1
|
Wang Y, Sun X, Peng J, Li F, Ali F, Wang Z. Regulation of seed germination: ROS, epigenetic, and hormonal aspects. J Adv Res 2025; 71:107-125. [PMID: 38838783 DOI: 10.1016/j.jare.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The whole life of a plant is regulated by complex environmental or hormonal signaling networks that control genomic stability, environmental signal transduction, and gene expression affecting plant development and viability. Seed germination, responsible for the transformation from seed to seedling, is a key initiation step in plant growth and is controlled by unique physiological and biochemical processes. It is continuously modulated by various factors including epigenetic modifications, hormone transport, ROS signaling, and interaction among them. ROS showed versatile crucial functions in seed germination including various physiological oxidations to nucleic acid, protein, lipid, or chromatin in the cytoplasm, cell wall, and nucleus. AIM of review: This review intends to provide novel insights into underlying mechanisms of seed germination especially associated with the ROS, and considers how these versatile regulatory mechanisms can be developed as useful tools for crop improvement. KEY SCIENTIFIC CONCEPTS OF REVIEW We have summarized the generation and elimination of ROS during seed germination, with a specific focus on uncovering and understanding the mechanisms of seed germination at the level of phytohormones, ROS, and epigenetic switches, as well as the close connections between them. The findings exhibit that ROS plays multiple roles in regulating the ethylene, ABA, and GA homeostasis as well as the Ca2+ signaling, NO signaling, and MAPK cascade in seed germination via either the signal trigger or the oxidative modifier agent. Further, ROS shows the potential in the nuclear genome remodeling and some epigenetic modifiers function, although the detailed mechanisms are unclear in seed germination. We propose that ROS functions as a hub in the complex network regulating seed germination.
Collapse
Affiliation(s)
- Yakong Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangyang Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
2
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Hu Z, Wu Z, Zhu Q, Ma M, Li Y, Dai X, Han S, Xiang S, Yang S, Luo J, Kong Q, Ding J. Multilayer regulatory landscape and new regulators identification for bud dormancy release and bud break in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:3181-3197. [PMID: 38712996 DOI: 10.1111/pce.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For trees originating from boreal and temperate regions, the dormancy-to-active transition, also known as bud dormancy release and bud break, are crucial processes that allow trees to reactive growth in the spring. The molecular mechanisms underlying these two processes remain poorly understood. Here, through integrative multiomics analysis of the transcriptome, DNA methylome, and proteome, we gained insights into the reprogrammed cellular processes associated with bud dormancy release and bud break. Our findings revealed multilayer regulatory landscapes governing bud dormancy release and bud break regulation, providing a valuable reference framework for future functional studies. Based on the multiomics analysis, we have determined a novel long intergenic noncoding RNA named Phenology Responsive Intergenic lncRNA 1 (PRIR1) plays a role in the activation of bud break. that the molecular mechanism of PRIR1 has been preliminary explored, and it may partially promote bud break by activating its neighbouring gene, EXORDIUM LIKE 5 (PtEXL5), which has also been genetically confirmed as an activator for bud break. This study has revealed a lncRNA-mediated regulatory mechanism for the control of bud break in Populus, operating independently of known regulatory pathways.
Collapse
Affiliation(s)
- Zhenzhu Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Mingru Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Xiaokang Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Shaopeng Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Songzhu Xiang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Siting Yang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Jie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
5
|
Zhou H, Yuan Z, Han S, He H, Rong J, Guo D, Zhang Y, Zhang D, Liu X, Zhou C. Global Decrease in H3K9 Acetylation in Sorghum Seed Postgermination Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5836-5850. [PMID: 36994885 DOI: 10.1021/acs.jafc.2c08863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sorghum seed germination is accompanied by increases in nutrient contents and reduced levels of antinutrients and is therefore being applied to food processing. However, the characterization of acetylated histone H3 at lysine residue 9 (H3K9ac) in sorghum postgermination has lagged. In this study, we performed chromatin immunoprecipitation sequencing (ChIP-seq) to identify H3K9ac enrichment and obtained transcriptome in postgermination stages. More than 10,000 hypoacetylated genes gained H3K9ac marks in the postgermination stages. In addition, we observed that the expression of the main histone deacetylase (HDAC) genes was elevated. The application of the HDAC inhibitor trichostatin A (TSA) resulted in seed growth arrest, suggesting that the repression of the H3K9ac modification is critical for postgermination. Additionally, we obtained a comprehensive view of abundant genomic changes in H3K9ac-marked regions and transcription between the mock and TSA treatment groups, which suggested that H3K9ac was required in the late stage of autotrophic seedling establishment. Metabolic profiling, transcriptome analyses, and ChIP-seq revealed that H3K9ac is enriched at genes involved in phenylpropanoid, including lignin and flavonoid, biosynthesis. Our results suggest important roles of H3K9ac in sorghum seed postgermination stages.
Collapse
Affiliation(s)
- Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Zhu Yuan
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Sifang Han
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Huan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Jiajia Rong
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Dandan Guo
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, 430056 Wuhan, China
| | - Yonghong Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Biomedical Research Institute, School of Basic Medicine, Hubei University of Medicine, 442000 Shiyan, China
| | - Dechun Zhang
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, 430056 Wuhan, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002 Yichang, China
| |
Collapse
|
6
|
Histone Deacetylase Inhibitors Increase the Embryogenic Potential and Alter the Expression of Embryogenesis-Related and HDAC-Encoding Genes in Grapevine ( Vitis vinifera L., cv. Mencía). PLANTS 2021; 10:plants10061164. [PMID: 34201224 PMCID: PMC8228518 DOI: 10.3390/plants10061164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/08/2023]
Abstract
The low induction rates of somatic embryogenesis are one of the main limitations in its routine application in the grapevine (Vitis vinifera L.). The use of an induction medium containing histone deacetylase inhibitors (trichostatin A and, mainly, sodium butyrate) resulted in an improvement of the embryogenic responses in grapevine (cv. Mencía) cotyledonary and recently germinated somatic embryos. The relative expression of several grapevine genes related to embryogenic competence or encoding histone deacetylase enzymes was studied in cotyledonary somatic embryos that were cultured in the presence of 0.5 mM sodium butyrate. The results showed a significant overexpression of the BBM and VvSERK2 genes after 24 h of culture, whereas the VvWOX2 gene was underexpressed less in treated versus untreated explants. The results suggest that the inhibitor may trigger a molecular response related to an increase in embryogenic competence and changes in the expression of associated genes. The treatment with sodium butyrate also produced significant variations in the expression of several histone deacetylase enzyme-encoding genes. These results may enhance the possibility of obtaining somatic embryos, reducing the seasonal constraints associated with the use of floral explants in grapevines.
Collapse
|
7
|
Osama SK, Kerr ED, Yousif AM, Phung TK, Kelly AM, Fox GP, Schulz BL. Proteomics reveals commitment to germination in barley seeds is marked by loss of stress response proteins and mobilisation of nutrient reservoirs. J Proteomics 2021; 242:104221. [PMID: 33866056 DOI: 10.1016/j.jprot.2021.104221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Germination is a critical process in the reproduction and propagation of flowering plants, and is also the key stage of industrial grain malting. Germination commences when seeds are steeped in water, followed by degradation of the endosperm cell walls, enzymatic digestion of starch and proteins to provide nutrients for the growing plant, and emergence of the radicle from the seed. Dormancy is a state where seeds fail to germinate upon steeping, but which prevents inappropriate premature germination of the seeds before harvest from the field. This can result in inefficiencies in industrial malting. We used Sequential Window Acquisition of all THeoretical ions Mass Spectrometry (SWATH-MS) proteomics to measure changes in the barley seed proteome throughout germination. We found a large number of proteins involved in desiccation tolerance and germination inhibition rapidly decreased in abundance after imbibition. This was followed by a decrease in proteins involved in lipid, protein and nutrient reservoir storage, consistent with induction and activation of systems for nutrient mobilisation to provide nutrients to the growing embryo. Dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, with differences in sulfur metabolic enzymes, endogenous alpha-amylase/trypsin inhibitors, and histone proteins. We verified our findings with analysis of germinating barley seeds from two commercial malting facilities, demonstrating that key features of the dynamic proteome of germinating barley seeds were conserved between laboratory and industrial scales. The results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy. SIGNIFICANCE: Germination is critical to the reproduction and propagation of flowering plants, and in industrial malting. Dormancy, where seeds fail to germinate upon steeping, can result in inefficiencies in industrial malting. Our DIA/SWATH-MS proteomics analyses identified key changes during germination, including an initial loss of proteins involved in desiccation tolerance and germination inhibition, followed by decreases in lipid, protein and nutrient reservoir storage. These changes were consistent between laboratory and industrial malting scales, and therefore demonstrate the utility of laboratory-scale barley germination as a model system for industrial malt house processes. We also showed that dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, consistent with dormancy being an actively regulated state. Our results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy.
Collapse
Affiliation(s)
- Sarah K Osama
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia
| | - Adel M Yousif
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Sandy Bay Campus, TAS, 7005, Australia
| | - Toan K Phung
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia
| | - Alison M Kelly
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia; Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, Qld 4350, Australia
| | - Glen P Fox
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia; Department of Food Science and Technology, University of California Davis, CA 95616, USA.
| | - Benjamin L Schulz
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
8
|
Klupczyńska EA, Pawłowski TA. Regulation of Seed Dormancy and Germination Mechanisms in a Changing Environment. Int J Mol Sci 2021; 22:1357. [PMID: 33572974 PMCID: PMC7866424 DOI: 10.3390/ijms22031357] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.
Collapse
Affiliation(s)
| | - Tomasz A. Pawłowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
| |
Collapse
|
9
|
Califar B, Sng NJ, Zupanska A, Paul AL, Ferl RJ. Root Skewing-Associated Genes Impact the Spaceflight Response of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:239. [PMID: 32194611 PMCID: PMC7064724 DOI: 10.3389/fpls.2020.00239] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/17/2020] [Indexed: 05/03/2023]
Abstract
The observation that plant roots skew in microgravity recently refuted the long-held conviction that skewing was a gravity-dependent phenomenon. Further, spaceflight root skewing suggests that specific root morphologies and cell wall remodeling systems may be important aspects of spaceflight physiological adaptation. However, connections between skewing, cell wall modification and spaceflight physiology are currently based on inferences rather than direct tests. Therefore, the Advanced Plant Experiments-03-2 (APEX-03-2) spaceflight study was designed to elucidate the contribution of two skewing- and cell wall-associated genes in Arabidopsis to root behavior and gene expression patterns in spaceflight, to assess whether interruptions of different skewing pathways affect the overall spaceflight-associated process. SPIRAL1 is a skewing-related protein implicated in directional cell expansion, and functions by regulating cortical microtubule dynamics. SKU5 is skewing-related glycosylphosphatidylinositol-anchored protein of the plasma membrane and cell wall implicated in stress response signaling. These two genes function in different cellular pathways that affect skewing on the Earth, and enable a test of the relevance of skewing pathways to spaceflight physiological adaptation. In this study, both sku5 and spr1 mutants showed different skewing behavior and markedly different patterns of gene expression in the spaceflight environment. The spr1 mutant showed fewer differentially expressed genes than its Col-0 wild-type, whereas sku5 showed considerably more than its WS wild-type. Developmental age played a substantial role in spaceflight acclimation in all genotypes, but particularly in sku5 plants, where spaceflight 4d seedlings had almost 10-times as many highly differentially expressed genes as the 8d seedlings. These differences demonstrated that the two skewing pathways represented by SKU5 and SPR1 have unique and opposite contributions to physiological adaptation to spaceflight. The spr1 response is less intense than wild type, suggesting that the loss of SPR1 positively impacts spaceflight adaptation. Conversely, the intensity of the sku5 responses suggests that the loss of SKU5 initiates a much more complex, deeper and more stress related response to spaceflight. This suggests that proper SKU5 function is important to spaceflight adaptation.
Collapse
Affiliation(s)
- Brandon Califar
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
| | - Natasha J. Sng
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Agata Zupanska
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Anna-Lisa Paul
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology and Research, University of Florida, Gainesville, FL, United States
- *Correspondence: Anna-Lisa Paul,
| | - Robert J. Ferl
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Robert J. Ferl,
| |
Collapse
|
10
|
Wójcikowska B, Botor M, Morończyk J, Wójcik AM, Nodzyński T, Karcz J, Gaj MD. Trichostatin A Triggers an Embryogenic Transition in Arabidopsis Explants via an Auxin-Related Pathway. FRONTIERS IN PLANT SCIENCE 2018; 9:1353. [PMID: 30271420 PMCID: PMC6146766 DOI: 10.3389/fpls.2018.01353] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/28/2018] [Indexed: 05/23/2023]
Abstract
Auxin is an important regulator of plant ontogenies including embryo development and the exogenous application of this phytohormone has been found to be necessary for the induction of the embryogenic response in plant explants that have been cultured in vitro. However, in the present study, we show that treatment of Arabidopsis explants with trichostatin A (TSA), which is a chemical inhibitor of histone deacetylases, induces somatic embryogenesis (SE) without the exogenous application of auxin. We found that the TSA-treated explants generated somatic embryos that developed efficiently on the adaxial side of the cotyledons, which are the parts of an explant that are involved in auxin-induced SE. A substantial reduction in the activity of histone deacetylase (HDAC) was observed in the TSA-treated explants, thus confirming a histone acetylation-related mechanism of the TSA-promoted embryogenic response. Unexpectedly, the embryogenic effect of TSA was lower on the auxin-supplemented media and this finding further suggests an auxin-related mechanism of TSA-induced SE. Congruently, we found a significantly increased content of indolic compounds, which is indicative of IAA and an enhanced DR5::GUS signal in the TSA-treated explants. In line with these results, two of the YUCCA genes (YUC1 and YUC10), which are involved in auxin biosynthesis, were found to be distinctly up-regulated during TSA-induced SE and their expression was colocalised with the explant sites that are involved in SE. Beside auxin, ROS were extensively accumulated in response to TSA, thereby indicating that a stress-response is involved in TSA-triggered SE. Relevantly, we showed that the genes encoding the transcription factors (TFs) that have a regulatory function in auxin biosynthesis including LEC1, LEC2, BBM, and stress responses (MYB118) were highly up-regulated in the TSA-treated explants. Collectively, the results provide several pieces of evidence about the similarities between the molecular pathways of SE induction that are triggered by TSA and 2,4-D that involve the activation of the auxin-responsive TF genes that have a regulatory function in auxin biosynthesis and stress responses. The study suggests the involvement of histone acetylation in the auxin-mediated release of the embryogenic program of development in the somatic cells of Arabidopsis.
Collapse
Affiliation(s)
| | - Malwina Botor
- Department of Molecular Biology and Genetics, Medical University of SilesiaKatowice, Poland
| | - Joanna Morończyk
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Anna Maria Wójcik
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Tomasz Nodzyński
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU – Central European Institute of Technology, Masaryk UniversityBrno, Czechia
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, University of Silesia in KatowiceKatowice, Poland
| | - Małgorzata D. Gaj
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| |
Collapse
|
11
|
Zhang B, Su L, Hu B, Li L. Expression of AhDREB1, an AP2/ERF Transcription Factor Gene from Peanut, Is Affected by Histone Acetylation and Increases Abscisic Acid Sensitivity and Tolerance to Osmotic Stress in Arabidopsis. Int J Mol Sci 2018; 19:ijms19051441. [PMID: 29751673 PMCID: PMC5983730 DOI: 10.3390/ijms19051441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Drought stress negatively affects plant growth and development. An increasing number of reports have revealed the involvement of APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors (TFs) in biotic and abiotic stress regulation in plants. However, research on these TFs in the peanut plant (Arachis hypogaea) has been limited. Here, we isolated a full-length coding sequence (CDS) of the AP2/ERF family gene AhDREB1 from the peanut plant and showed that its expression was induced by Polyethylene Glycol (PEG) 6000 and exogenous abscisic acid (ABA) treatment. When overexpressed in Arabidopsis, AhDREB1 increased both ABA levels and ABA sensitivity, affected the ABA signaling pathway and increased the expression of downstream drought stress-related genes RD29A, P5CS1, P5CS2 and NCED1. These results demonstrate that AhDREB1 can improve tolerance to drought via the ABA-dependent pathway in Arabidopsis. In the peanut plant, the specific histone deacetylases (HDACs) inhibitor trichostatin A (TSA) promotes AhDREB1 transcription and the enrichment level of H3ac was increased in regions of the AhDREB1 gene during TSA and PEG treatment. In summary, histone acetylation can affect the expression of AhDREB1 under osmotic stress conditions, thereby improving plant drought resistance.
Collapse
Affiliation(s)
- Baihong Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Liangchen Su
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Bo Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
12
|
Zheng X, Hou H, Zhang H, Yue M, Hu Y, Li L. Histone acetylation is involved in GA-mediated 45S rDNA decondensation in maize aleurone layers. PLANT CELL REPORTS 2018; 37:115-123. [PMID: 28939922 DOI: 10.1007/s00299-017-2207-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/12/2017] [Indexed: 05/04/2023]
Abstract
The aleurone layer is crucial to seed germination. Using dissected aleurone layers, we found that GA increased histone acetylation accompanied by rDNA decondensation in aleurone layers during maize seed germination. Aleurone layers play an important role in cereal seed germination. In this study, we reported that rDNA chromatin was decondensed, accompanied with increased rDNA expression and genomic global hyperacetylation in gibberellin (GA)-treated maize-dissected aleurone layers. The activity analysis of histone acetyltransferase (HAT) and deacetylase (HDAC) showed that GA increased the level of histone acetylation by promoting the ratio of HAT/HDAC activity in aleurone layers. HDAC inhibitors TSA and CUDC-101 elevated the histone acetylation in aleurone layers accompanied by 45S rDNA decondensation. The further chromatin immunoprecipitation experiments showed that GA treatment promoted the level of histone acetylation in the promoter region of the rRNA and HAT/HDAC genes in aleurone layers. Taken together, these data indicated that histone acetylation mediates GA-regulated 45S rDNA chromatin decondensation in aleurone layers during maize seed germination.
Collapse
Affiliation(s)
- Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
13
|
Luxmi R, Garg R, Srivastava S, Sane AP. Expression of the SIN3 homologue from banana, MaSIN3, suppresses ABA responses globally during plant growth in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:69-82. [PMID: 28969804 DOI: 10.1016/j.plantsci.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/12/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
The SIN3 family of co-repressors is a family of highly conserved eukaryotic repressor proteins that regulates diverse functions in yeasts and animals but remains largely uncharacterized functionally even in plants like Arabidopsis. The sole SIN3 homologue in banana, MaSIN3, was identified as a 1408 amino acids, nuclear localized protein conserved to other SIN3s in the PAH, HID and HCR domains. Interestingly, MaSIN3 over-expression in Arabidopsis mimics a state of reduced ABA responses throughout plant development affecting growth processes such as germination, root growth, stomatal closure and water loss, flowering and senescence. The reduction in ABA responses is not due to reduced ABA levels but due to suppression of expression of several transcription factors mediating ABA responses. Transcript levels of negative regulators of germination (ABI3, ABI5, PIL5, RGL2 and RGL3) are reduced post-imbibition while those responsible for GA biosynthesis are up-regulated in transgenic MaSIN3 over-expressers. ABA-associated transcription factors are also down-regulated in response to ABA treatment. The HDAC inhibitors, SAHA and sodium butyrate, in combination with ABA differentially suppress germination in control and transgenic lines suggesting the recruitment by MaSIN3 of HDACs involved in suppression of ABA responses in different processes. The studies provide an insight into the ability of MaSIN3 to specifically affect a subset of developmental processes governed largely by ABA.
Collapse
Affiliation(s)
- Raj Luxmi
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India
| | - Rashmi Garg
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India
| | - Sudhakar Srivastava
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University, Beer Sheva 84105, Israel
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
14
|
Lynch TJ, Erickson BJ, Miller DR, Finkelstein RR. ABI5-binding proteins (AFPs) alter transcription of ABA-induced genes via a variety of interactions with chromatin modifiers. PLANT MOLECULAR BIOLOGY 2017; 93:403-418. [PMID: 27942958 DOI: 10.1007/s11103-016-0569-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 05/29/2023]
Abstract
Overexpression of ABI5/ABF binding proteins (AFPs) results in extreme ABA resistance of seeds via multiple mechanisms repressing ABA response, including interactions with histone deacetylases and the co-repressor TOPLESS. Several ABI5/ABF binding proteins (AFPs) inhibit ABA response, resulting in extreme ABA resistance in transgenic Arabidopsis overexpression lines, but their mechanism of action has remained obscure. By analogy to the related Novel Interactor of JAZ (NINJA) protein, it was suggested that the AFPs interact with the co-repressor TOPLESS to inhibit ABA-regulated gene expression. This study shows that the AFPs that inhibit ABA response have intrinsic repressor activity in a heterologous system, which does not depend on the domain involved in the interaction with TOPLESS. This domain is also not essential for repressing ABA response in transgenic plants, but does contribute to stronger ABA resistance. Additional interactions between some AFPs and histone deacetylase subunits were observed in yeast two-hybrid and bimolecular fluorescence assays, consistent with a more direct mechanism of AFP-mediated repression of gene expression. Chemical inhibition of histone deacetylase activity by trichostatin A suppressed AFP effects on a small fraction of the ABI5-regulated genes tested. Collectively, these results suggest that the AFPs participate in multiple mechanisms modulating ABA response, including both TOPLESS-dependent and -independent chromatin modification.
Collapse
Affiliation(s)
- Tim J Lynch
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - B Joy Erickson
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dusty R Miller
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Chemistry Department, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ruth R Finkelstein
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
15
|
|
16
|
Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M. Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:116-126. [PMID: 27174076 DOI: 10.1016/j.jplph.2016.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 05/21/2023]
Abstract
Environmental stress factors such as drought, salinity, temperature extremes and rising CO2 negatively affect crop growth and productivity. Faced with the scarcity of water resources, drought is the most critical threat to world food security. This is particularly important in the context of climate change and an increasing world population. Seed priming is a very promising strategy in modern crop production management. Although it has been known for several years that seed priming can enhance seed quality and the effectiveness of stress responses of germinating seeds and seedlings, the molecular mechanisms involved in the acquisition of stress tolerance by primed seeds in the germination process and subsequent plant growth remain poorly understood. This review provides an overview of the metabolic changes modulated by priming, such as the activation of DNA repair and the antioxidant system, accumulation of aquaporins and late embryogenesis abundant proteins that contribute to enhanced drought stress tolerance. Moreover, the phenomenon of "priming memory," which is established during priming and can be recruited later when seeds or plants are exposed to stress, is highlighted.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Katarzyna Lechowska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Szymon Kubala
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
17
|
Bordiya Y, Zheng Y, Nam JC, Bonnard AC, Choi HW, Lee BK, Kim J, Klessig DF, Fei Z, Kang HG. Pathogen Infection and MORC Proteins Affect Chromatin Accessibility of Transposable Elements and Expression of Their Proximal Genes in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:674-687. [PMID: 27482822 DOI: 10.1094/mpmi-01-16-0023-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To assess the role of MORC1 in epigenetics in relation to plant immunity, genome-wide chromatin accessibility was compared between mock- or Pseudomonas syringae pv. tomato-inoculated wild type (WT) Arabidopsis, the morc1/2 double mutant, or both. Most changes in chromatin accessibility, scored by DNase I hypersensitive sites (DHSs), were located in the promoters of genes and transposable elements (TEs). Comparisons between morc1/2 and WT receiving the same treatment revealed differential DHSs (dDHSs) predominantly associated with heterochromatic TEs. By contrast, comparisons between mock- and P. syringae pv. tomato-inoculated plants from the same genotype showed dDHSs associated with biotic and abiotic stress-related genes; a smaller but significant population was in TEs. Moreover, many defense genes, including PR-1, PR-2, and PR-5, were proximal to P. syringae pv. tomato-induced, TE-associated dDHSs. A random subset of these defense genes showed moderately delayed or reduced expression or both in P. syringae pv. tomato-infected morc1/2 as compared with WT. MORC1 was physically bound to chromatin in a P. syringae pv. tomato infection-responsive manner at sites dispersed throughout the genome. Notably, silencing of TE-associated dDHSs proximal to these infection-induced, MORC1-interacting sites led to significant suppression of P. syringae pv. tomato-induced transcription of adjacent defense genes, including PR-1. These results provide evidence that MORC1 is associated with TEs and suggest that a subset of these TEs may help regulate their proximal defense genes.
Collapse
Affiliation(s)
- Yogendra Bordiya
- 1 Department of Biology, Texas State University, San Marcos, TX, U.S.A
| | - Yi Zheng
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY, U.S.A
| | - Ji-Chul Nam
- 1 Department of Biology, Texas State University, San Marcos, TX, U.S.A
| | - April C Bonnard
- 1 Department of Biology, Texas State University, San Marcos, TX, U.S.A
| | - Hyong Woo Choi
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY, U.S.A
| | - Bum-Kyu Lee
- 3 Department of Molecular Biosciences, The University of Texas at Austin, U.S.A.; and
| | - Jonghwan Kim
- 3 Department of Molecular Biosciences, The University of Texas at Austin, U.S.A.; and
| | - Daniel F Klessig
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY, U.S.A
| | - Zhangjun Fei
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY, U.S.A
- 4 USDA Robert W. Holley Center for Agriculture and Health, Tower Road, Ithaca, NY, U.S.A
| | - Hong-Gu Kang
- 1 Department of Biology, Texas State University, San Marcos, TX, U.S.A
| |
Collapse
|
18
|
Han Z, Yu H, Zhao Z, Hunter D, Luo X, Duan J, Tian L. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:310. [PMID: 27066015 PMCID: PMC4815178 DOI: 10.3389/fpls.2016.00310] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/29/2016] [Indexed: 05/20/2023]
Abstract
The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.
Collapse
Affiliation(s)
- Zhaofen Han
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Huimin Yu
- Department of E-A Information Engineering, Liaoning Institute of Science and TechnologyBenxi, China
| | - Zhong Zhao
- College of Forestry, Northwest A & F UniversityYangling, China
- *Correspondence: Zhong Zhao
| | - David Hunter
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
| | - Xinjuan Luo
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Lining Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
- Lining Tian
| |
Collapse
|
19
|
Quantification and Gene Expression Analysis of Histone Deacetylases in Common Bean during Rust Fungal Inoculation. Int J Genomics 2015; 2015:153243. [PMID: 26824033 PMCID: PMC4707378 DOI: 10.1155/2015/153243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/27/2015] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylases (HDACs) play an important role in plant growth, development, and defense processes and are one of the primary causes of epigenetic modifications in a genome. There was only one study reported on epigenetic modifications of the important legume crop, common bean, and its interaction with the fungal rust pathogen Uromyces appendiculatus prior to this project. We measured the total active HDACs levels in leaf tissues and observed expression patterns for the selected HDAC genes at 0, 12, and 84 hours after inoculation in mock inoculated and inoculated plants. Colorimetric analysis showed that the total amount of HDACs present in the leaf tissue decreased at 12 hours in inoculated plants compared to mock inoculated control plants. Gene expression analyses indicated that the expression pattern of gene PvSRT1 is similar to the trend of total active HDACs in this time course experiment. Gene PvHDA6 showed increased expression in the inoculated plants during the time points measured. This is one of the first attempts to study expression levels of HDACs in economically important legumes in the context of plant pathogen interactions. Findings from our study will be helpful to understand trends of total active HDACs and expression patterns of these genes under study during biotic stress.
Collapse
|
20
|
Gao MJ, Li X, Huang J, Gropp GM, Gjetvaj B, Lindsay DL, Wei S, Coutu C, Chen Z, Wan XC, Hannoufa A, Lydiate DJ, Gruber MY, Chen ZJ, Hegedus DD. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nat Commun 2015; 6:7243. [PMID: 26129778 PMCID: PMC4507008 DOI: 10.1038/ncomms8243] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/22/2015] [Indexed: 01/20/2023] Open
Abstract
Epigenetic regulation of gene expression is critical for controlling embryonic properties during the embryo-to-seedling phase transition. Here we report that a histone deacetylase19 (HDA19)-associated regulator, scarecrow-like15 (SCL15), is essential for repressing the seed maturation programme in vegetative tissues. SCL15 is expressed in and GFP-tagged SCL15 predominantly localizes to, the vascular bundles particularly in the phloem companion cells and neighbouring specialized cells. Mutation of SCL15 leads to a global shift in gene expression in seedlings to a profile resembling late embryogenesis in seeds. In scl15 seedlings, many genes involved in seed maturation are markedly derepressed with concomitant accumulation of seed 12S globulin; this is correlated with elevated levels of histone acetylation at a subset of seed-specific loci. SCL15 physically interacts with HDA19 and direct targets of HDA19-SCL15 association are identified. These studies reveal that SCL15 acts as an HDA19-associated regulator to repress embryonic traits in seedlings.
Collapse
Affiliation(s)
- Ming-Jun Gao
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Xiang Li
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Jun Huang
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Gordon M Gropp
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Branimir Gjetvaj
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Donna L Lindsay
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Shu Wei
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Xiao-Chun Wan
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V 4T3
| | - Derek J Lydiate
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Margaret Y Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | - Z Jeffrey Chen
- Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| |
Collapse
|
21
|
Su LC, Deng B, Liu S, Li LM, Hu B, Zhong YT, Li L. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. FRONTIERS IN PLANT SCIENCE 2015; 6:512. [PMID: 26217363 PMCID: PMC4499716 DOI: 10.3389/fpls.2015.00512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/25/2015] [Indexed: 05/18/2023]
Abstract
Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ling Li
- *Correspondence: Ling Li, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Avenue West, Tianhe District, Guangzhou 510631, China
| |
Collapse
|
22
|
Wang Z, Cao H, Chen F, Liu Y. The roles of histone acetylation in seed performance and plant development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:125-133. [PMID: 25270163 DOI: 10.1016/j.plaphy.2014.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/23/2014] [Indexed: 05/08/2023]
Abstract
Histone acetylation regulates gene transcription by chromatin modifications and plays a crucial role in the plant development and response to environment cues. The homeostasis of histone acetylation is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in different plant tissues and development stages. The vigorous knowledge of the function and co-factors about HATs (e.g. GCN5) and HDACs (e.g. HDA19, HDA6) has been obtained from model plant Arabidopsis. However, understanding individual role of other HATs and HDACs require more work, especially in the major food crops such as rice, maize and wheat. Many co-regulators have been recently identified to function as a component of HAT or HDAC complex in some specific developmental processes. The described findings show a distinctive and interesting epigenetic regulation network composed of HATs, HDACs and co-regulators playing crucial roles in the seed performance, flowering time, plant morphogenesis, plant response to stresses etc. In this review, we summarized the recent progresses and suggested the perspective of histone acetylation research, which might provide us a new window to understand the epigenetic code of plant development and to improve the crop production and quality.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
23
|
van Zanten M, Zöll C, Wang Z, Philipp C, Carles A, Li Y, Kornet NG, Liu Y, Soppe WJJ. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:475-88. [PMID: 25146719 DOI: 10.1111/tpj.12646] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 05/20/2023]
Abstract
Plant life is characterized by major phase changes. We studied the role of histone deacetylase (HDAC) activity in the transition from seed to seedling in Arabidopsis. Pharmacological inhibition of HDAC stimulated germination of freshly harvested seeds. Subsequent analysis revealed that histone deacetylase 9 (hda9) mutant alleles displayed reduced seed dormancy and faster germination than wild-type plants. Transcriptome meta-analysis comparisons between the hda9 dry seed transcriptome and published datasets demonstrated that transcripts of genes that are induced during imbibition in wild-type prematurely accumulated in hda9-1 dry seeds. This included several genes associated with photosynthesis and photoautotrophic growth such as RuBisCO and RuBisCO activase (RCA). Chromatin immunoprecipitation experiments demonstrated enhanced histone acetylation levels at their loci in young hda9-1 seedlings. Our observations suggest that HDA9 negatively influences germination and is involved in the suppression of seedling traits in dry seeds, probably by transcriptional repression via histone deacetylation. Accordingly, HDA9 transcript is abundant in dry seeds and becomes reduced during imbibition in wild-type seeds. The proposed function of HDA9 is opposite to that of its homologous genes HDA6 and HDA19, which have been reported to repress embryonic properties in germinated seedlings.
Collapse
Affiliation(s)
- Martijn van Zanten
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-weg 10, 50829, Cologne, Germany; Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padulaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao L, Wang P, Yan S, Gao F, Li H, Hou H, Zhang Q, Tan J, Li L. Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene. PHYSIOLOGIA PLANTARUM 2014; 151:459-467. [PMID: 24299295 DOI: 10.1111/ppl.12136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 06/02/2023]
Abstract
Epigenetic modifications play a key role in the transcriptional regulation of stress-induced gene expression in plants. In this study, we showed that the overall acetylation levels of histone H3 lysine 9 (H3K9) and H4 lysine 5 (H4K5) in the genome were increased in maize seedlings after mannitol treatment (to mimic osmotic stress). Mannitol treatment significantly induced the upregulation of the maize osmotic stress responsive gene Zea mays dehydration-responsive element binding protein 2A (ZmDREB2A), whereas abscisic acid (ABA) did not result in the induction of this gene. The application of exogenous ABA under osmotic stress conditions strongly repressed the induction of the ZmDREB2A gene. Chromatin immunoprecipitation and chromatin accessibility by real-time PCR experiments revealed that the promoter region of the ZmDREB2A gene was quickly hyperacetylated and decondensed after the mannitol treatment, suggesting that the promoter region is poised for histone acetylation to allow for fast induction of the ZmDREB2A gene. However, under osmotic stress conditions, the ABA treatment decreased the acetylation status and chromatin accessibility to micrococcal nuclease. These results suggest that osmotic stress activates the transcription of the ZmDREB2A gene by increasing the levels of acetylated histones H3K9 and H4K5 associated with the ZmDREB2A promoter region.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grandperret V, Nicolas-Francès V, Wendehenne D, Bourque S. Type-II histone deacetylases: elusive plant nuclear signal transducers. PLANT, CELL & ENVIRONMENT 2014; 37:1259-69. [PMID: 24236403 DOI: 10.1111/pce.12236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 05/20/2023]
Abstract
Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post-translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding protein deacetylation, plants are of particular interest: in addition to the RPD3-HDA1 and Sir2 HDAC families that they share with other eukaryotic organisms, plants have developed a specific family called type-II HDACs (HD2s). Interestingly, these HD2s are well conserved in plants and control fundamental biological processes such as seed germination, flowering or the response to pathogens. The aim of this review was to summarize current knowledge regarding this fascinating, but still poorly understood nuclear protein family.
Collapse
Affiliation(s)
- Vincent Grandperret
- Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS 6300, Université de Bourgogne, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, Dijon cedex, 21065, France
| | | | | | | |
Collapse
|
26
|
Lin L, Tian S, Kaeppler S, Liu Z, An YQ(C. Conserved transcriptional regulatory programs underlying rice and barley germination. PLoS One 2014; 9:e87261. [PMID: 24558366 PMCID: PMC3928125 DOI: 10.1371/journal.pone.0087261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/24/2013] [Indexed: 11/18/2022] Open
Abstract
Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence.
Collapse
Affiliation(s)
- Li Lin
- USDA-ARS, Plant Genetics Research Unit, Donald Danforth Plant Sciences Center, Saint Louis, Missouri, United States of America
- Department of Agronomy, University of Wisconsin, Wisconsin, United States of America
| | - Shulan Tian
- USDA-ARS, Plant Genetics Research Unit, Donald Danforth Plant Sciences Center, Saint Louis, Missouri, United States of America
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, Wisconsin, United States of America
| | - Zongrang Liu
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
| | - Yong-Qiang (Charles) An
- USDA-ARS, Plant Genetics Research Unit, Donald Danforth Plant Sciences Center, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
de Vega-Bartol JJ, Simões M, Lorenz WW, Rodrigues AS, Alba R, Dean JFD, Miguel CM. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC PLANT BIOLOGY 2013; 13:123. [PMID: 23987738 PMCID: PMC3844413 DOI: 10.1186/1471-2229-13-123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/24/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. RESULTS Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in development, transcripts with homology to genes acting on modulation of auxin flow and determination of adaxial-abaxial polarity were up-regulated, as were putative orthologs of genes required for meristem formation and function as well as establishment of organ boundaries. Comparative analysis with A. thaliana embryogenesis also highlighted genes involved in auxin-mediated responses, as well as epigenetic regulation, indicating highly correlated transcript profiles between the two species. CONCLUSIONS This is the first report of a time-course transcriptomic analysis of zygotic embryogenesis in a conifer. Taken together our results show that epigenetic regulation and transcriptional control related to auxin transport and response are critical during early to mid stages of pine embryogenesis and that important events during embryogenesis seem to be coordinated by putative orthologs of major developmental regulators in angiosperms.
Collapse
Affiliation(s)
- José J de Vega-Bartol
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta Simões
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - W Walter Lorenz
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA 30602, USA
| | - Andreia S Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rob Alba
- Monsanto Company, Mailstop CC4, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | - Jeffrey F D Dean
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA 30602, USA
| | - Célia M Miguel
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
28
|
|
29
|
Zhou Y, Tan B, Luo M, Li Y, Liu C, Chen C, Yu CW, Yang S, Dong S, Ruan J, Yuan L, Zhang Z, Zhao L, Li C, Chen H, Cui Y, Wu K, Huang S. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. THE PLANT CELL 2013; 25:134-48. [PMID: 23362207 PMCID: PMC3584530 DOI: 10.1105/tpc.112.096313] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 12/21/2012] [Accepted: 12/30/2012] [Indexed: 05/18/2023]
Abstract
The seed maturation genes are specifically and highly expressed during late embryogenesis. In this work, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that HISTONE DEACETYLASE19 (HDA19) interacted with the HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2-LIKE1 (HSL1), and the zinc-finger CW [conserved Cys (C) and Trp (W) residues] domain of HSL1 was responsible for the interaction. Furthermore, we found that mutations in HDA19 resulted in the ectopic expression of seed maturation genes in seedlings, which was associated with increased levels of gene activation marks, such as Histone H3 acetylation (H3ac), Histone H4 acetylation (H4ac), and Histone H3 Lys 4 tri-methylation (H3K4me3), but decreased levels of the gene repression mark Histone H3 Lys 27 tri-methylation (H3K27me3) in the promoter and/or coding regions. In addition, elevated transcription of certain seed maturation genes was also found in the hsl1 mutant seedlings, which was also accompanied by the enrichment of gene activation marks but decreased levels of the gene repression mark. Chromatin immunoprecipitation assays showed that HDA19 could directly bind to the chromatin of the seed maturation genes. These results suggest that HDA19 and HSL1 may act together to repress seed maturation gene expression during germination. Further genetic analyses revealed that the homozygous hsl1 hda19 double mutants are embryonic lethal, suggesting that HDA19 and HSL1 may play a vital role during embryogenesis.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Tan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ming Luo
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Chen
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Chun-Wei Yu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Songguang Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shuai Dong
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbin Yuan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhou Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Linmao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chenlong Li
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Huhui Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Address correspondences to
| |
Collapse
|
30
|
Zhang L, Hu Y, Yan S, Li H, He S, Huang M, Li L. ABA-mediated inhibition of seed germination is associated with ribosomal DNA chromatin condensation, decreased transcription, and ribosomal RNA gene hypoacetylation. PLANT MOLECULAR BIOLOGY 2012; 79:285-293. [PMID: 22527753 DOI: 10.1007/s11103-012-9912-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
Seed germination is a highly organized biological process accompanied by many cellular and metabolic changes. The ribosomal RNA (rRNA) gene, which forms the nucleolus at interphase and is transcribed for ribosome production and protein synthesis, has an important role during seed germination. In this study, we report that there is a decondensation of ribosomal DNA (rDNA) chromatin during seed germination accompanied with increased rRNA gene expression and overall genomic hyperacetylation. Analysis of the rRNA gene promoter region by using chromatin immunoprecipitation (ChIP) shows that there is an increase in acetylation levels at the rRNA gene promoter region. Application of seed germination inhibitor abscisic acid (ABA) suppresses rDNA chromatin decondensation, the expression of rRNA genes and global genomic acetylation. The further ChIP experiments show that ABA treatment hinders the elevation of acetylation levels in the promoter region of the rRNA gene. The data together indicate that ABA treatment inhibits seed germination, which is associated with rDNA chromatin condensation, decreased transcription and rRNA gene hypoacetylation.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Kim JM, To TK, Seki M. An epigenetic integrator: new insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6. PLANT & CELL PHYSIOLOGY 2012; 53:794-800. [PMID: 22253092 DOI: 10.1093/pcp/pcs004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histone acetylation ranks with DNA methylation as one of major epigenetic modifications in eukaryotes. Deacetylation of histone N-terminal tails is intimately correlated with gene silencing and heterochromatin formation. In Arabidopsis, histone deacetylase 6 (HDA6) is a well-studied histone deacetylase that functions in gene silencing. Recently, it has been reported that HDA6 cooperates with DNA methylation on its direct target locus in the gene silencing mechanism. HDA6 has the multifaceted role in regulation of genome maintenance, development and environmental stress responses in plants. Elucidation of HDA6 function provides important information for understanding of epigenetic regulation in plants. In this review, we highlight recent progress in elucidating the HDA6-mediated gene silencing mechanisms and deciphering the biological function of HDA6.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
32
|
Zhang L, Qiu Z, Hu Y, Yang F, Yan S, Zhao L, Li B, He S, Huang M, Li J, Li L. ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter-associated histone acetylation. PHYSIOLOGIA PLANTARUM 2011; 143:287-96. [PMID: 21679193 DOI: 10.1111/j.1399-3054.2011.01496.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seed germination commences from a low metabolic state to a bioactive state and is associated with changes in the pattern of gene expression. Recent studies have revealed that epigenetic processes are involved in abscisic acid (ABA)-regulated seed germination processes. In this study, we showed that the expression of both histone acetyltransferases (HATs) and histone deacetylases (HDACs) was increased gradually during seed germination accompanying an increase in overall acetylation level of histone H3. Application of exogenous ABA repressed the expression of HATs as well as HDACs and delayed histone acetylation. Suppressing HDAC by treatment with an HDAC inhibitor, trichostatin A (TSA), led to an increase in global histone acetylation and inhibited seed germination and growth. However, ABA and TSA both delayed the downregulation of the embryogenesis-related gene viviparous1 (VP1) during seed germination. The further chromatin immunoprecipitation experiments showed that the promoter region of the VP1 gene was deacetylated during seed germination, and this deacetylation event was inhibited by both ABA and TSA. These results suggested that a balance of the two enzymes HATs and HDACs affected the acetylation status of the VP1 gene and ABA selectively activated its transcription by an accumulation of acetylated histone H3 associated with the promoter region during seed germination.
Collapse
Affiliation(s)
- Lu Zhang
- State key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Uddenberg D, Valladares S, Abrahamsson M, Sundström JF, Sundås-Larsson A, von Arnold S. Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. PLANTA 2011; 234:527-39. [PMID: 21541665 PMCID: PMC3162143 DOI: 10.1007/s00425-011-1418-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/12/2011] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISIC ACID3 (ABI3) and its Zea mays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers.
Collapse
Affiliation(s)
- Daniel Uddenberg
- Uppsala Biocenter, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), 7080, 75007 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS One 2011; 6:e22132. [PMID: 21811564 PMCID: PMC3141014 DOI: 10.1371/journal.pone.0022132] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/16/2011] [Indexed: 02/06/2023] Open
Abstract
Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective.
Collapse
|
35
|
An YQ, Lin L. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid. BMC PLANT BIOLOGY 2011; 11:105. [PMID: 21668981 PMCID: PMC3130657 DOI: 10.1186/1471-2229-11-105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/13/2011] [Indexed: 05/07/2023]
Abstract
BACKGROUND Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. RESULTS The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed germination. Those genes and metabolic pathways are likely to be important parts of transcriptional regulatory networks underlying GA and ABA regulation of seed germination and seedling growth. CONCLUSIONS The studies developed a model depicting transcriptional regulatory programs underlying barley germination and GA and ABA regulation of germination at gene, pathway and systems levels, and established a standard transcriptome reference for further integration with various -omics and biological data to illustrate biological networks underlying seed germination. The studies also generated a great amount of systems biological evidence for previously proposed hypotheses, and developed a number of new hypotheses on transcriptional regulation of seed germination for further experimental validation.
Collapse
Affiliation(s)
- Yong-Qiang An
- US Department of Agriculture, Agriculture Research Service, Midwest Area, Plant Genetics Research at Donald Danforth Plant Sciences Center; 975 N Warson Road, St. Louis, MO 63132, USA
| | - Li Lin
- 221 Morrill Science Center III, Department of Biology University of Massachusetts, 611 N. Pleasant St., Amherst, MA 01003, USA
| |
Collapse
|
36
|
Arc E, Galland M, Cueff G, Godin B, Lounifi I, Job D, Rajjou L. Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics 2011; 11:1606-18. [DOI: 10.1002/pmic.201000641] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/05/2010] [Accepted: 01/07/2011] [Indexed: 11/12/2022]
|
37
|
Park SC, Kim YH, Jeong JC, Kim CY, Lee HS, Bang JW, Kwak SS. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. PLANTA 2011; 233:621-34. [PMID: 21136074 DOI: 10.1007/s00425-010-1326-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/17/2010] [Indexed: 05/08/2023]
Abstract
Late embryogenesis abundant 14 (LEA14) cDNA was isolated from an EST library prepared from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). Quantitative RT-PCR revealed a variety of different IbLEA14 expression patterns under various abiotic stress conditions. IbLEA14 expression was strongly induced by dehydration, NaCl and abscisic acid treatments in sweetpotato plants. Transgenic sweetpotato non-embryogenic calli harboring IbLEA14 overexpression or RNAi vectors under the control of CaMV 35S promoter were generated. Transgenic calli overexpressing IbLEA14 showed enhanced tolerance to drought and salt stress, whereas RNAi calli exhibited increased stress sensitivity. Under normal culture conditions, lignin contents increased in IbLEA14-overexpressing calli because of the increased expression of a variety of monolignol biosynthesis-related genes. Stress treatments elicited higher expression levels of the gene encoding cinnamyl alcohol dehydrogenase in IbLEA14-overexpressing lines than in control or RNAi lines. These results suggest that IbLEA14 might positively regulate the response to various stresses by enhancing lignification.
Collapse
Affiliation(s)
- Sung-Chul Park
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Oun-dong 52, Yusong-gu, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Horst I, Offermann S, Dreesen B, Niessen M, Peterhansel C. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize. Epigenetics Chromatin 2009; 2:17. [PMID: 19954517 PMCID: PMC2793245 DOI: 10.1186/1756-8935-2-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 12/02/2009] [Indexed: 01/03/2023] Open
Abstract
Background Acetylation of promoter nucleosomes is tightly correlated and mechanistically linked to gene activity. However, transcription is not necessary for promoter acetylation. It seems, therefore, that external and endogenous stimuli control histone acetylation and by this contribute to gene regulation. Photosynthetic genes in plants are excellent models with which to study the connection between stimuli and chromatin modifications because these genes are strongly expressed and regulated by multiple stimuli that are easily manipulated. We have previously shown that acetylation of specific histone lysine residues on the photosynthetic phosphoenolpyruvate carboxylase (Pepc) promoter in maize is controlled by light and is independent of other stimuli or gene activity. Acetylation of upstream promoter regions responds to a set of other stimuli which include the nutrient availability of the plant. Here, we have extended these studies by analysing histone acetylation during the diurnal and circadian rhythm of the plant. Results We show that histone acetylation of individual lysine residues is removed from the core promoter before the end of the illumination period which is an indication that light is not the only factor influencing core promoter acetylation. Deacetylation is accompanied by a decrease in gene activity. Pharmacological inhibition of histone deacetylation is not sufficient to prevent transcriptional repression, indicating that deacetylation is not controlling diurnal gene regulation. Variation of the Pepc promoter activity during the day is controlled by the circadian oscillator as it is maintained under constant illumination for at least 3 days. During this period, light-induced changes in histone acetylation are completely removed from the core promoter, although the light stimulus is continuously applied. However, acetylation of most sites on upstream promoter elements follows the circadian rhythm. Conclusion Our results suggest a central role of upstream promoter acetylation in the quantitative regulation of gene expression in this model gene. Induced core promoter acetylation is dispensable for the highest gene expression in the diurnal and circadian rhythm.
Collapse
Affiliation(s)
- Ina Horst
- Leibniz University Hannover, Institute of Botany, 30419 Hannover, Germany.
| | | | | | | | | |
Collapse
|
39
|
Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH, Kim JK. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:764-76. [PMID: 19453457 DOI: 10.1111/j.1365-313x.2009.03908.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have previously isolated a rice gene encoding a histone deacetylase, OsHDAC1, and observed that its transgenic overexpression increases seedling root growth. To identify the transcriptional repression events that occur as a result of OsHDAC1 overexpression (OsHDAC1(OE)), a global profiling of root-expressed genes was performed on OsHDAC1(OE) or HDAC inhibitor-treated non-transgenic (NT) roots, in comparison with untreated NT roots. We selected 39 genes that are induced and repressed in HDAC inhibitor-treated NT and OsHDAC1(OE) roots, compared with NT roots, respectively. Interestingly, OsNAC6, a member of the NAM-ATAF-CUC (NAC) family, was identified as a key component of the OsHDAC1 regulon, and was found to be epigenetically repressed by OsHDAC1 overexpression. The root phenotype of OsNAC6 knock-out seedlings was observed to be similar to that of the OsHDAC1(OE) seedlings. Conversely, the root phenotype of the OsNAC6 overexpressors was similar to that of the OsHDAC1 knock-out seedlings. These observations indicate that OsHDAC1 negatively regulates the OsNAC6 gene that primarily mediates the alteration in the root growth of the OsHDAC1(OE) seedlings. Chromatin immunoprecipitation assays of the OsNAC6 promoter region using antibodies specific to acetylated histones H3 and H4 revealed that OsHDAC1 epigenetically represses the expression of OsNAC6 by deacetylating K9, K14 and K18 on H3 and K5, K12 and K16 on H4.
Collapse
Affiliation(s)
- Pil Joong Chung
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Kawaura K, Mochida K, Enju A, Totoki Y, Toyoda A, Sakaki Y, Kai C, Kawai J, Hayashizaki Y, Seki M, Shinozaki K, Ogihara Y. Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns. BMC Genomics 2009; 10:271. [PMID: 19534823 PMCID: PMC2703658 DOI: 10.1186/1471-2164-10-271] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 06/18/2009] [Indexed: 01/08/2023] Open
Abstract
Background Wheat is an allopolyploid plant that harbors a huge, complex genome. Therefore, accumulation of expressed sequence tags (ESTs) for wheat is becoming particularly important for functional genomics and molecular breeding. We prepared a comprehensive collection of ESTs from the various tissues that develop during the wheat life cycle and from tissues subjected to stress. We also examined their expression profiles in silico. As full-length cDNAs are indispensable to certify the collected ESTs and annotate the genes in the wheat genome, we performed a systematic survey and sequencing of the full-length cDNA clones. This sequence information is a valuable genetic resource for functional genomics and will enable carrying out comparative genomics in cereals. Results As part of the functional genomics and development of genomic wheat resources, we have generated a collection of full-length cDNAs from common wheat. By grouping the ESTs of recombinant clones randomly selected from the full-length cDNA library, we were able to sequence 6,162 independent clones with high accuracy. About 10% of the clones were wheat-unique genes, without any counterparts within the DNA database. Wheat clones that showed high homology to those of rice were selected in order to investigate their expression patterns in various tissues throughout the wheat life cycle and in response to abiotic-stress treatments. To assess the variability of genes that have evolved differently in wheat and rice, we calculated the substitution rate (Ka/Ks) of the counterparts in wheat and rice. Genes that were preferentially expressed in certain tissues or treatments had higher Ka/Ks values than those in other tissues and treatments, which suggests that the genes with the higher variability expressed in these tissues is under adaptive selection. Conclusion We have generated a high-quality full-length cDNA resource for common wheat, which is essential for continuation of the ongoing curation and annotation of the wheat genome. The data for each clone's expression in various tissues and stress treatments and its variability in wheat and rice as a result of their diversification are valuable tools for functional genomics in wheat and for comparative genomics in cereals.
Collapse
Affiliation(s)
- Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gao MJ, Lydiate DJ, Li X, Lui H, Gjetvaj B, Hegedus DD, Rozwadowski K. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. THE PLANT CELL 2009; 21:54-71. [PMID: 19155348 PMCID: PMC2648069 DOI: 10.1105/tpc.108.061309] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 12/24/2008] [Accepted: 01/08/2009] [Indexed: 05/17/2023]
Abstract
The seed maturation program is repressed during germination and seedling development so that embryonic genes are not expressed in vegetative organs. Here, we describe a regulator that represses the expression of embryonic seed maturation genes in vegetative tissues. ASIL1 (for Arabidopsis 6b-interacting protein 1-like 1) was isolated by its interaction with the Arabidopsis thaliana 2S3 promoter. ASIL1 possesses domains conserved in the plant-specific trihelix family of DNA binding proteins and belongs to a subfamily of 6b-interacting protein 1-like factors. The seedlings of asil1 mutants exhibited a global shift in gene expression to a profile resembling late embryogenesis. LEAFY COTYLEDON1 and 2 were markedly derepressed during early germination, as was a large subset of seed maturation genes, such as those encoding seed storage proteins and oleosins, in seedlings of asil1 mutants. Consistent with this, asil1 seedlings accumulated 2S albumin and oil with a fatty acid composition similar to that of seed-derived lipid. Moreover, ASIL1 specifically recognized a GT element that overlaps the G-box and is in close proximity to the RY repeats of the 2S promoters. We suggest that ASIL1 targets GT-box-containing embryonic genes by competing with the binding of transcriptional activators to this promoter region.
Collapse
Affiliation(s)
- Ming-Jun Gao
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan S7N 0X2, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Using post-genomic technologies, it is now possible to understand the molecular basis of complex developmental processes. In the case of seed germination, recent transcriptome- and proteome-wide studies led to new insights concerning the building up of the germination potential during seed maturation on the mother plant, the reversible character of the first phases of the germination process enabling the imbibed embryo to recapitulate the late maturation program for mounting defense response when confronted to environmental fluctuations, the timing of expression of genes playing a role in controlling radicle emergence, the role of plant hormones as abscisic acid and gibberellins in seed germination, and finally the global changes in proteome activity induced by redox regulation occurring in seed development and germination. In this way, post-genomic technologies help facilitating the advent of a systems approach to uncover novel features of seed quality, which can lead to potential applications, for example in selection programs.
Collapse
Affiliation(s)
- Julie Catusse
- CNRS-Université Claude-Bernard Lyon 1-INSA-Bayer CropScience Joint Laboratory, UMR 5240, Bayer CropScience, 14-20, rue Pierre-Baizet, 69263 Lyon cedex 9, France
| | | | | |
Collapse
|
43
|
Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA. The enigmatic LEA proteins and other hydrophilins. PLANT PHYSIOLOGY 2008; 148:6-24. [PMID: 18772351 PMCID: PMC2528095 DOI: 10.1104/pp.108.120725] [Citation(s) in RCA: 521] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 07/08/2008] [Indexed: 05/17/2023]
Affiliation(s)
- Marina Battaglia
- Departamento de Biología Molecular de Plantas , Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | |
Collapse
|
44
|
Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:608-20. [PMID: 18476867 DOI: 10.1111/j.1365-313x.2008.03461.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Seeds represent the main source of nutrients for animals and humans, and knowledge of their biology provides tools for improving agricultural practices and managing genetic resources. There is also tremendous interest in using seeds as a sustainable alternative to fossil reserves for green chemistry. Seeds accumulate large amounts of storage compounds such as carbohydrates, proteins and oils. It would be useful for agro-industrial purposes to produce seeds that accumulate these storage compounds more specifically and at higher levels. The main metabolic pathways necessary for oil, starch or protein accumulation are well characterized. However, the overall regulation of partitioning between the various pathways remains unclear. Such knowledge could provide new molecular tools for improving the qualities of crop seeds (Focks and Benning, 1998, Plant Physiol. 118, 91). Studies to improve understanding of the genetic controls of seed development and metabolism therefore remain a key area of research. In the model plant Arabidopsis, genetic analyses have demonstrated that LEAFY COTYLEDON genes, namely LEC1, LEC2 and FUSCA3 (FUS3), are key transcriptional regulators of seed maturation, together with ABSCISIC ACID INSENSITIVE 3 (ABI3). Interestingly, LEC2, FUS3 and ABI3 are related proteins that all contain a 'B3' DNA-binding domain. In recent years, genetic and molecular studies have shed new light on the intricate regulatory network involving these regulators and their interactions with other factors such as LEC1, PICKLE, ABI5 or WRI1, as well as with sugar and hormonal signaling. Here, we summarize the most recent advances in our understanding of this complex regulatory network and its role in the control of seed maturation.
Collapse
Affiliation(s)
- Monica Santos-Mendoza
- INRA, AgroParitech, UMR204, Institut Jean-Pierre Bourgin (IJPB), Seed Biology Laboratory, 78026 Versailles Cedex, France
| | | | | | | | | | | |
Collapse
|
45
|
Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. THE PLANT CELL 2008; 20:1260-77. [PMID: 18487351 PMCID: PMC2438461 DOI: 10.1105/tpc.108.058859] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Light absorbed by seed phytochromes of Arabidopsis thaliana modulates abscisic acid (ABA) and gibberellic acid (GA) signaling pathways at least partly via PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a phytochrome-interacting basic helix-loop-helix transcription factor. Here, we report a new mutant, somnus (som), that germinates in darkness, independently of various light regimens. SOM encodes a nucleus-localized CCCH-type zinc finger protein. The som mutant has lower levels of ABA and elevated levels of GA due to expressional changes in ABA and GA metabolic genes. Unlike PIL5, however, SOM does not regulate the expression of GA-INSENSITIVE and REPRESSOR OF GA1 (RGA/RGA1), two DELLA genes encoding GA negative signaling components. Our in vivo analysis shows that PIL5 activates the expression of SOM by binding directly to its promoter, suggesting that PIL5 regulates ABA and GA metabolic genes partly through SOM. In agreement with these results, we also observed that the reduced germination frequency of a PIL5 overexpression line is rescued by the som mutation and that this rescue is accompanied by expressional changes in ABA and GA metabolic genes. Taken together, our results indicate that SOM is a component in the phytochrome signal transduction pathway that regulates hormone metabolic genes downstream of PIL5 during seed germination.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hill K, Wang H, Perry SE. A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:172-85. [PMID: 17999645 DOI: 10.1111/j.1365-313x.2007.03336.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AGAMOUS-like 15 (AGL15) encodes a MADS-domain transcription factor that is preferentially expressed in the plant embryo. A number of direct downstream targets of AGL15 have been identified, and although some of these target genes are induced in response to AGL15, others are repressed. Additionally, direct target genes have been analyzed that exhibit strong association with AGL15 in vivo, yet in vitro AGL15 binds only weakly. These data suggest that AGL15 may form complexes with other proteins, thus modulating the specificity and function of AGL15 in planta. Here we report that AGL15 interacts with members of the SWI-independent 3/histone deacetylase (SIN3/HDAC) complex, and that AGL15 target genes are also responsive to an AGL15 interacting protein that is also a member of this complex, SIN3-associated polypeptide of 18 kDa (SAP18). AGL15 can repress transcription in vivo, and a region essential to this repressive function contains a motif that is conserved among putative orthologs of AGL15. This motif mediates the association of AGL15 with SAP18, thus providing a possible mechanism for the role of AGL15 in regulating gene expression via recruitment of an HDAC complex.
Collapse
Affiliation(s)
- Kristine Hill
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA
| | | | | |
Collapse
|
47
|
Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. PLANT PHYSIOLOGY 2008; 146:149-61. [PMID: 18024558 PMCID: PMC2230551 DOI: 10.1104/pp.107.111674] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 11/11/2007] [Indexed: 05/19/2023]
Abstract
Histone deacetylase (HDAC) is a chromatin-remodeling factor that contributes to transcriptional repression in eukaryotes. In Arabidopsis (Arabidopsis thaliana), the transcription factors LEAFY COTYLEDON1 (LEC1), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE3 (ABI3) play key roles in embryogenesis. Although the repression of embryogenesis-related genes during germination has been proposed to occur, the role of HDAC in this process has not been elucidated. To address this question, the effects of an HDAC inhibitor and suppression of the Arabidopsis HDAC genes on this process were investigated. Here, we show that treatment of an HDA6 repression line with the HDAC inhibitor trichostatin A resulted in growth arrest and elevated transcription of LEC1, FUS3, and ABI3 during germination. The growth-arrest phenotype of the repression line was suppressed by lec1, fus3, and abi3. An HDA6/HDA19 double-repression line displayed arrested growth after germination and the formation of embryo-like structures on the true leaves of 6-week-old plants even without trichostatin A. The growth-arrest phenotype of this line was rescued by lec1. These results suggest that during germination in Arabidopsis, HDA6 and HDA19 redundantly regulate the repression of embryonic properties directly or indirectly via repression of embryo-specific gene function.
Collapse
Affiliation(s)
- Motoki Tanaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
48
|
Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. THE PLANT CELL 2007; 19:1192-208. [PMID: 17449805 PMCID: PMC1913757 DOI: 10.1105/tpc.107.050153] [Citation(s) in RCA: 332] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previous work showed that PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a light-labile basic helix-loop-helix protein, inhibits seed germination by repressing GIBBERELLIN 3beta-HYDROXYLASE1 (GA3ox1) and GA3ox2 and activating a gibberellic acid (GA) catabolic gene (GA2ox2). However, we show persistent light-dependent and PIL5-inhibited germination behavior in the absence of both de novo GA biosynthesis and deactivation by GA2ox2, suggesting that PIL5 regulates not only GA metabolism but also GA responsiveness. PIL5 increases the expression of two GA repressor (DELLA) genes, GA-INSENSITIVE (GAI) and REPRESSOR OF GA1-3 (RGA/RGA1), in darkness. The hypersensitivity of gai-t6 rga-28 to red light and the suppression of germination defects of a rga-28 PIL5 overexpression line show the significant role of this transcriptional regulation in seed germination. PIL5 also increases abscisic acid (ABA) levels by activating ABA biosynthetic genes and repressing an ABA catabolic gene. PIL5 binds directly to GAI and RGA promoters but not to GA and ABA metabolic gene promoters. Together, our results show that light signals perceived by phytochromes cause a reduction in the PIL5 protein level, which in turn regulates the transcription of two DELLA genes directly and that of GA and ABA metabolic genes indirectly.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|