1
|
Butuzova O, Minarsky A, Bessonov N, Soulé C, Morozova N. Determinism and variability of the morphogenesis pathways. Dev Biol 2021; 479:1-10. [PMID: 34314693 DOI: 10.1016/j.ydbio.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Along with a strict determinism of early embryogenesis in most living organisms, some of them exhibit variability of cell fates and developmental pathways. Here we discuss the phenomena of determinism and variability of developmental pathways, defining its dependence upon cell potency, cell sensitivity to the external signals and cell signaling. We propose a set of conjectures on the phenomenon of variability of developmental pathways, and denote a difference between a normal (local) variability, leading to an invariant final structure (e.g., embryo shape), and fundamental one, which is a switching between different developmental pathways, leading to different possible structures. For illustrating our conjectures, we analyzed early developmental stages of plant embryos with different levels of variability of morphogenesis pathways, and provide a set of computational experiments by Morphogenesis Software.
Collapse
Affiliation(s)
| | | | | | | | - Nadya Morozova
- BIN RAS, St-Petersburg, Russia; IHES, France; I2BC, CEA, CNRS, Université Paris-Sud, Université Paris Saclay, France.
| |
Collapse
|
2
|
Huang YH, Peng SF, Lin YP, Cheng YM. The maize B chromosome is capable of expressing microRNAs and altering the expression of microRNAs derived from A chromosomes. Chromosome Res 2019; 28:129-138. [PMID: 31712937 DOI: 10.1007/s10577-019-09620-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 11/30/2022]
Abstract
Supernumerary B chromosomes (Bs) are nonessential chromosomes that are considered genetically inert. However, the maize B carries control elements that direct its behavior, such as that of nondisjunction, during the second pollen mitosis, and affects normal A chromosomes during cell division. Recently, the maize B has been found to contain transcriptionally active sequences and to affect the transcription of genes on A chromosomes. To better understand the regulatory mechanisms underlying the maize B, we constructed two small RNA libraries from maize B73 inbred lines with and without Bs. The sequencing results revealed that 18 known microRNAs (miRNAs) were significantly differentially expressed in response to the presence of the B, and most target mRNAs were characterized as transcription factors. Moreover, three novel B-derived miRNAs were identified via stem-loop reverse transcriptase-polymerase chain reaction (RT-PCR)-based analysis, and all showed consistent B-specific expression in almost all analyzed inbred lines and in all tissue types, including leaves, roots, and pollen grains. By the use of B-10L translocations, the three B-derived miRNAs were mapped to specific B regions. The results from this study suggest that the maize B can express miRNAs and affect the expression of A-derived miRNAs, which could regulate the expression of A-located genes.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Agronomy, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 402, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ming Cheng
- Department of Agronomy, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Wang J, Jian H, Wang T, Wei L, Li J, Li C, Liu L. Identification of microRNAs Actively Involved in Fatty Acid Biosynthesis in Developing Brassica napus Seeds Using High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1570. [PMID: 27822220 PMCID: PMC5075540 DOI: 10.3389/fpls.2016.01570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/05/2016] [Indexed: 05/21/2023]
Abstract
Seed development has a critical role during the spermatophyte life cycle. In Brassica napus, a major oil crop, fatty acids are synthesized and stored in specific tissues during embryogenesis, and understanding the molecular mechanism underlying fatty acid biosynthesis during seed development is an important research goal. In this study, we constructed three small RNA libraries from early seeds at 14, 21, and 28 days after flowering (DAF) and used high-throughput sequencing to examine microRNA (miRNA) expression. A total of 85 known miRNAs from 30 families and 1160 novel miRNAs were identified, of which 24, including 5 known and 19 novel miRNAs, were found to be involved in fatty acid biosynthesis.bna-miR156b, bna-miR156c, bna-miR156g, novel_mir_1706, novel_mir_1407, novel_mir_173, and novel_mir_104 were significantly down-regulated at 21 DAF and 28 DAF, whereas bna-miR159, novel_mir_1081, novel_mir_19 and novel_mir_555 were significantly up-regulated. In addition, we found that some miRNAs regulate functional genes that are directly involved in fatty acid biosynthesis and that other miRNAs regulate the process of fatty acid biosynthesis by acting on a large number of transcription factors. The miRNAs and their corresponding predicted targets were partially validated by quantitative RT-PCR. Our data suggest that diverse and complex miRNAs are involved in the seed development process and that miRNAs play important roles in fatty acid biosynthesis during seed development.
Collapse
Affiliation(s)
- Jia Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Nanchong Academy of Agricultural SciencesNanchong, China
| | - Hongju Jian
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Tengyue Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Lijuan Wei
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Chao Li
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Guizhou Province Institute of Oil CropsGuiyang, China
- *Correspondence: Chao Li
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Liezhao Liu
| |
Collapse
|
4
|
Yin F, Qin C, Gao J, Liu M, Luo X, Zhang W, Liu H, Liao X, Shen Y, Mao L, Zhang Z, Lin H, Lübberstedt T, Pan G. Genome-wide identification and analysis of drought-responsive genes and microRNAs in tobacco. Int J Mol Sci 2015; 16:5714-40. [PMID: 25775154 PMCID: PMC4394501 DOI: 10.3390/ijms16035714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/19/2015] [Accepted: 01/29/2015] [Indexed: 01/16/2023] Open
Abstract
Drought stress response is a complex trait regulated at transcriptional and post-transcriptional levels in tobacco. Since the 1990s, many studies have shown that miRNAs act in many ways to regulate target expression in plant growth, development and stress response. The recent draft genome sequence of Nicotiana benthamiana has provided a framework for Digital Gene Expression (DGE) and small RNA sequencing to understand patterns of transcription in the context of plant response to environmental stress. We sequenced and analyzed three Digital Gene Expression (DGE) libraries from roots of normal and drought-stressed tobacco plants, and four small RNA populations from roots, stems and leaves of control or drought-treated tobacco plants, respectively. We identified 276 candidate drought responsive genes (DRGs) with sequence similarities to 64 known DRGs from other model plant crops, 82 were transcription factors (TFs) including WRKY, NAC, ERF and bZIP families. Of these tobacco DRGs, 54 differentially expressed DRGs included 21 TFs, which belonged to 4 TF families such as NAC (6), MYB (4), ERF (10), and bZIP (1). Additionally, we confirmed expression of 39 known miRNA families (122 members) and five conserved miRNA families, which showed differential regulation under drought stress. Targets of miRNAs were further surveyed based on a recently published study, of which ten targets were DRGs. An integrated gene regulatory network is proposed for the molecular mechanisms of tobacco root response to drought stress using differentially expressed DRGs, the changed expression profiles of miRNAs and their target transcripts. This network analysis serves as a reference for future studies on tobacco response stresses such as drought, cold and heavy metals.
Collapse
Affiliation(s)
- Fuqiang Yin
- School of Agricultural Sciences, Xichang College, Xichang 615000, China.
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
| | - Cheng Qin
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
- Zunyi Academy of Agricultural Sciences, Zunyi 563102, China.
| | - Jian Gao
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
| | - Ming Liu
- School of Agricultural Sciences, Xichang College, Xichang 615000, China.
| | - Xirong Luo
- Zunyi Academy of Agricultural Sciences, Zunyi 563102, China.
| | - Wenyou Zhang
- School of Agricultural Sciences, Xichang College, Xichang 615000, China.
| | - Hongjun Liu
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
| | - Xinhui Liao
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China.
| | - Yaou Shen
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
| | - Likai Mao
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China.
| | - Zhiming Zhang
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
| | - Haijian Lin
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
| | | | - Guangtang Pan
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|
5
|
Frank MH, Scanlon MJ. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs. Mol Biol Evol 2014; 32:355-67. [PMID: 25371433 DOI: 10.1093/molbev/msu303] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alternation of generations, in which the haploid and diploid stages of the life cycle are each represented by multicellular forms that differ in their morphology, is a defining feature of the land plants (embryophytes). Anciently derived lineages of embryophytes grow predominately in the haploid gametophytic generation from apical cells that give rise to the photosynthetic body of the plant. More recently evolved plant lineages have multicellular shoot apical meristems (SAMs), and photosynthetic shoot development is restricted to the sporophyte generation. The molecular genetic basis for this evolutionary shift from gametophyte-dominant to sporophyte-dominant life cycles remains a major question in the study of land plant evolution. We used laser microdissection and next generation RNA sequencing to address whether angiosperm meristem patterning genes expressed in the sporophytic SAM of Zea mays are expressed in the gametophytic apical cells, or in the determinate sporophytes, of the model bryophytes Marchantia polymorpha and Physcomitrella patens. A wealth of upregulated genes involved in stem cell maintenance and organogenesis are identified in the maize SAM and in both the gametophytic apical cell and sporophyte of moss, but not in Marchantia. Significantly, meiosis-specific genetic programs are expressed in bryophyte sporophytes, long before the onset of sporogenesis. Our data suggest that this upregulated accumulation of meiotic gene transcripts suppresses indeterminate cell fate in the Physcomitrella sporophyte, and overrides the observed accumulation of meristem patterning genes. A model for the evolution of indeterminate growth in the sporophytic generation through the concerted selection of ancestral meristem gene programs from gametophyte-dominant lineages is proposed.
Collapse
|
6
|
Savvides A, Ntagkas N, van Ieperen W, Dieleman JA, Marcelis LFM. Impact of light on leaf initiation: a matter of photosynthate availability in the apical bud? FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:547-556. [PMID: 32481012 DOI: 10.1071/fp13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/16/2013] [Indexed: 06/11/2023]
Abstract
Radiation substantially affects leaf initiation rate (LIR), a key variable for plant growth, by influencing the heat budget and therefore the temperature of the shoot apical meristem. The photosynthetically active component of solar radiation (photosynthetic photon flux density; PPFD) is critical for plant growth and when at shade to moderate levels may also influence LIR via limited photosynthate availability. Cucumber and tomato plants were subjected to different PPFDs (2.5-13.2molm-2 day-1) and then LIR, carbohydrate content and diel net CO2 uptake of the apical bud were quantified. LIR showed saturating response to increasing PPFD in both species. In this PPFD range, LIR was reduced by 20% in cucumber and by 40% in tomato plants. Carbohydrate content and dark respiration were substantially reduced at low PPFD. LIR may be considered as an adaptive trait of plants to low light levels, which is likely to be determined by the local photosynthate availability. In tomato and cucumber plants, LIR can be markedly reduced at low PPFD in plant production systems at high latitudes, suggesting that models solely based on thermal time may not precisely predict LIR at low PPFD.
Collapse
Affiliation(s)
- Andreas Savvides
- Horticultural Supply Chains, Wageningen University, PO Box 630, 6700AP Wageningen, The Netherlands
| | - Nikolaos Ntagkas
- Horticultural Supply Chains, Wageningen University, PO Box 630, 6700AP Wageningen, The Netherlands
| | - Wim van Ieperen
- Horticultural Supply Chains, Wageningen University, PO Box 630, 6700AP Wageningen, The Netherlands
| | - Janneke A Dieleman
- Wageningen UR Greenhouse Horticulture, PO Box 644, 6700AP Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticultural Supply Chains, Wageningen University, PO Box 630, 6700AP Wageningen, The Netherlands
| |
Collapse
|
7
|
Ong SS, Wickneswari R. Expression profile of small RNAs in Acacia mangium secondary xylem tissue with contrasting lignin content - potential regulatory sequences in monolignol biosynthetic pathway. BMC Genomics 2011; 12 Suppl 3:S13. [PMID: 22369296 PMCID: PMC3333172 DOI: 10.1186/1471-2164-12-s3-s13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Lignin, after cellulose, is the second most abundant biopolymer accounting for approximately 15-35% of the dry weight of wood. As an important component during wood formation, lignin is indispensable for plant structure and defense. However, it is an undesirable component in the pulp and paper industry. Removal of lignin from cellulose is costly and environmentally hazardous process. Tremendous efforts have been devoted to understand the role of enzymes and genes in controlling the amount and composition of lignin to be deposited in the cell wall. However, studies on the impact of downregulation and overexpression of monolignol biosynthesis genes in model species on lignin content, plant fitness and viability have been inconsistent. Recently, non-coding RNAs have been discovered to play an important role in regulating the entire monolignol biosynthesis pathway. As small RNAs have critical functions in various biological process during wood formation, small RNA profiling is an important tool for the identification of complete set of differentially expressed small RNAs between low lignin and high lignin secondary xylem. RESULTS In line with this, we have generated two small RNAs libraries from samples with contrasting lignin content using Illumina GAII sequencer. About 10 million sequence reads were obtained in secondary xylem of Am48 with high lignin content (41%) and a corresponding 14 million sequence reads were obtained in secondary xylem of Am54 with low lignin content (21%). Our results suggested that A. mangium small RNAs are composed of a set of 12 highly conserved miRNAs families found in plant miRNAs database, 82 novel miRNAs and a large proportion of non-conserved small RNAs with low expression levels. The predicted target genes of those differentially expressed conserved and non-conserved miRNAs include transcription factors associated with regulation of the lignin biosynthetic pathway genes. Some of these small RNAs play an important role in epigenetic silencing. Differential expression of the small RNAs between secondary xylem tissues with contrasting lignin content suggests that a cascade of miRNAs play an interconnected role in regulating the lignin biosynthetic pathway in Acacia species. CONCLUSIONS Our study critically demonstrated the roles of small RNAs during secondary wall formation. Comparison of the expression pattern of small RNAs between secondary xylem tissues with contrasting lignin content strongly indicated that small RNAs play a key regulatory role during lignin biosynthesis. Our analyses suggest an evolutionary mechanism for miRNA targets on the basis of the length of their 5' and 3' UTRs and their cellular roles. The results obtained can be used to better understand the roles of small RNAs during lignin biosynthesis and for the development of gene constructs for silencing of specific genes involved in monolignol biosynthesis with minimal effect on plant fitness and viability. For the first time, small RNAs were proven to play an important regulatory role during lignin biosynthesis in A. mangium.
Collapse
Affiliation(s)
- Seong Siang Ong
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia
| | - Ratnam Wickneswari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia
| |
Collapse
|
8
|
Besnard F, Vernoux T, Hamant O. Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals. Cell Mol Life Sci 2011; 68:2885-906. [PMID: 21655916 PMCID: PMC11115100 DOI: 10.1007/s00018-011-0732-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/19/2011] [Accepted: 05/11/2011] [Indexed: 11/27/2022]
Abstract
In multicellular organisms, the coordination of cell behaviors largely relies on biochemical and biophysical signals. Understanding how such signals control development is often challenging, because their distribution relies on the activity of individual cells and, in a feedback loop, on tissue behavior and geometry. This review focuses on one of the best-studied structures in biology, the shoot apical meristem (SAM). This tissue is responsible for the production of all the aerial parts of a plant. In the SAM, a population of stem cells continuously produces new cells that are incorporated in lateral organs, such as leaves, branches, and flowers. Organogenesis from stem cells involves a tight regulation of cell identity and patterning as well as large-scale morphogenetic events. The gene regulatory network controlling these processes is highly coordinated in space by various signals, such as plant hormones, peptides, intracellular mobile factors, and mechanical stresses. Many crosstalks and feedback loops interconnecting these pathways have emerged in the past 10 years. The plant hormone auxin and mechanical forces have received more attention recently and their role is more particularly detailed here. An integrated view of these signaling networks is also presented in order to help understanding how robust shape and patterning can emerge from these networks.
Collapse
Affiliation(s)
- Fabrice Besnard
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
- Laboratoire Joliot Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
9
|
Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu LJ. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:493-506. [PMID: 21658178 DOI: 10.1111/j.1744-7909.2011.01054.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In plants, the meristem has to maintain a separate population of pluripotent cells that serve two main tasks, i.e., self-maintenance and organ initiation, which are separated spatially in meristem. Prior to our study, WUS and WUS-like WOX genes had been reported as essential for the development of the SAM. In this study, the consequences of gain of WOX1 function are described. Here we report the identification of an Arabidopsis gain-of-function mutant wox1-D, in which the expression level of the WOX1 (WUSCHEL HOMEOBOX 1) was elevated and subtle defects in meristem development were observed. The wox1-D mutant phenotype is dwarfed and slightly bushy, with a smaller shoot apex. The wox1-D mutant also produced small and dark green leaves, and exhibited a failure in anther dehiscence and male sterility. Molecular evidences showed that the transcription of the stem cell marker gene CLV3 was down-regulated in the meristem of wox1-D but accumulated in the other regions, i.e., in the root-hypocotyl junction and at the sites for lateral root initiation. The fact that the organ size and cell size in leaves of wox1-D are smaller than those in wild type suggests that cell expansion is possibly affected in order to have partially retarded the development of lateral organs, possibly through alteration of CLV3 expression pattern in the meristem. An S-adenosylmethionine decarboxylase (SAMDC) protein, SAMDC1, was found able to interact with WOX1 by yeast two-hybrid and pull-down assays in vitro. HPLC analysis revealed a significant reduction of polyamine content in wox1-D. Our results suggest that WOX1 plays an important role in meristem development in Arabidopsis, possibly via regulation of SAMDC activity and polyamine homeostasis, and/or by regulating CLV3 expression.
Collapse
Affiliation(s)
- Yanxia Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
10
|
Wang L, Liu H, Li D, Chen H. Identification and characterization of maize microRNAs involved in the very early stage of seed germination. BMC Genomics 2011; 12:154. [PMID: 21414237 PMCID: PMC3066126 DOI: 10.1186/1471-2164-12-154] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/18/2011] [Indexed: 01/16/2023] Open
Abstract
Background MicroRNAs (miRNAs) are a new class of endogenous small RNAs that play essential regulatory roles in plant growth, development and stress response. Extensive studies of miRNAs have been performed in model plants such as rice, Arabidopsis thaliana and other plants. However, the number of miRNAs discovered in maize is relatively low and little is known about miRNAs involved in the very early stage during seed germination. Results In this study, a small RNA library from maize seed 24 hours after imbibition was sequenced by the Solexa technology. A total of 11,338,273 reads were obtained. 1,047,447 total reads representing 431 unique sRNAs matched to known maize miRNAs. Further analysis confirmed the authenticity of 115 known miRNAs belonging to 24 miRNA families and the discovery of 167 novel miRNAs in maize. Both the known and the novel miRNAs were confirmed by sequencing of a second small RNA library constructed the same way as the one used in the first sequencing. We also found 10 miRNAs that had not been reported in maize, but had been reported in other plant species. All novel sequences had not been earlier described in other plant species. In addition, seven miRNA* sequences were also obtained. Putative targets for 106 novel miRNAs were successfully predicted. Our results indicated that miRNA-mediated gene expression regulation is present in maize imbibed seed. Conclusions This study led to the confirmation of the authenticity of 115 known miRNAs and the discovery of 167 novel miRNAs in maize. Identification of novel miRNAs resulted in significant enrichment of the repertoire of maize miRNAs and provided insights into miRNA regulation of genes expressed in imbibed seed.
Collapse
Affiliation(s)
- Liwen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | |
Collapse
|
11
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
12
|
Abstract
Plant development is characterized by the continuous initiation of tissues and organs. The meristems, which are small stem cell populations, are involved in this process. The shoot apical meristem produces lateral organs at its flanks and generates the growing stem. These lateral organs are arranged in a stereotyped pattern called phyllotaxis. Organ initiation in the peripheral zone of the meristem involves accumulation of the plant hormone auxin. Auxin is transported in a polar way by influx and efflux carriers located at cell membranes. Polar localization of the PIN1 efflux carrier in meristematic cells generates auxin concentration gradients and PIN1 localization depends, in turn, on auxin gradients: this feedback loop generates a dynamic auxin distribution which controls phyllotaxis. Furthermore, PIN-dependent local auxin gradients represent a common module for organ initiation, in the shoot and in the root.
Collapse
Affiliation(s)
- Isabelle Bohn-Courseau
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, route de Saint-Cyr, Versailles cedex, France.
| |
Collapse
|
13
|
Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet 2009; 5:e1000716. [PMID: 19936050 PMCID: PMC2773440 DOI: 10.1371/journal.pgen.1000716] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/12/2009] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling identified 150 high-confidence genes within 26 miRNA families. For 25 families, expression was verified by deep-sequencing of small RNA libraries that were prepared from an assortment of maize tissues. PCR-RACE amplification of 68 miRNA transcript precursors, representing 18 families conserved across several plant species, showed that splice variation and the use of alternative transcriptional start and stop sites is common within this class of genes. Comparison of sequence variation data from diverse maize inbred lines versus teosinte accessions suggest that the mature miRNAs are under strong purifying selection while the flanking sequences evolve equivalently to other genes. Since maize is derived from an ancient tetraploid, the effect of whole-genome duplication on miRNA evolution was examined. We found that, like protein-coding genes, duplicated miRNA genes underwent extensive gene-loss, with approximately 35% of ancestral sites retained as duplicate homoeologous miRNA genes. This number is higher than that observed with protein-coding genes. A search for putative miRNA targets indicated bias towards genes in regulatory and metabolic pathways. As maize is one of the principal models for plant growth and development, this study will serve as a foundation for future research into the functional roles of miRNA genes.
Collapse
Affiliation(s)
- Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jer-Ming Chia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Joshua C. Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Zhijie Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Apurva Narechania
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Christopher A. Maher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Katherine Guill
- Plant Genetics Research Unit, United States Department of Agriculture–Agriculture Research Service, Columbia, Missouri, United States of America
| | - Michael D. McMullen
- Plant Genetics Research Unit, United States Department of Agriculture–Agriculture Research Service, Columbia, Missouri, United States of America
- Division of Plant Sciences, University of Missouri Columbia, Columbia, Missouri, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Plant, Soil, and Nutrition Research Unit, United States Department of Agriculture–Agriculture Research Service, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kim YS, Kim SG, Lee M, Lee I, Park HY, Seo PJ, Jung JH, Kwon EJ, Suh SW, Paek KH, Park CM. HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development. THE PLANT CELL 2008; 20:920-33. [PMID: 18408069 PMCID: PMC2390745 DOI: 10.1105/tpc.107.057448] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/23/2008] [Accepted: 03/28/2008] [Indexed: 05/19/2023]
Abstract
Shoot apical meristem (SAM) development is coordinately regulated by two interdependent signaling events: one maintaining stem cell identity and the other governing the initiation of lateral organs from the flanks of the SAM. The signaling networks involved in this process are interconnected and are regulated by multiple molecular mechanisms. Class III homeodomain-leucine zipper (HD-ZIP III) proteins are the most extensively studied transcription factors involved in this regulation. However, how different signals are integrated to maintain stem cell identity and to pattern lateral organ polarity remains unclear. Here, we demonstrated that a small ZIP protein, ZPR3, and its functionally redundant homolog, ZPR4, negatively regulate the HD-ZIP III activity in SAM development. ZPR3 directly interacts with PHABULOSA (PHB) and other HD-ZIP III proteins via the ZIP motifs and forms nonfunctional heterodimers. Accordingly, a double mutant, zpr3-2 zpr4-2, exhibits an altered SAM activity with abnormal stem cell maintenance. However, the mutant displays normal patterning of leaf polarity. In addition, we show that PHB positively regulates ZPR3 expression. We therefore propose that HD-ZIP III activity in regulating SAM development is modulated by, among other things, a feedback loop involving the competitive inhibitors ZPR3 and ZPR4.
Collapse
Affiliation(s)
- Youn-Sung Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For example, AINTEGUMENTA, ARGOS (auxin-regulated gene controlling organ size), and growth-regulating factors (GRFs) are strong modifiers of leaf and/or flower size. Plants overexpressing these genes had increased organ size and did not display negative pleiotropic effects in glasshouse environments. TCP-domain genes such as CINCINNATA, and the associated regulatory miRNAs such as miRJAW, may provide useful means to modulate leaf curvature and other foliage properties. There are considerable opportunities for comparative and translational genomics in nonmodel plant systems.
Collapse
Affiliation(s)
- Victor B Busov
- Michigan Technological University, School of Forest Research and Environmental Science, 101 Noblet Hall, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Amy M Brunner
- Virginia Polytechnic Institute and State University, Department of Forestry, 304 Cheatham Hall (0324), Blacksburg, VA 24061, USA
| | - Steven H Strauss
- Oregon State University, Department of Forest Science, Corvallis, OR 97331-5752, USA
| |
Collapse
|
16
|
Abstract
The cotyledon represents one of the bases of classification within the plant kingdom, providing the name-giving difference between dicotyledonous and monocotyledonous plants. It is also a fundamental organ and there have been many reports of cotyledon mutants in many species. The use of these mutants where they have arisen in Arabidopsis has allowed us to unravel some of the complexities of embryonic patterning and cotyledon development with a high degree of resolution. The cloning of genes involved in cotyledon development from other species, together with physiological work, has supported the hypothesis that there exists a small number of orthologous gene hierarchies, particularly those involving auxin. The time is therefore appropriate for a summary of the regulation of cotyledon development gleaned from cotyledon mutants and regulatory pathways in the model species Arabidopsis and what can be inferred from cotyledon mutants in other species. There is an enormous variation in cotyledon form and development throughout the plant kingdom and this review focuses on debates about the phylogenetic relationship between mono- and dicotyledony, discusses gymnosperm cotyledon development and pleiocotyly in natural populations, and explores the limits of homology between cotyledons and leaves.
Collapse
Affiliation(s)
- John W Chandler
- Department of Developmental Biology, University of Cologne, Gyrhofstrasse 17, D-50923 Cologne, Germany.
| |
Collapse
|
17
|
Enomoto Y, Hodoshima H, Shimada H, Shoji K, Yoshihara T, Goto F. Long-distance signals positively regulate the expression of iron uptake genes in tobacco roots. PLANTA 2007; 227:81-9. [PMID: 17968589 DOI: 10.1007/s00425-007-0596-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/17/2007] [Indexed: 05/08/2023]
Abstract
Long-distance signals generated in shoots are thought to be associated with the regulation of iron uptake from roots; however, the signaling mechanism is still unknown. To elucidate whether the signal regulates iron uptake genes in roots positively or negatively, we analyzed the expressions of two representative iron uptake genes: NtIRT1 and NtFRO1 in tobacco (Nicotiana tabacum L.) roots, after shoots were manipulated in vitro. When iron-deficient leaves were treated with Fe(II)-EDTA, the expressions of both genes were significantly reduced; nevertheless iron concentration in the roots maintained a similar level to that in roots grown under iron-deficient conditions. Next, all leaves from tobacco plants grown under the iron-deficient condition were excised. The expression of two genes were quickly reduced below half within 2 h after the leaf excision and gradually disappeared by the end of a 24-h period. The NtIRT1 expression was compared among the plants whose leaves were cut off in various patterns. The expression increased in proportion to the dry weight of iron-deficient leaves, although no relation was observed between the gene expression and the position of excised leaves. Interestingly, the NtIRT1 expression in hairy roots increased under the iron-deficient condition, suggesting that roots also have the signaling mechanism of iron status as well as shoots. Taken together, these results indicate that the long-distance signal generated in iron-deficient tissues including roots is a major factor in positive regulation of the expression of NtIRT1 and NtFRO1 in roots, and that the strength of the signal depends on the size of plants.
Collapse
Affiliation(s)
- Yusuke Enomoto
- Biotechnology Sector, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-Shi, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I. Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 2007; 21:1863-8. [PMID: 17671088 PMCID: PMC1935025 DOI: 10.1101/gad.432607] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A plant grown under canopies perceives the reduction in the ratio of red (R) to far-red (FR) light as a warning of competition, and enhances elongation growth in an attempt to overgrow its neighbors. Here, we report that the same low R/FR signal that induces hypocotyl elongation also triggers a rapid arrest of leaf primordium growth, ensuring that plant resources are redirected into extension growth. The growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in incipient vein cells of developing primordia, thus demonstrating the existence of a previously unrecognized regulatory circuit underlying plant response to canopy shade.
Collapse
Affiliation(s)
- Monica Carabelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Marco Possenti
- National Research Institute for Food and Nutrition, 00178 Rome, Italy
| | - Giovanna Sessa
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Andrea Ciolfi
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
- National Research Institute for Food and Nutrition, 00178 Rome, Italy
| | - Massimiliano Sassi
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Giorgio Morelli
- National Research Institute for Food and Nutrition, 00178 Rome, Italy
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
- Corresponding author.E-MAIL ; FAX 39-06-4991-2500
| |
Collapse
|