 2016; 145:757-767. [DOI: 10.1016/j.colsurfb.2016.05.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 11/25/2022]
|
41
|
Yang TC, Langford AJ, Kumar S, Ruesch JC, Wang W. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody. J Pharm Sci 2016; 105:2328-37. [DOI: 10.1016/j.xphs.2016.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/08/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
|
42
|
Chow CK, Allan BW, Chai Q, Atwell S, Lu J. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure. Mol Pharm 2016; 13:915-23. [DOI: 10.1021/acs.molpharmaceut.5b00817] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chi-Kin Chow
- Biotechnology
Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Barrett W. Allan
- Eli Lilly Biotechnology Center, San
Diego, California 92121, United States
| | - Qing Chai
- Eli Lilly Biotechnology Center, San
Diego, California 92121, United States
| | - Shane Atwell
- Eli Lilly Biotechnology Center, San
Diego, California 92121, United States
| | - Jirong Lu
- Biotechnology
Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
43
|
Wang S, Zhang N, Hu T, Dai W, Feng X, Zhang X, Qian F. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies. Mol Pharm 2015; 12:4478-87. [DOI: 10.1021/acs.molpharmaceut.5b00643] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shujing Wang
- School
of Pharmaceutical Sciences
and Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Ning Zhang
- China R&D and Scientific Affair, Shanghai Discovery Center, Janssen Research & Development, Johnson & Johnson, Shanghai 200030, China
| | - Tao Hu
- China R&D and Scientific Affair, Shanghai Discovery Center, Janssen Research & Development, Johnson & Johnson, Shanghai 200030, China
| | - Weiguo Dai
- Janssen Research & Development, Johnson & Johnson, Malvern, Pennsylvania 19355, United States
| | - Xiuying Feng
- China R&D and Scientific Affair, Shanghai Discovery Center, Janssen Research & Development, Johnson & Johnson, Shanghai 200030, China
| | - Xinyi Zhang
- School
of Pharmaceutical Sciences
and Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Feng Qian
- School
of Pharmaceutical Sciences
and Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Nichols P, Li L, Kumar S, Buck PM, Singh SK, Goswami S, Balthazor B, Conley TR, Sek D, Allen MJ. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. MAbs 2015; 7:212-30. [PMID: 25559441 DOI: 10.4161/19420862.2014.985504] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.
Collapse
Key Words
- APR, Aggregation Prone Region
- ASA, Accessible Surface Area
- ASAFv-HPH, hydrophilic accessible surface area of the Fv portion
- ASAFv-HYD, hydrophobic accessible surface area of the Fv portion
- CE, Capillary Electrophoresis
- CH2
- CH3, third constant domain in heavy chain
- CHO, Chinese Hamster Ovary
- D0, diffusion coefficient at infinite dilution
- DFv, dipole moment of Fv
- DLS, Dynamic Light Scattering
- ELISA, Enzyme-Linked Immunosorbent Assay
- Fab, fragment antigen binding
- Fc, fragment crystallizable
- Fv, fragment variable
- HC, heavy chain
- IgG, immunoglobulin G
- LC, light chain
- MAB 1 Control, MAB 1 expressed in CHO cells
- MD, molecular dynamics
- NTU, Nephelometric Turbidity Unit
- PEG, polyethylene glycol
- Pagg-VH, aggregation propensity of VH domain
- Pagg-VL, aggregation propensity of VL domain
- RPM, revolutions per minute
- SE-HPLC, Size Exclusion High Performance Liquid Chromatography
- Tm, thermal transition temperature
- VH, variable domain in the heavy chain
- VL, variable domain in the light chain
- ZDHH, Debye-Huckel Henry Charge
- ZFv, net charge of the Fv
- ZFv-app, apparent charge of the Fv
- aggregation prone regions
- cIEF, capillary Isoelectric Focusing
- cP, centipoise
- high concentration
- kD, protein-protein interaction parameter
- mAb, monoclonal antibody
- molecular modeling
- monoclonal antibodies
- negatively charged patches
- rational design
- second constant domain in the heavy chain
- solubility
- viscosity
- ΔGFv, change in Free energy of Fv
- η, solution viscosity
- η0, solvent viscosity
- ηrel, relative viscosity
- ξFv, zeta-potential of the Fv
Collapse
Affiliation(s)
- Pilarin Nichols
- a Biotherapeutics Pharmaceutical Sciences Research and Development; Pfizer Inc. ; Andover , MA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lavoisier A, Schlaeppi JM. Early developability screen of therapeutic antibody candidates using Taylor dispersion analysis and UV area imaging detection. MAbs 2015; 7:77-83. [PMID: 25514497 PMCID: PMC4623059 DOI: 10.4161/19420862.2014.985544] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Therapeutic antibodies represent one of the fastest growing segments in the pharmaceutical market. They are used in a broad range of disease fields, such as autoimmune diseases, cancer, inflammation and infectious diseases. The growth of the segment has necessitated development of new analytical platforms for faster and better antibody selection and characterization. Early quality control and risk assessment of biophysical parameters help prevent failure in later stages of antibody development, and thus can reduce costs and save time. Critical parameters such as aggregation, conformational stability, colloidal stability and hydrophilicity, are measured during the early phase of antibody generation and guide the selection process of the best lead candidates in terms of technical developability. We report on the use of a novel instrument (ActiPix/Viscosizer) for measuring both the hydrodynamic radius and the absolute viscosity of antibodies based on Taylor dispersion analysis and UV area imaging. The looped microcapillary-based method combines low sample consumption, fast throughput and high precision compared to other conventional methods. From a random panel of 130 antibodies in the early selection process, we identified some with large hydrodynamic radius outside the normal distribution and others with non-Gaussian Taylor dispersion profiles. The antibodies with such abnormal properties were confirmed later in the selection process to show poor developability profiles. Moreover, combining these results with those of the viscosity measurements at high antibody concentrations allows screening, with limited amounts of materials, candidates with potential issues in pre-formulation development.
Collapse
Affiliation(s)
- Alexandra Lavoisier
- a Biologics Center ; Novartis Institutes for Biomedical Research ; Basel , Switzerland
| | | |
Collapse
|
46
|
Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H. Developability Assessment During the Selection of Novel Therapeutic Antibodies. J Pharm Sci 2015; 104:1885-1898. [DOI: 10.1002/jps.24430] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/02/2023]
|
47
|
Razinkov VI, Treuheit MJ, Becker GW. Accelerated formulation development of monoclonal antibodies (mAbs) and mAb-based modalities: review of methods and tools. ACTA ACUST UNITED AC 2015; 20:468-83. [PMID: 25576149 DOI: 10.1177/1087057114565593] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
More therapeutic monoclonal antibodies and antibody-based modalities are in development today than ever before, and a faster and more accurate drug discovery process will ensure that the number of candidates coming to the biopharmaceutical pipeline will increase in the future. The process of drug product development and, specifically, formulation development is a critical bottleneck on the way from candidate selection to fully commercialized medicines. This article reviews the latest advances in methods of formulation screening, which allow not only the high-throughput selection of the most suitable formulation but also the prediction of stability properties under manufacturing and long-term storage conditions. We describe how the combination of automation technologies and high-throughput assays creates the opportunity to streamline the formulation development process starting from early preformulation screening through to commercial formulation development. The application of quality by design (QbD) concepts and modern statistical tools are also shown here to be very effective in accelerated formulation development of both typical antibodies and complex modalities derived from them.
Collapse
|