1
|
Othman AMM, Abdallah OY, Elnaggar YSR. Topical hyalubilosomes of dantrolene sodium as muscle targeted nanocarrier for muscle spasms: fabrication, ex-vivo permeation and behavioral animal model. Pharm Dev Technol 2025:1-14. [PMID: 40371687 DOI: 10.1080/10837450.2025.2504999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
Topical muscle relaxants are gaining interest in pharmaceuticals. Dantrolene sodium (DS), an FDA-approved relaxant targeting ryanodine receptors, is limited in topical use by poor physicochemical properties, delayed onset, and hepatotoxicity. This study introduces the first optimized hyalubilosome-based nanocarrier for non-invasive DS delivery. Two anionic surfactants were used as edge activators to improve drug encapsulation and permeation. The optimized nanocarrier had a spherical shape, 165 nm particle size, -31.2 mV zeta potential, and 97.47% entrapment efficiency. Ex vivo studies showed superior permeation compared to DS suspension (10% in water, pH 6.8), with 30% of the dose permeating within 15 min. In vivo, efficacy was tested in Wistar mice using the Straub tail test with a single 30 mg/kg topical dose. Behavioral analysis showed a fivefold increase in muscle relaxation vs. untreated controls (p < 0.0001). The formulation had an onset within one minute and complete relief within two minutes, unlike the conventional topical DS, which showed no effect for 90 min. This highlights hyaluronic acid-based transbilosomes as a promising nanoplatform for fast, effective topical DS delivery and potential muscle spasm treatment.
Collapse
Affiliation(s)
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Head of Research & International Publishing Administration, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
2
|
Abd El Hady WE, Shahin MA, Omar AA, Hassan MAE, Abdelnour SA, Elkashef AA, Khalil WA. Development of Ziziphus spina-christi (Sidr) leaf extract-loaded hyaluosomes and their potential in mitigating oxidative stress during semen cryopreservation. Int J Biol Macromol 2025; 305:140928. [PMID: 39956224 DOI: 10.1016/j.ijbiomac.2025.140928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
This study developed and characterized Ziziphus spina-christi leaf extract (ZSCLE)-loaded hyaluosomes (ZSCLE-HS) and assessed their impact on improving assisted reproductive technology such as semen cryopreservation. The ZSCLE was prepared, and the active ingredients were identified and quantified using HPLC. The optimized ZSCLE-HS was assessed for entrapment efficiency (EE %), particle size, TEM, FTIR, XRD analysis, and stability up to 3 months at 4 °C. The ex vivo protective function of the optimized ZSCLE-HS on cryopreserved ram sperm was evaluated. The optimized ZSCLE-HS was spherical in shape with an average particle size of 426.16 ± 31.79 nm, a zeta potential of -41.03 ± 0.4 mV, a polydispersity index of 0.20 ± 0.1, and % EE of 87.08 ± 2.82. Ex-vivo trials demonstrated that ZSCLE-HS (50-100 μg/mL) supplementation in freezing extenders significantly enhanced cryopreserved ram sperm quality by improving sperm function, kinematics, and antioxidant capacity, while mitigating apoptosis, lipid peroxidation, and acrosome damage, and preserving sperm ultrastructure. Molecular docking assays predicted strong binding affinities between naringenin and the sperm proteins GPx and NADH. Our ex-vivo findings suggest that ZSCLE-HS has the potential to alleviate oxidative stress, enhance ram sperm quality following cryopreservation, and ultimately improve the success rates of assisted reproductive technologies.
Collapse
Affiliation(s)
- Walaa E Abd El Hady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt.
| | - Mohamed A Shahin
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; Electron Microscope Unit, Mansoura University, Mansoura 35516, Egypt.
| | - Alaa A Omar
- Nanomedicine Research Unit, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt.
| | - Mahmoud A E Hassan
- Animal Production Research Institute, Agriculture Research Centre, Ministry of Agriculture, Dokki, Giza 12619, Egypt.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Amany A Elkashef
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
3
|
El-Haddad ME, El-Refaie WM, Hammad GO, El-Massik MA. Targeted non-invasive Metformin-Curcumin co-loaded nanohyaluosomes halt osteoarthritis progression and improve articular cartilage structure: A preclinical study. Int J Pharm 2024; 666:124845. [PMID: 39427700 DOI: 10.1016/j.ijpharm.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects the quality of life in elderly and young populations. Current therapies using corticosteroids and non-steroidal anti-inflammatory drugs via parenteral or oral routes show limited ability to retard progression of the disease and achieve long term effectiveness and safety. Herein, the potential of MT-Cur combinatorial nano-formulations in OA management was explored for the first time. MT-Cur loaded nanohyaluosomes (MT-Cur-HL1) were designed for topical administration of the combined therapy in OA. The optimized MT-Cur-HL1 showed particle size 247.7 ± 3.7 nm, zeta potential -37.3 ± 0.4 mV; and entrapment efficiency (%EE) 70.22 %±0.303 and 76.7 %±0.077 for MT and Cur, respectively. MT-Cur-HL1 exhibited sustained drug release over 24 h and were stable over 3 months at 4 °C in terms of P.S., ZP and %EE. A detailed preclinical study, using MIA-induced osteoarthritis rat model, revealed the most significant anti-arthritic effect and halted OA progression of MT-Cur-HL1. This was proved to be mainly through the potentiation of p-AMPK signaling that ultimately led to suppression of its downstream TLR4/ NF-κB signaling pathway with subsequent reduction in MMP13 and ADAMTS5 induced chondrocytes degeneration. This study proved that this trajectory effectively promotes a significant improvement in the articular cartilage structure and reinforcement of joint mobility with an efficient antinociceptive effect. In conclusion, the novel MT-Cur coloaded nanohyaluosomes offer a promising non-invasive approach for the local management of OA.
Collapse
Affiliation(s)
- Mennatallah E El-Haddad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ghada O Hammad
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Magda A El-Massik
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
4
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
5
|
Moustafa MA, El-Refaie WM, Elnaggar YSR, El-Mezayen NS, Awaad AK, Abdallah OY. Fucoidan/hyaluronic acid cross-linked zein nanoparticles loaded with fisetin as a novel targeted nanotherapy for oral cancer. Int J Biol Macromol 2023; 241:124528. [PMID: 37086764 DOI: 10.1016/j.ijbiomac.2023.124528] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Fisetin (FS) is an anticancer drug having potential role in oral tumors management. However, its clinical application is limited due to its hydrophobicity and instability. Bioactive polymers-based nanosystems have a great potential in cancer therapy. Herein, different biopolymers were selected for their anticancer activity and targeting ability for nanoparticles preparation namely; fucoidan (FU), zein (Zn) and hyaluronic acid (HA). The selected FS-loaded cross-linked Zn nanoparticles (ZFH) which contains HA& FU for Zn nanoparticles stabilization showed the most suitable particle size (196 ± 6.53 nm), mean surface net charge (-38.8 ± 1.47 mV) and entrapment efficiency (98 ± 1.2 %). This is the first study to utilize both HA &FU not only for stabilization but also for dual targeting effect due to their targeting ability to multiple tumor targets. In-vitro anticancer activity of ZHF revealed remarkable uptake by SCC-4 cells with significant cytotoxic action. Further, ZHF was appraised using 4-nitroquinoline 1-oxide (4-NQO)-induced oral cancer in-vivo; ZHF significantly reduced OSCC-specific serum biomarkers levels, histologic tumor grade and increased caspase-3 level. Moreover, potential of destroying two key tumor regulatory cells; TECs and CSCs, was evaluated using their specific markers. The elaborated ZFH nanoparticles could be considered as promising targeted nanotherapy for oral cancer treatment with enhanced efficacy and survival rate.
Collapse
Affiliation(s)
- Mona A Moustafa
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt.
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | | | - Ashraf K Awaad
- Center for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
6
|
Salathia S, Gigliobianco MR, Casadidio C, Di Martino P, Censi R. Hyaluronic Acid-Based Nanosystems for CD44 Mediated Anti-Inflammatory and Antinociceptive Activity. Int J Mol Sci 2023; 24:ijms24087286. [PMID: 37108462 PMCID: PMC10138575 DOI: 10.3390/ijms24087286] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The nervous and immune systems go hand in hand in causing inflammation and pain. However, the two are not mutually exclusive. While some diseases cause inflammation, others are caused by it. Macrophages play an important role in modulating inflammation to trigger neuropathic pain. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that has a well-known ability to bind with the cluster of differentiation 44 (CD44) receptor on classically activated M1 macrophages. Resolving inflammation by varying the molecular weight of HA is a debated concept. HA-based drug delivery nanosystems such as nanohydrogels and nanoemulsions, targeting macrophages can be used to relieve pain and inflammation by loading antinociceptive drugs and enhancing the effect of anti-inflammatory drugs. This review will discuss the ongoing research on HA-based drug delivery nanosystems regarding their antinociceptive and anti-inflammatory effects.
Collapse
Affiliation(s)
- Saniya Salathia
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
| | | | | | - Piera Di Martino
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
- Department of Pharmacy, Università "G. d'Annunzio" di Chieti e Pescara, 66100 Chieti, Italy
| | - Roberta Censi
- School of Pharmacy, Università di Camerino, 62032 Camerino, Italy
| |
Collapse
|
7
|
Wen J, Li H, Dai H, Hua S, Long X, Li H, Ivanovski S, Xu C. Intra-articular nanoparticles based therapies for osteoarthritis and rheumatoid arthritis management. Mater Today Bio 2023; 19:100597. [PMID: 36910270 PMCID: PMC9999238 DOI: 10.1016/j.mtbio.2023.100597] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are chronic and progressive inflammatory joint diseases that affect a large population worldwide. Intra-articular administration of various therapeutics is applied to alleviate pain, prevent further progression, and promote cartilage regeneration and bone remodeling in both OA and RA. However, the effectiveness of intra-articular injection with traditional drugs is uncertain and controversial due to issues such as rapid drug clearance and the barrier afforded by the dense structure of cartilage. Nanoparticles can improve the efficacy of intra-articular injection by facilitating controlled drug release, prolonged retention time, and enhanced penetration into joint tissue. This review systematically summarizes nanoparticle-based therapies for OA and RA management. Firstly, we explore the interaction between nanoparticles and joints, including articular fluids and cells. This is followed by a comprehensive analysis of current nanoparticles designed for OA/RA, divided into two categories based on therapeutic mechanisms: direct therapeutic nanoparticles and nanoparticles-based drug delivery systems. We highlight nanoparticle design for tissue/cell targeting and controlled drug release before discussing challenges of nanoparticle-based therapies for efficient OA and RA treatment and their future clinical translation. We anticipate that rationally designed local injection of nanoparticles will be more effective, convenient, and safer than the current therapeutic approach.
Collapse
Affiliation(s)
- Juan Wen
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huan Dai
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Shu Hua
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Corresponding author. School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Corresponding author. School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia.
| |
Collapse
|
8
|
Hendawy OM, Al-Sanea MM, Elbargisy RM, Rahman HU, Gomaa HAM, Mohamed AAB, Ibrahim MF, Kassem AM, Elmowafy M. Development of Olive Oil Containing Phytosomal Nanocomplex for Improving Skin Delivery of Quercetin: Formulation Design Optimization, In Vitro and Ex Vivo Appraisals. Pharmaceutics 2023; 15:1124. [PMID: 37111610 PMCID: PMC10145320 DOI: 10.3390/pharmaceutics15041124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The objective of the current work was to fabricate, optimize and assess olive oil/phytosomal nanocarriers to improve quercetin skin delivery. Olive oil/phytosomal nanocarriers, prepared by a solvent evaporation/anti-solvent precipitation technique, were optimized using a Box-Behnken design, and the optimized formulation was appraised for in vitro physicochemical characteristics and stability. The optimized formulation was assessed for skin permeation and histological alterations. The optimized formulation (with an olive oil/PC ratio of 0.166, a QC/PC ratio of 1.95 and a surfactant concentration of 1.6%), and with a particle diameter of 206.7 nm, a zeta potential of -26.3 and an encapsulation efficiency of 85.3%, was selected using a Box-Behnken design. The optimized formulation showed better stability at ambient temperature when compared to refrigerating temperature (4 °C). The optimized formulation showed significantly higher skin permeation of quercetin when compared to an olive-oil/surfactant-free formulation and the control (~1.3-fold and 1.9-fold, respectively). It also showed alteration to skin barriers without remarkable toxicity aspects. Conclusively, this study demonstrated the use of olive oil/phytosomal nanocarriers as potential carriers for quercetin-a natural bioactive agent-to improve its skin delivery.
Collapse
Affiliation(s)
- Omnia M. Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F. Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt
| | - Abdulsalam M. Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| |
Collapse
|
9
|
Sheweita SA, El-Masry YM, Zaghloul TI, Mostafa SK, Elgindy NA. Preclinical studies on melanogenesis proteins using a resveratrol-nanoformula as a skin whitener. Int J Biol Macromol 2022; 223:870-881. [PMID: 36370858 DOI: 10.1016/j.ijbiomac.2022.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
A naturally occurring polyphenol called trans-resveratrol has received a lot of attention due to its possible health advantages for humans. The low solubility of trans-resveratrol and its isomerization upon UV exposure strongly limit its application as a skin-whitening agent. In the present study, to increase trans-resveratrol solubility, a new nanoformula was created by combining hydrophilic surfactants and oils. Trans-Resveratrol nanoformula has been prepared, characterized, and applied as a skin-whitening agent on the dorsal skin of Guinea pigs. The optimized trans-resveratrol nanoformula with a particle size of 63.49 nm displayed a single peak and a polydispersity index [0.36 ± 0.02]. In addition, the zeta potential of the optimized formula was -30.4 mV, confirming the high stability of this nanoformula. The melanin contents in the trans-resveratrol nanoformula-treated group were substantially lower than those of the control and the blank nanoformula-treated groups after staining of the dorsal skins [black areas] of guinea pigs with Fontana Mountain dye. The pigmentation index in the control, blank nanoformula, and optimized trans-resveratrol nanoformula were 329.4 ± 36.9, 335.8 ± 71.4, and 124.8 ± 19.6 respectively. Confirming this finding, immunohistochemistry analysis of skin tissues revealed that the expressions of melanogenesis-regulating proteins such as tyrosinase and microphthalmia-associated transcription factor were down-regulated. The safety of topical application of trans-resveratrol nanoformula was validated by no changes in free radical levels and oxidative stress markers proteins in the livers and kidneys of guinea pigs at the end of the experiment. Conclusions: A novel trans-resveratrol nanoformula as well as the mechanism whereby it promotes skin whitening effects were presented. Furthermore, the study illustrated that trans-resveratrol nanoformula is safe, non-toxic, and can be applied for skin whitening, although more research on human skin is needed.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, KSA; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt.
| | - Yassin M El-Masry
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Taha I Zaghloul
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Shaimaa K Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamesa, Mansoura, Egypt
| | - Nazik A Elgindy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
10
|
Elaboration of novel gel-core oleosomes encapsulating phytoconstituent for targeted topical delivery in a vitiligo-induced mouse model: Focus on antioxidant and anti-inflammatory pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Yang X, Xia H, Li Y, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Chu Z. In vitro and Ex vivo Antioxidant Activity and Sustained Release Properties of Sinomenine-Loaded Liposomes-in-Hydrogel Biomaterials Simulating Cells-in-Extracellular Matrix. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sinomenine (SIN), a natural product, has been used to treat rheumatoid arthritis (RA) in China for thousands of years. SIN has been developed for the treatment of RA by way of tablets and injections, but both dosage forms have been associated with severe adverse reactions. Making SIN into liposomes-in-hydrogel biomaterials for external use has a good slow-release effect and can play an important role in avoiding the first-pass effect, gastrointestinal reaction, and increasing the local action time of drugs. SIN-loaded liposomes were formed by the thin-film dispersion method, then SIN-loaded liposomes-in-hydrogels were prepared by combining the SIN-L with hyaluronic acid (HA) hydrogels. In this paper, the basic characteristics, In vitro and Ex vivo release, and antioxidant activity of SIN-loaded liposomes-in-hydrogels were studied. The results showed that SIN-loaded liposomes-in-hydrogels have good sustained-release and antioxidant effects, and the preparation is expected to be a good biomaterial.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yufan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei, People's Republic of China
- School of life science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Zhaoxing Chu
- Hefei Yigong Pharmaceutical Co., Ltd, Hefei, People's Republic of China
| |
Collapse
|
12
|
Komeil IA, Abdallah OY, El-Refaie WM. Surface modified Genistein phytosome for Breast Cancer Treatment: In-vitro Appraisal, Pharmacokinetics, and In-vivo Antitumor Efficacy. Eur J Pharm Sci 2022; 179:106297. [PMID: 36156294 DOI: 10.1016/j.ejps.2022.106297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
Based on phytosomes advantages over liposomes, hyaluronic acid (HA) with/out pegylated phospholipid was used to develop surface-modified genistein (Gen) phytosome as Gen pegylated hyaluophytosomes (G-PHA) and Gen hyaluophytosomes (G-HA) as novel delivery systems for breast cancer treatment. In this study, in-vitro characterization of G-HA and G-PHA shows PS 144.2 ±1.266 nm and 220.3 ±2.51 nm, ZP -30.9 ±0.75 and -32.06 ±0.305 respectively. Morphological elucidation shows HA covers the surface of G-HA and the presence of a transparent layer of PEG surrounding G-PHA. In-vitro release shows a significant slow Gen release from G-HA, and G-PHA compared to Gen solution and Gen phytosomes. In-vivo bioavailability data shows improvement in bioavailability for G-HA and G-PHA compared to Gen suspension (AUC0- T: :3.563 ±0.067, 2.092 ±0.058, 0.374 ±0.085 µg/ml*h respectively). Therapeutic evaluation of the prepared targeted formulations was carried out by subcutaneous injection in an EAC-induced breast cancer model in mice. G-HA and G-PHA show a promising chemotherapeutic effect in terms of lowering the tumor size and tumor biomarkers (CEA: -34.6, -44.7 & CA15.3: -77.8, -81.6 respectively). This reduction in their values compared to Gen phytosomes, Gen suspension, and the control group is attributed to high Gen accumulation at the target organ owing to targeting properties of HA that are used in phytosomal surface modification in G-HA. Additionally, the presence of MPEG2000-DSPE in G-PHA tends to improve interstitium lymphatic drainage following SC administration, resulting in maximizing the therapeutic benefits of breast cancer despite the difference in pharmacokinetics behavior compared to G-HA. These formulations can be further studied for metastatic breast cancer.
Collapse
Affiliation(s)
- Ibrahim A Komeil
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
13
|
Shang H, Younas A, Zhang N. Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1778. [PMID: 35112483 DOI: 10.1002/wnan.1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Arthritic injuries happen frequently during a lifetime due to accidents, sports, aging, diseases, etc. Such injuries can be cartilage/bone injuries, tendon injuries, ligament injuries, inflammation, pain, and/or synovitis. Oral and injective administration of therapeutics are typically used but cause many side effects. Transdermal administration is an alternative route for safe and efficient delivery. Transdermal formulations of non-steroidal anti-inflammatory drugs have been available on market for years and show promising efficacy in pain relieving, inflammation alleviation, infection control, and so on. Innovative transdermal patches, gels/films, and microneedles have also been widely explored as formulations to deliver therapeutics to combat arthritic injuries. However, transdermal formulations that halt disease progression and promote damage repair are translated slowly from lab bench to clinical applications. One major reason is that the skin barrier and synovial capsule barrier limit the efficacy of transdermal delivery. Recently, many nanocarriers, such as nanoparticles, nanolipids, nanoemulsions, nanocrystals, exosomes, etc., have been incorporated into transdermal formulations to advance drug delivery. The combined transdermal formulations show promising safety and efficacy. Therefore, this review will focus on stating the current development of nanomedicine-based transdermal formulations for the treatment of arthritic injuries. The advances, limitations, and future perspectives in this field will also be provided to inspire future studies and accelerate clinical translational studies. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Hongtao Shang
- School of Sports Sciences (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Ayesha Younas
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Jiang J, Wu H, Zou Z. In vitro and in vivo evaluation of a novel lidocaine-loaded cubosomal gel for prolonged local anesthesia. J Biomater Appl 2022; 37:315-323. [PMID: 35373629 DOI: 10.1177/08853282221087346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marketed lidocaine dosage forms (such as ointment, gels, and injections) used to manage acute and chronic pain showed a short duration of action (<2 h). In this study, a lidocaine-loaded cubosomal gel was prepared to sustain the release of lidocaine to prolong the local anesthetic effect (high drug retention in the skin). Lidocaine-loaded cubosomal gels were prepared by melt emulsification and sonication using Pluronic F127 and DL-α-monoolein (at different levels). The cubosomal gels were characterized by morphology, size, zeta potential, entrapment efficacy, assay, viscosity, pH, and texture profiles. Ex vivo lidocaine permeation and retention studies were performed using Sprague–Dawley rat skin. Transmission electron microscopy images confirmed the bi-continuous liquid crystalline phase with a honeycomb cubosome structure. The cubosomal particle size (103–227 nm), viscosity (13,524–15,627cp), and entrapment efficacy (78.4–94.7%) increase with the level of monoolein. The ex-vivo permeation study showed a biphasic release pattern, with lidocaine cleared from ointment within 4 h (97.9% cumulative release), while cubosomal gels showed sustained release up to 24 h (53.33–98.86% cumulative release). A skin retention study demonstrated that cubosomes can increase (up to 28-fold) the lidocaine content in the skin (4.56 mg) compared to ointment (0.19 mg). A rabbit skin irritation study showed no sign of irritation after the application of cubosomal gel. In the radiant heat tail-flick study, the local anesthetic effect of lidocaine from the cubosomal gel was sustained for up to 16 h with 1.43-fold higher efficacy than marketed ointment. In conclusion, the study demonstrated the potential of cubosomal nanoparticle-laden gel to sustain the release of lidocaine for prolonging local anesthetic effects for pain management.
Collapse
Affiliation(s)
- Junwen Jiang
- Anesthesiology Department, The Second People's Hospital of Jingdezhen, Jing'de'zhen, Jiangxi, China
| | - Huihua Wu
- Anesthesiology Department, The Second People's Hospital of Jingdezhen, Jing'de'zhen, Jiangxi, China
| | - Zhenmin Zou
- Anesthesiology Department, The Second People's Hospital of Jingdezhen, Jing'de'zhen, Jiangxi, China
| |
Collapse
|
15
|
Elhalmoushy PM, Elsheikh MA, Matar NA, El-Hadidy WF, Kamel MA, Omran GA, Elnaggar YS. Novel Berberine-Loaded Hyalurosomes as A Promising Nanodermatological Treatment for Vitiligo: Biochemical, Biological and Gene Expression Studies. Int J Pharm 2022; 615:121523. [DOI: 10.1016/j.ijpharm.2022.121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 01/16/2023]
|
16
|
Diacerein-Loaded Hyaluosomes as a Dual-Function Platform for Osteoarthritis Management via Intra-Articular Injection: In Vitro Characterization and In Vivo Assessment in a Rat Model. Pharmaceutics 2021; 13:pharmaceutics13060765. [PMID: 34063749 PMCID: PMC8223785 DOI: 10.3390/pharmaceutics13060765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
The application of intra-articular injections in osteoarthritis management has gained great attention lately. In this work, novel intra-articular injectable hyaluronic acid gel-core vesicles (hyaluosomes) loaded with diacerein (DCN), a structural modifying osteoarthritis drug, were developed. A full factorial design was employed to study the effect of different formulation parameters on the drug entrapment efficiency, particle size, and zeta potential. Results showed that the prepared optimized DCN- loaded hyaluosomes were able to achieve high entrapment (90.7%) with a small size (310 nm). The morphology of the optimized hyaluosomes was further examined using TEM, and revealed spherical shaped vesicles with hyaluronic acid in the core. Furthermore, the ability of the prepared DCN-loaded hyaluosomes to improve the in vivo inflammatory condition, and deterioration of cartilage in rats (injected with antigen to induce arthritis) following intra-articular injection was assessed, and revealed superior function on preventing cartilage damage, and inflammation. The inflammatory activity assessed by measuring the rat’s plasma TNF-α and IL-1b levels, revealed significant elevation in the untreated group as compared to the treated groups. The obtained results show that the prepared DCN-loaded hyaluosomes would represent a step forward in the design of novel intra articular injection for management of osteoarthritis.
Collapse
|
17
|
Lipid nanovesicles for biomedical applications: 'What is in a name'? Prog Lipid Res 2021; 82:101096. [PMID: 33831455 DOI: 10.1016/j.plipres.2021.101096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Vesicles, generally defined as self-assembled structures formed by single or multiple concentric bilayers that surround an aqueous core, have been widely used for biomedical applications. They can either occur naturally (e.g. exosomes) or be produced artificially and range from the micrometric scale to the nanoscale. One the most well-known vesicle is the liposome, largely employed as a drug delivery nanocarrier. Liposomes have been modified along the years to improve physicochemical and biological features, resulting in long-circulating, ligand-targeted and stimuli-responsive liposomes, among others. In this process, new nomenclatures were reported in an extensive literature. In many instances, the new names suggest the emergence of a new nanocarrier, which have caused confusion as to whether the vesicles are indeed new entities or could simply be considered modified liposomes. Herein, we discussed the extensive nomenclature of vesicles based on the suffix "some" that are employed for drug delivery and composed of various types and proportions of lipids and others amphiphilic compounds. New names have most often been selected based on changes of vesicle lipid composition, but the payload, structural complexity (e.g. multicompartment) and new/improved proprieties (e.g. elasticity) have also inspired new vesicle names. Based on this discussion, we suggested a rational classification for vesicles.
Collapse
|
18
|
Komeil IA, El-Refaie WM, Gowayed MA, El-Ganainy SO, El Achy SN, Huttunen KM, Abdallah OY. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. Int J Pharm 2021; 601:120564. [PMID: 33812970 DOI: 10.1016/j.ijpharm.2021.120564] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022]
Abstract
Genistein (Gen) is one of the most potent soy isoflavones used for hepatocellular carcinoma (HCC) treatment. Low aqueous solubility and first-pass metabolism are the main obstacles resulting in low Gen oral bioavailability. The current study aims to introduce phytosomes as an approach to improve Gen solubility, protect it from metabolism by complexation with phospholipids (PL), and get used to PL in Gen lymphatic delivery. Different forms of PL namely: Lipiod® S100, Phosal® 53 MCT, and Phosal®75 SA were used in phytosomes preparation GP, GPM, and GPL respectively. The effect of formulation components on Gen absorption, metabolism, and liver accumulation was evaluated following oral administration to rats. Cytotoxicity and cellular uptake studies were applied on HepG2 cells and in-vivo anti-tumor studies were applied to the DEN-mice model. Results revealed that GP and GPL remarkably accumulated Gen aglycone in hepatic cells and minimized the metabolic effect on Gen. They significantly increased the intracellular accumulation of Gen in its complex form in HepG2 cells. Their cytotoxicity is time-dependent according to the complex stability. The enhanced in-vivo anti-tumor effect was observed for GP and GPL compared to Gen suspension on DEN-induced HCC in mice. In conclusion, Gen-phytosomes can represent a promising approach for liver cancer treatment.
Collapse
Affiliation(s)
- Ibrahim A Komeil
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar N El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, Kuopio, Finland
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Gelation of the internal core of liposomes as a strategy for stabilization and modified drug delivery I. Physico-chemistry study. Int J Pharm 2020; 585:119467. [PMID: 32497730 DOI: 10.1016/j.ijpharm.2020.119467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/12/2023]
Abstract
Since the application of nanotechnology to drug delivery, both polymer-based and lipid-based nanocarriers have demonstrated clinical benefits, improving both drug efficacy and safety. However, to further address the challenges of the drug delivery field, hybrid lipid-polymer nanocomposites have been designed to merge the beneficial features of both polymer-based and lipid-based delivery systems in a single nanocarrier. Within this scenario, this work is aimed at developing novel hybrid vesicles following the recent strategy of modifying the internal structure of liposomes. Specifically, polyethylene glycol-dimethacrylate (PEG-DMA, molecular weight 750 or 4000), was entrapped within unilamellar liposomes made of hydrogenated soybean phosphatidylcholine/cholesterol, and photo-crosslinked, in order to transform the aqueous inner core of liposomes into a soft and elastic hydrogel. After appropriate optimization of the preparation and gelation procedures, the primary objective of this work was to analyze the effect of the molecular weight of PEG-DMA on the main properties of these Gel-in-Liposome (GiL) systems. Indeed, by varying the molecular weight of PEG-DMA also its hydrophilic/lipophilic balance was modified and different arrangements of the polymer within the structure of liposomes as well as different interaction with their membrane were obtained. Both polymers were found in the inner core of the liposomes, however, the more hydrophobic PEG750-DMA also formed localized clusters within the liposome membrane, whereas the more hydrophilic PEG4000-DMA formed a polymeric corona on the vesicle surface. Preliminary cytotoxicity studies were also performed to evaluate the biological safety of these GiL systems and their suitability as innovative materials drug delivery application.
Collapse
|
20
|
Kandil LS, Hanafy AS, Abdelhady SA. Galantamine transdermal patch shows higher tolerability over oral galantamine in rheumatoid arthritis rat model. Drug Dev Ind Pharm 2020; 46:996-1004. [DOI: 10.1080/03639045.2020.1764025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lamia Said Kandil
- Department of Pharmacology and Therapeutics, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira Sayed Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Sherien A. Abdelhady
- Department of Pharmacology and Therapeutics, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
21
|
Kawar D, Abdelkader H. Hyaluronic acid gel-core liposomes (hyaluosomes) enhance skin permeation of ketoprofen. Pharm Dev Technol 2019; 24:947-953. [DOI: 10.1080/10837450.2019.1572761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dana Kawar
- School of Chemistry, Pharmacy and Life Science, Kingston University London, London, UK
| | - Hamdy Abdelkader
- Faculty of Pharmacy, Pharmaceutics Department, Minia University, Minia, Egypt
| |
Collapse
|
22
|
Improved oral bioavailability of the anticancer drug catechin using chitosomes: Design, in-vitro appraisal and in-vivo studies. Int J Pharm 2019; 565:488-498. [DOI: 10.1016/j.ijpharm.2019.05.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
|
23
|
Moustafa MA, El-Refaie WM, Elnaggar YSR, Abdallah OY. Gel in core carbosomes as novel ophthalmic vehicles with enhanced corneal permeation and residence. Int J Pharm 2018; 546:166-175. [PMID: 29778824 DOI: 10.1016/j.ijpharm.2018.05.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
Carbopol is a good bio-adhesive polymer that increases the residence time in the eye. However, the effect of blinking and lacrimation still reduce the amount of polymer and the incorporated drug available for bioadhesion. Gel-core liposomes are advanced systems offering benefits making it a good tool for improved ocular drug delivery and residence time. Incorporation of carbopol in gel-core liposomes and their potential in ocular delivery have not so far been investigated. Fluconazole (FLZ) was selected as a challenging important ocular antifungal suffering from poor corneal permeation and short residence time. In this study, gel-core carbosomes have been elaborated as novel carbopol-based ophthalmic vehicles to solve ocular delivery obstacles of FLZ and to sustain its effect. Full in vitro appraisal was performed considering gel-core structure, entrapment efficiency, particle size and stability of the vesicles as quality attributes. Structure elucidation of the nanocarrier was performed using optical, polarizing and transmission electron microscopy before and after Triton-X100 addition. Ex-vivo ocular permeation and in vivo performance were investigated on male albino rabbits. Optimized formulation (CBS5) showed gel-core structure, nanosize (339.00 ± 5.50 nm) and not defined before (62.00% ± 1.73) entrapment efficiency. Cumulative amount of CBS5 permeated ex-vivo after 6 h, was 2.43 and 3.43 folds higher than that of conventional liposomes and FLZ suspension, respectively. In-vivo corneal permeation of CBS5 showed significantly higher AUC0-24 h (487.12 ± 74.80) compared to that of FLZ suspension (204.34 ± 7.46) with longer residence time in the eye lasts for more than 18 h. In conclusion, novel gel-core carbosomes could successfully be used as a promising delivery system for chronic ocular diseases.
Collapse
Affiliation(s)
- Mona A Moustafa
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt.
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
24
|
Shalaby TI, El-Refaie WM. Bioadhesive Chitosan-Coated Cationic Nanoliposomes With Improved Insulin Encapsulation and Prolonged Oral Hypoglycemic Effect in Diabetic Mice. J Pharm Sci 2018; 107:2136-2143. [PMID: 29689252 DOI: 10.1016/j.xphs.2018.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
Oral administration of insulin is hampered by the lack of carriers that can efficiently achieve high encapsulation, avoid gastric degradation, overcome mucosal barriers, and prolong the hypoglycemic effect. Chitosan (CS)-coated insulin-loaded cationic liposomes have been developed and optimized for improved oral delivery. Liposomes were prepared cationic to improve insulin encapsulation. CS was selected as a mucoadhesive coat to prolong the system's residence and absorption. The performance of CS-coated liposomes compared with uncoated liposomes was examined in vitro, ex vivo, and in vivo in streptozotocin-induced diabetic mice. Free uncoated liposomes showed high positive zeta potential of +58.8 ± 2.2 mV that reduced (+29.9 ± 1.4 mV) after insulin encapsulation, confirming the obtained high entrapment efficiency of 87.5 ± 0.6%. CS-coated liposomes showed nanosize of 439.0 ± 12.3 nm and zeta potential of +60.5 ± 1.9 mV. In vitro insulin release was limited to 18.9 ± 0.35% in simulated gastric fluid, whereas in simulated intestinal fluid, 73.33 ± 0.68% was released after 48 h from CS-coated liposomes. Ex vivo intestinal mucoadhesion showed increased tissue residence of CS-coated liposomes compared with uncoated liposomes. A striking reduction in the glucose level was observed 1 h after oral administration of CS-coated liposomes and maintained up to 8 h (p <0.01 vs. insulin solution or uncoated liposomes) within the normal value 129.29 ± 3.15 mg/dL. In conclusion, CS-coated insulin-loaded cationic liposomes improved loading efficiency with promising prolonged pharmacological effect.
Collapse
Affiliation(s)
- Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt.
| |
Collapse
|
25
|
Moustafa MA, Elnaggar YS, El-Refaie WM, Abdallah OY. Hyalugel-integrated liposomes as a novel ocular nanosized delivery system of fluconazole with promising prolonged effect. Int J Pharm 2017; 534:14-24. [DOI: 10.1016/j.ijpharm.2017.10.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/21/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022]
|
26
|
El-Mezayen NS, El-Hadidy WF, El-Refaie WM, Shalaby T, Khattab MM, El-Khatib AS. Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: A novel strategy with potent efficacy in experimental liver fibrosis. J Control Release 2017; 266:226-237. [DOI: 10.1016/j.jconrel.2017.09.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
|
27
|
Gumustas SA, Oznam K, Mutlu CA, Kaya YE, Yilmaz I, Isyar M, Guzelant AY, Guler O, Akkaya S, Mahirogullari M. Are We Using Slow-Acting Symptomatic Chondroprotective Drugs Conscious Enough? Open Orthop J 2017; 11:533-540. [PMID: 28694893 PMCID: PMC5470068 DOI: 10.2174/1874325001711010533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/20/2017] [Accepted: 05/14/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Osteochondral injuries constitute an entity that is widespread and can be seen in patients of all ages. Actual treatment modalities aim to relieve pain, obtain full range of movement of the joint, and improve the quality of life. There are many slow-acting chondroprotective agents prevalently used in the United States that are classified as nutritional support but not as medicines . This study presents the importance of clinical adverse effect profiles as well as the pharmacological mechanism of action and application of combinations of drugs that are widely prescribed and not subjected to control. Methods: Electronic databases were searched with keywords about the chondroprotective drugs without any language restriction. Evaluations of the descriptive statistics were represented via Microsoft Office Excel 2010 lists in the form of a mean±standard deviation or frequency (%). The first evaluation showed that 1502 studies were potentially relevant. Following exclusion of the 1277 studies which were not clinical, full versions of the remaining 225 studies were subjected to further evaluation. No controlled, blinded, randomized and/or comparative studies met the inclusion criteria of the study, and no studies evaluated the comparative clinical results of the hyaluronan of different molecular weights. Results: The findings of this study concluded that especially when prescribing drugs with ingredients like GS and CS, many patients’ pre-existing conditions must be considered, such as whether the patient has a glucose intolerance or not. Additionally, mineral toxication should be considered since the drugs contain minerals, and after the application of injected hyaluronan, complications should be considered. Conclusion: Clinical, controlled and comparative studies about the use of chondroprotective drugs must be performed to define the benefits of these drugs, if any, in order to determine the most suitable time for operative intervention.
Collapse
Affiliation(s)
- Seyit Ali Gumustas
- Department of Orthopaedic and Traumatology, Dr.Lutfi Kirdar Kartal Training and Research Hospital, 34865, Istanbul,Turkey
| | - Kadir Oznam
- Department of Orthopaedic and Traumatology, Istanbul Medipol University School of Medicine, 34214Istanbul, Turkey
| | - Cagri Ata Mutlu
- Department of Medical Sciences, Acibadem Universitiy School of Medicine, 34752Istanbul, Turkey
| | - Yasin Emre Kaya
- Department of Orthopaedic and Traumatology, Republic of Turkey, Ministry of Health, State Hospital, Corlu, 59850Tekirdag, Turkey
| | - Ibrahim Yilmaz
- Department of Medical Pharmacology, Istanbul Medipol University School of Medicine, 34810Istanbul, Turkey
| | - Mehmet Isyar
- Department of Orthopaedic and Traumatology, Acibadem Hospitals Group, Kadikoy, 34718Istanbul, Turkey
| | - Aliye Yıldırım Guzelant
- Department of Physical Medicine and Rehabilitation, Namik Kemal University School of Medicine, 59030Tekirdag, Turkey
| | - Olcay Guler
- Department of Orthopaedic and Traumatology, Istanbul Medipol University School of Medicine, 34214Istanbul, Turkey
| | - Semih Akkaya
- Department of Orthopaedic and Traumatology, Private Denizli Surgery Hospital, 20070Denizli, Turkey
| | - Mahir Mahirogullari
- Department of Orthopaedic and Traumatology, Memorial Health Group, 34750Istanbul, Turkey
| |
Collapse
|
28
|
Elnaggar YSR, Shehata EMM, Galal S, Abdallah OY. Self-emulsifying preconcentrates of daidzein–phospholipid complex: design, in vitro and in vivo appraisal. Nanomedicine (Lond) 2017; 12:893-910. [DOI: 10.2217/nnm-2016-0387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Self-emulsifying phospholipid-complex preconcentrates (SEPPs) were fabricated to improve oral bioavailability of daidzein (DAI), an anticancer drug with challenging amphiphobic nature and extensive presystemic metabolism. Methods: DAI–phosphatidylcholine complex was prepared to enhance DAI lipophilicity and loading in SEPPs. The physicochemical characteristics and the pharmacokinetic behavior in rats were studied. Results: Surfactant-free SEPP (plain DAI:Phosal® 53MCT complex) was monodisperse upon aqueous dilution with nanorange globule size (485 ± 15 nm). Compared with drug suspension, it showed enhanced drug release and 2.38-fold enhanced oral bioavailability with minimized drug-induced intestinal irritation. Addition of 30% surfactant/co-surfactant mixture did not show any significant difference in drug release rate or absorption profile. Conclusion: The highly safe surfactant-free SEPP could be an effective approach to improve DAI oral bioavailability.
Collapse
Affiliation(s)
- Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman MM Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sally Galal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Design of poly(mPEGMA-co-MAA) hydrogel-based mPEG-b-PCL nanoparticles for oral meloxicam delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:975-984. [PMID: 28482615 DOI: 10.1016/j.msec.2017.03.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/23/2023]
Abstract
To enhance the therapeutic effects of meloxicam (MLX), we developed an oral MLX-loaded poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles@hydrogel (MLX-NPs@hydrogel) preparation. The MLX-NPs were fabricated via a solvent evaporation method, and their morphologies were observed by a JEM-1011 transmission electron microscope (TEM). The poly(mPEGMA-co-MAA) hydrogels were synthesized, and studies on their pH sensibilities were carried out in pH1.2, 6.8, and 7.4 buffers. The final MLX-NPs@hydrogel preparation was obtained by immersing the hydrogels in the MLX-NPs suspensions (pH7.4) for 48h. The thermodynamic properties and cytotoxicity of the MLX-NPs@hydrogel preparation were also studied. TEM images illustrated that mPEG-b-PCL NPs had a uniform size distribution. The poly(mPEGMA-co-MAA) hydrogels showed an excellent pH-sensibility. Thermal gravity analysis (TGA) data suggested that the protection of hydrogels improved the stability of mPEG-b-PCL NPs. The release studies revealed that MLX-NPs@hydrogel could deliver the MLX-NPs into alkalescent environment (e.g. intestinal tract). Then, the medicated NPs released MLX at a sustained release profile. Such preparation could overcome the drawbacks of oral MLX, and enhance its therapeutic effects. Therefore, the NPs@hydrogel was a promising sustained-controlled release matrix.
Collapse
|
30
|
Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges. J Control Release 2016; 245:95-107. [PMID: 27889394 DOI: 10.1016/j.jconrel.2016.11.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from 'paper to clinic' and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management.
Collapse
|
31
|
Freag MS, Elnaggar YSR, Abdelmonsif DA, Abdallah OY. Layer-by-layer-coated lyotropic liquid crystalline nanoparticles for active tumor targeting of rapamycin. Nanomedicine (Lond) 2016; 11:2975-2996. [DOI: 10.2217/nnm-2016-0236] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: This work spotlights on fabrication of CD44-tropic, layer-by-layer (LbL) coated, liquid crystalline nanoparticles of rapamycin (Rap-LbL-LCNPs) to enhance its water solubility and enable its anticancer use. Methods: Rap-LCNPs were fabricated using hydrotrope method and then coated using LbL self-assembly technique. Results: LbL coating strategy successfully reduced monoolein-induced hemolysis and increased LCNPs serum stability. Lyophilized Rap-LbL-LCNPs were successfully sterilized using γ-radiations. In CD44-overexpressed MDA-MB-231 cells, Rap-LbL-LCNPs demonstrated superior cytotoxicity compared with the nontargeted formulation. Rap-LbL-LCNPs showed 3.35-fold increase in bioavailability compared with free drug. Rap-LbL-LCNPs significantly inhibited tumor growth, enhanced animal survival and reduced nephrotoxic and hyperglycemic effects of Rap. Conclusion: LbL coating strategy of Rap-LCNPs could serve as a promising approach that facilitates Rap use in cancer therapy.
Collapse
Affiliation(s)
- May S Freag
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Elnaggar YS, Talaat SM, Bahey-El-Din M, Abdallah OY. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies. Int J Nanomedicine 2016; 11:5531-5547. [PMID: 27822033 PMCID: PMC5087767 DOI: 10.2147/ijn.s117817] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.
Collapse
Affiliation(s)
- Yosra Sr Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University; Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria
| | - Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| | - Mohammed Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| |
Collapse
|
33
|
Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies. Int J Nanomedicine 2016; 11:4799-4818. [PMID: 27703348 PMCID: PMC5036603 DOI: 10.2147/ijn.s111736] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, research has progressively highlighted on clues from conventional use of herbal medicines to introduce new anticancer drugs. Aloe-emodin (AE) is a herbal drug with promising anticancer activity. Nevertheless, its clinical utility is handicapped by its low solubility. For the first time, this study aims to the fabrication of surface-functionalized polyethylene glycol liquid crystalline nanoparticles (PEG-LCNPs) of AE to enhance its water solubility and enable its anticancer use. Developed AE-PEG-LCNPs were optimized via particle size and zeta potential measurements. Phase behavior, solid state characteristics, hemocompatibility, and serum stability of LCNPs were assessed. Sterile formulations were developed using various sterilization technologies. Furthermore, the potential of the formulations was investigated using cell culture, pharmacokinetics, biodistribution, and toxicity studies. AE-PEG-LCNPs showed particle size of 190 nm and zeta potential of −49.9, and PEGylation approach reduced the monoolein hemolytic tendency to 3% and increased the serum stability of the nanoparticles. Sterilization of liquid and lyophilized AE-PEG-LCNPs via autoclaving and γ-radiations, respectively, insignificantly affected the physicochemical properties of the nanoparticles. Half maximal inhibitory concentration of AE-PEG-LCNPs was 3.6-fold lower than free AE after 48 hours and their cellular uptake was threefold higher than free AE after 24-hour incubation. AE-PEG-LCNPs presented 5.4-fold increase in t1/2 compared with free AE. Biodistribution and toxicity studies showed reduced AE-PEG-LCNP uptake by reticuloendothelial system organs and good safety profile. PEGylated LCNPs could serve as a promising nanocarrier for efficient delivery of AE to cancerous cells.
Collapse
Affiliation(s)
- May S Freag
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| | - Yosra Sr Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University; Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| |
Collapse
|
34
|
Self-emulsifying phospholipid pre-concentrates (SEPPs) for improved oral delivery of the anti-cancer genistein: Development, appraisal and ex-vivo intestinal permeation. Int J Pharm 2016; 511:745-56. [DOI: 10.1016/j.ijpharm.2016.07.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 11/20/2022]
|
35
|
Abdelkader H, Longman MR, Alany RG, Pierscionek B. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine. Int J Nanomedicine 2016; 11:2815-27. [PMID: 27366062 PMCID: PMC4914027 DOI: 10.2147/ijn.s104774] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study reports on L-carnosine phytosomes as an alternative for the prodrug N-acetyl-L-carnosine as a novel delivery system to the lens. L-carnosine was loaded into lipid-based phytosomes and hyaluronic acid (HA)-dispersed phytosomes. L-carnosine-phospholipid complexes (PC) of different molar ratios, 1:1 and 1:2, were prepared by the solvent evaporation method. These complexes were characterized with thermal and spectral analyses. PC were dispersed in either phosphate buffered saline pH 7.4 or HA (0.1% w/v) in phosphate buffered saline to form phytosomes PC1:1, PC1:2, and PC1:2 HA, respectively. These phytosomal formulations were studied for size, zeta potential, morphology, contact angle, spreading coefficient, viscosity, ex vivo transcorneal permeation, and cytotoxicity using primary human corneal cells. L-carnosine-phospholipid formed a complex at a 1:2 molar ratio and phytosomes were in the size range of 380–450 nm, polydispersity index of 0.12–0.2. The viscosity of PC1:2 HA increased by 2.4 to 5-fold compared with HA solution and PC 1:2, respectively; significantly lower surface tension, contact angle, and greater spreading ability for phytosomes were also recorded. Ex vivo transcorneal permeation parameters showed significantly controlled corneal permeation of L-carnosine with the novel carrier systems without any significant impact on primary human corneal cell viability. Ex vivo porcine lenses incubated in high sugar media without and with L-carnosine showed concentration-dependent marked inhibition of lens brunescence indicative of the potential for delaying changes that underlie cataractogenesis that may be linked to diabetic processes.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, London, UK; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Mina, Egypt
| | - Michael R Longman
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, London, UK
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, London, UK; School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Barbara Pierscionek
- Vision Cognition and Neuroscience Theme, Faculty of Science, Engineering and Computing, Kingston University London, Kingston Upon Thames, London, UK
| |
Collapse
|
36
|
Mohyeldin SM, Mehanna MM, Elgindy NA. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence. Expert Opin Drug Deliv 2016; 13:1049-64. [PMID: 27167758 DOI: 10.1080/17425247.2016.1182490] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. METHODS Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. RESULTS Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. CONCLUSION The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.
Collapse
Affiliation(s)
- Salma M Mohyeldin
- a Department of Industrial Pharmacy, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| | - Mohammed M Mehanna
- a Department of Industrial Pharmacy, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| | - Nazik A Elgindy
- a Department of Industrial Pharmacy, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| |
Collapse
|
37
|
Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer's disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 2015; 10:5459-73. [PMID: 26346130 PMCID: PMC4556290 DOI: 10.2147/ijn.s87336] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most patient devastating central nervous system diseases with no curative therapy. An effective oral therapy with brain-targeting potential is required that is hampered by blood-brain barrier. Piperine (PIP) is a natural alkaloid with memory enhancing potentials. Oral PIP delivery suffers from its hydrophobicity and first-pass metabolism. In this study, novel Tween-modified monoolein cubosomes (T-cubs) were elaborated as bioactive nanocarriers for brain-targeted oral delivery of PIP. Seven liquid crystalline nanoparticles (cubosomes) were prepared testing different bioactive surfactants (Tween 80, poloxamer, and Cremophor). Full in vitro characterization was carried out based on particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro release. Morphological examination and structure elucidation were performed using transmission and polarizing microscopes. Sporadic dementia of Alzheimer's type was induced in 42 male Wistar rats on which full behavioral and biochemical testing was conducted. Brain toxicity was assessed based on Caspase-3 assay for apoptosis and tumor necrosis factor-α for inflammation. Liver and kidney toxicity studies were conducted as well. Among others, T-cubs exhibited optimum particle size (167.00±10.49 nm), polydispersity index (0.18±0.01), and zeta potential (-34.60±0.47 mv) with high entrapment efficiency (86.67%±0.62%). Cubs could significantly sustain PIP in vitro release. In vivo studies revealed T-cubs potential to significantly enhance PIP cognitive effect and even restore cognitive function to the normal level. Superiority of T-cubs over others suggested brain-targeting effect of Tween. Toxicological studies contended safety of cubs on kidney, liver, and even brain. T-cubs exhibited potential anti-inflammatory and anti-apoptotic activity of loaded PIP, indicating potential to stop AD progression that was first suggested in this article. Novel oral nanoparticles elaborated possess promising in vitro and in vivo characteristics with high safety for effective chronic treatment of AD.
Collapse
Affiliation(s)
- Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
38
|
Abstract
The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs) are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs' metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs' potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined.
Collapse
Affiliation(s)
- Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
El-Refaie WM, Elnaggar YS, El-Massik MA, Abdallah OY. Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: Development, in-vitro appraisal and in-vivo studies. Int J Pharm 2015; 486:88-98. [DOI: 10.1016/j.ijpharm.2015.03.052] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
|