1
|
Suhorukova AV, Sobolev DS, Milovskaya IG, Fadeev VS, Goldenkova-Pavlova IV, Tyurin AA. A Molecular Orchestration of Plant Translation under Abiotic Stress. Cells 2023; 12:2445. [PMID: 37887289 PMCID: PMC10605726 DOI: 10.3390/cells12202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The complexities of translational strategies make this stage of implementing genetic information one of the most challenging to comprehend and, simultaneously, perhaps the most engaging. It is evident that this diverse range of strategies results not only from a long evolutionary history, but is also of paramount importance for refining gene expression and metabolic modulation. This notion is particularly accurate for organisms that predominantly exhibit biochemical and physiological reactions with a lack of behavioural ones. Plants are a group of organisms that exhibit such features. Addressing unfavourable environmental conditions plays a pivotal role in plant physiology. This is particularly evident with the changing conditions of global warming and the irrevocable loss or depletion of natural ecosystems. In conceptual terms, the plant response to abiotic stress comprises a set of elaborate and intricate strategies. This is influenced by a range of abiotic factors that cause stressful conditions, and molecular genetic mechanisms that fine-tune metabolic pathways allowing the plant organism to overcome non-standard and non-optimal conditions. This review aims to focus on the current state of the art in the field of translational regulation in plants under abiotic stress conditions. Different regulatory elements and patterns are being assessed chronologically. We deem it important to focus on significant high-performance techniques for studying the genetic information dynamics during the translation phase.
Collapse
|
2
|
Wang H, Zhang Y, Norris A, Jiang CZ. S1-bZIP Transcription Factors Play Important Roles in the Regulation of Fruit Quality and Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 12:802802. [PMID: 35095974 PMCID: PMC8795868 DOI: 10.3389/fpls.2021.802802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sugar metabolism not only determines fruit sweetness and quality but also acts as signaling molecules to substantially connect with other primary metabolic processes and, therefore, modulates plant growth and development, fruit ripening, and stress response. The basic region/leucine zipper motif (bZIP) transcription factor family is ubiquitous in eukaryotes and plays a diverse array of biological functions in plants. Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique one, due to the conserved upstream open reading frames (uORFs) in the 5' leader region of their mRNA. The translated small peptides from these uORFs are suggested to mediate Sucrose-Induced Repression of Translation (SIRT), an important mechanism to maintain sucrose homeostasis in plants. Here, we review recent research on the evolution, sequence features, and biological functions of this bZIP subgroup. S1-bZIPs play important roles in fruit quality, abiotic and biotic stress responses, plant growth and development, and other metabolite biosynthesis by acting as signaling hubs through dimerization with the subgroup C-bZIPs and other cofactors like SnRK1 to coordinate the expression of downstream genes. Direction for further research and genetic engineering of S1-bZIPs in plants is suggested for the improvement of quality and safety traits of fruit.
Collapse
Affiliation(s)
- Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
| | - Yunting Zhang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ayla Norris
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
3
|
Jia H, Wang X, Shi Y, Wu X, Wang Y, Liu J, Fang Z, Li C, Dong K. Overexpression of Medicago sativa LEA4-4 can improve the salt, drought, and oxidation resistance of transgenic Arabidopsis. PLoS One 2020; 15:e0234085. [PMID: 32497140 PMCID: PMC7272090 DOI: 10.1371/journal.pone.0234085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are widely involved in many adverse conditions among plants. In this study, we isolated a LEA4 gene from alfalfa (Medicago sativa L.) termed MsLEA4-4 via a homology cloning strategy. MsLEA4-4 encodes 166 amino acids, and the structural analysis showed that the gene contained five repeating TAQAAKEKTQQ amino acid motifs. There were a large number of α-helix in MsLEA4-4, and belongs to hydrophilic amino acid. Subcellular localization analysis showed that MsLEA4-4 was localized in the nucleus. The MsLEA4-4 promoter consisted of G-box and A-box elements, abscisic acid-responsive elements (ABREs), photo regulation and photoperiodic-controlling cis-acting elements, and endosperm expression motifs. The MsLEA4-4 overexpressing in Arabidopsis conferred late-germination phenotypes. Resistance of the overexpressed plants to abiotic stress significantly outperformed the wild-type (WT) plants. Under salt stress and abscisic acid treatment, with more lateral roots and higher chlorophyll content, the overexpressed plants has a higher survival rate measured against WT. Compared to those in the WT plants, the levels of soluble sugar and the activity of various antioxidant enzymes were elevated in the overexpressed plants, whereas the levels of proline and malondialdehyde were significantly reduced. The expression levels of several genes such as ABF3, ABI5, NCED5, and NCED9 increased markedly in the overexpressed plants compared to the WT under osmotic stress.
Collapse
Affiliation(s)
- Huili Jia
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xuemin Wang
- Chinese Academy of Agricultural Sciences, Institute of Animal Science, Beijing, China
| | - Yonghong Shi
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xinming Wu
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Yunqi Wang
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Jianning Liu
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Zhihong Fang
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Chunyan Li
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Kuanhu Dong
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
4
|
Plant Desiccation Tolerance and its Regulation in the Foliage of Resurrection “Flowering-Plant” Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The majority of flowering-plant species can survive complete air-dryness in their seed and/or pollen. Relatively few species (‘resurrection plants’) express this desiccation tolerance in their foliage. Knowledge of the regulation of desiccation tolerance in resurrection plant foliage is reviewed. Elucidation of the regulatory mechanism in resurrection grasses may lead to identification of genes that can improve stress tolerance and yield of major crop species. Well-hydrated leaves of resurrection plants are desiccation-sensitive and the leaves become desiccation tolerant as they are drying. Such drought-induction of desiccation tolerance involves changes in gene-expression causing extensive changes in the complement of proteins and the transition to a highly-stable quiescent state lasting months to years. These changes in gene-expression are regulated by several interacting phytohormones, of which drought-induced abscisic acid (ABA) is particularly important in some species. Treatment with only ABA induces desiccation tolerance in vegetative tissue of Borya constricta Churchill. and Craterostigma plantagineum Hochstetter. but not in the resurrection grass Sporobolus stapfianus Gandoger. Suppression of drought-induced senescence is also important for survival of drying. Further research is needed on the triggering of the induction of desiccation tolerance, on the transition between phases of protein synthesis and on the role of the phytohormone, strigolactone and other potential xylem-messengers during drying and rehydration.
Collapse
|
5
|
Giarola V, Jung NU, Singh A, Satpathy P, Bartels D. Analysis of pcC13-62 promoters predicts a link between cis-element variations and desiccation tolerance in Linderniaceae. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3773-3784. [PMID: 29757404 PMCID: PMC6022661 DOI: 10.1093/jxb/ery173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 05/24/2023]
Abstract
Reproductive structures of plants (e.g. seeds) and vegetative tissues of resurrection plants can tolerate desiccation. Many genes encoding desiccation-related proteins (DRPs) have been identified in the resurrection plant Craterostigma plantagineum, but the function of these genes remains mainly hypothetical. Here, the importance of the DRP gene pcC13-62 for desiccation tolerance is evaluated by analysing its expression in C. plantagineum and in the closely related desiccation-tolerant species Lindernia brevidens and the desiccation-sensitive species Lindernia subracemosa. Quantitative analysis revealed that pcC13-62 transcripts accumulate at a much lower level in desiccation-sensitive species than in desiccation-tolerant species. The study of pcC13-62 promoters from these species demonstrated a correlation between promoter activity and gene expression levels, suggesting transcriptional regulation of gene expression. Comparison of promoter sequences identified a dehydration-responsive element motif in the promoters of tolerant species that is required for dehydration-induced β-glucuronidase (GUS) accumulation. We hypothesize that variations in the regulatory sequences of the pcC13-62 gene occurred to establish pcC13-62 expression in vegetative tissues, which might be required for desiccation tolerance. The pcC13-62 promoters could also be activated by salt stress in Arabidopsis thaliana plants stably transformed with promoter::GUS constructs.
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Niklas Udo Jung
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Aishwarya Singh
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Pooja Satpathy
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| |
Collapse
|
6
|
Neeragunda Shivaraj Y, Barbara P, Gugi B, Vicré-Gibouin M, Driouich A, Ramasandra Govind S, Devaraja A, Kambalagere Y. Perspectives on Structural, Physiological, Cellular, and Molecular Responses to Desiccation in Resurrection Plants. SCIENTIFICA 2018; 2018:9464592. [PMID: 30046509 PMCID: PMC6036803 DOI: 10.1155/2018/9464592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 05/21/2023]
Abstract
Resurrection plants possess a unique ability to counteract desiccation stress. Desiccation tolerance (DT) is a very complex multigenic and multifactorial process comprising a combination of physiological, morphological, cellular, genomic, transcriptomic, proteomic, and metabolic processes. Modification in the sugar composition of the hemicellulosic fraction of the cell wall is detected during dehydration. An important change is a decrease of glucose in the hemicellulosic fraction during dehydration that can reflect a modification of the xyloglucan structure. The expansins might also be involved in cell wall flexibility during drying and disrupt hydrogen bonds between polymers during rehydration of the cell wall. Cleavages by xyloglucan-modifying enzymes release the tightly bound xyloglucan-cellulose network, thus increasing cell wall flexibility required for cell wall folding upon desiccation. Changes in hydroxyproline-rich glycoproteins (HRGPs) such as arabinogalactan proteins (AGPs) are also observed during desiccation and rehydration processes. It has also been observed that significant alterations in the process of photosynthesis and photosystem (PS) II activity along with changes in the antioxidant enzyme system also increased the cell wall and membrane fluidity resulting in DT. Similarly, recent data show a major role of ABA, LEA proteins, and small regulatory RNA in regulating DT responses. Current progress in "-omic" technologies has enabled quantitative monitoring of the plethora of biological molecules in a high throughput routine, making it possible to compare their levels between desiccation-sensitive and DT species. In this review, we present a comprehensive overview of structural, physiological, cellular, molecular, and global responses involved in desiccation tolerance.
Collapse
Affiliation(s)
- Yathisha Neeragunda Shivaraj
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Plancot Barbara
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Bruno Gugi
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Sharatchandra Ramasandra Govind
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Akash Devaraja
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Yogendra Kambalagere
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| |
Collapse
|
7
|
Manzano C, Ramirez-Parra E, Casimiro I, Otero S, Desvoyes B, De Rybel B, Beeckman T, Casero P, Gutierrez C, C. del Pozo J. Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation. PLANT PHYSIOLOGY 2012; 160:749-62. [PMID: 22837358 PMCID: PMC3461553 DOI: 10.1104/pp.112.198341] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 5' end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin- and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation.
Collapse
|
8
|
Isolation and characterization of two ABRE-binding proteins: EABF and EABF1 from the oil palm. Mol Biol Rep 2012; 39:8907-18. [PMID: 22722992 DOI: 10.1007/s11033-012-1758-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Abscisic acid (ABA) is an important phytohormone involved in the abiotic stress resistance in plants. The ABA-responsive element (ABRE) binding factors play significant roles in the plant development and response to abiotic stresses, but none so far have been isolated and characterized from the oil palm. Two ABA-responsive cDNA clones, named EABF and EABF1, were isolated from the oil palm fruits using yeast one-hybrid system. The EABF had a conserved AP2/EREBP DNA-binding domain (DNA-BD) and a potential nuclear localization sequence (NLS). No previously known DNA-BD was identified from the EABF1 sequence. The EABF and EABF1 proteins were classified as DREB/CBF and bZIP family members based on the multiple sequence alignment and phylogenetic analysis. Both proteins showed ABRE-binding and transcriptional activation properties in yeast. Furthermore, both proteins were able to trans-activate the down-stream expression of the LacZ reporter gene in yeast. An electrophoretic mobility shift assay revealed that in addition to the ABRE sequence, both proteins could bind to the DRE sequence as well. Transcriptional analysis revealed that the expression of EABF was induced in response to the ABA in the oil palm fruits and leaves, but not in roots, while the EABF1 was constitutively induced in all tissues. The expressions of both genes were strongly induced in fruits in response to the ABA, ethylene, methyl jasmonate, drought, cold and high-salinity treatments, indicating that the EABF and EABF1 might act as connectors among different stress signal transduction pathways. Our results indicate that the EABF and EABF1 are novel stress-responsive transcription factors, which are involved in the abiotic stress response and ABA signaling in the oil palm and could be used for production of stress-tolerant transgenic crops.
Collapse
|
9
|
Dinakar C, Djilianov D, Bartels D. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:29-41. [PMID: 22118613 DOI: 10.1016/j.plantsci.2011.01.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/10/2011] [Accepted: 01/27/2011] [Indexed: 05/07/2023]
Abstract
Resurrection plants are regarded as excellent models to study the mechanisms associated with desiccation tolerance. During the past years tremendous progress has been made in understanding the phenomenon of desiccation tolerance in resurrection plants, but many questions are open concerning the mechanisms enabling these plants to survive desiccation. The photosynthetic apparatus is very sensitive to reactive oxygen species mediated injury during desiccation and must be maintained or quickly repaired upon rehydration. The photosynthetic apparatus is a primary source of generating reactive oxygen species. The unique ability of plants to withstand the oxidative stress imposed by reactive oxygen species during desiccation depends on the production of antioxidants. The present review considers the overall strategies and the mechanisms involved in the desiccation tolerance in the first part and will focus on the effects on photosynthesis, energy metabolism and antioxidative stress defenses in the second part.
Collapse
Affiliation(s)
- Challabathula Dinakar
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | | | |
Collapse
|
10
|
Zhang X, Hu Y, Jiang C, Zhang W, Li Z, Ming F. Isolation of the Chinese rose sHSP gene promoter and its differential regulation analysis in transgenic Arabidopsis plants. Mol Biol Rep 2011; 39:1145-51. [PMID: 21573789 DOI: 10.1007/s11033-011-0843-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/05/2011] [Indexed: 11/25/2022]
Abstract
In our previous study, we identified a Rosa chinensis heat shock protein (HSP) gene, RcHSP17.8, which was induced by abiotic stresses, such as high temperature and osmotic stress. To analyze the expression of RcHSP17.8 and the function of cis-acting elements in the promoter region, a 1,910 bp fragment of the upstream sequence of the RcHSP17.8 translation initiation codon and five promoter deletion fragments were fused to a β-glucuronidase (GUS) report gene. These plasmids were transferred to Arabidopsis thaliana via Agrobacterium. GUS staining was seen in all the organs, especially in the vascular tissues after heat treatment. In transgenic Arabidopsis, GUS expression driven by the full length promoter was significantly higher under heat shock, but no GUS activity was detected under other abiotic stresses. Deletion analysis indicated that the region from -178 to -771 was essential for the promoter's response to high temperature.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, 220 Handan Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Understanding Vegetative Desiccation Tolerance Using Integrated Functional Genomics Approaches Within a Comparative Evolutionary Framework. PLANT DESICCATION TOLERANCE 2011. [DOI: 10.1007/978-3-642-19106-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Guan Y, Ren H, Xie H, Ma Z, Chen F. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:207-17. [PMID: 19519801 DOI: 10.1111/j.1365-313x.2009.03948.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Seed dormancy is an important adaptive trait that enables seeds of many species to remain quiescent until conditions become favorable for germination. Abscisic acid (ABA) plays an important role in these developmental processes. Like dormancy and germination, the elongation of carrot somatic embryo radicles is retarded by sucrose concentrations at or above 6%, and normal growth resumes at sucrose concentrations below 3%. Using a yeast one-hybrid screening system, we isolated two bZIP-type transcription factors, CAREB1 and CAREB2, from a cDNA library prepared from carrot somatic embryos cultured in a high-sucrose medium. Both CAREB1 and CAREB2 were localized to the nucleus, and specifically bound to the ABA response element (ABRE) in the Dc3 promoter. Expression of CAREB2 was induced in seedlings by drought and exogenous ABA application; whereas expression of CAREB1 increased during late embryogenesis, and reduced dramatically when somatic embryos were treated with fluridone, an inhibitor of ABA synthesis. Overexpression of CAREB1 caused somatic embryos to develop slowly when cultured in low-sucrose medium, and retarded the elongation of the radicles. These results indicate that CAREB1 and CAREB2 have similar DNA-binding activities, but play different roles during carrot development. Our results indicate that CAREB1 functions as an important trans-acting factor in the ABA signal transduction pathway during carrot somatic embryogenesis.
Collapse
Affiliation(s)
- Yucheng Guan
- National Centre for Plant Gene Research, Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
14
|
Willige BC, Kutzer M, Tebartz F, Bartels D. Subcellular localization and enzymatic properties of differentially expressed transketolase genes isolated from the desiccation tolerant resurrection plant Craterostigma plantagineum. PLANTA 2009; 229:659-666. [PMID: 19052774 DOI: 10.1007/s00425-008-0863-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/13/2008] [Indexed: 05/27/2023]
Abstract
The desiccation tolerant resurrection plant Craterostigma plantagineum encodes three classes of transketolase transcripts, which are distinguished by their gene structures and their expression patterns. One class, represented by tkt3, is constitutively expressed and two classes, represented by tkt7 and tkt10, are upregulated upon rehydration of desiccated C. plantagineum plants. The objective of this work was to characterize the differentially expressed transketolase isoforms with respect to subcellular localization and enzymatic activity. Using GFP fusion constructs and enzymatic activity assays, we demonstrate that C. plantagineum has novel forms of transketolase which localize not to the chloroplast, but mainly to the cytoplasm and which are distinct in the enzymatic properties from the transketolase enzymes active in the Calvin cycle or oxidative pentose phosphate pathway. A transketolase preparation from rehydrated leaves was able to synthesize the unusual C8 carbon sugar octulose when glucose-6-phosphate and hydroxy-pyruvate were used as acceptor and donor molecules in in vitro assays. This suggests that a transketolase catalyzed reaction is likely to be involved in the octulose biosynthesis in C. plantagineum.
Collapse
Affiliation(s)
- Björn C Willige
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | | | | | |
Collapse
|
15
|
Moore JP, Le NT, Brandt WF, Driouich A, Farrant JM. Towards a systems-based understanding of plant desiccation tolerance. TRENDS IN PLANT SCIENCE 2009; 14:110-7. [PMID: 19179102 DOI: 10.1016/j.tplants.2008.11.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/17/2008] [Accepted: 11/25/2008] [Indexed: 05/19/2023]
Abstract
Vegetative desiccation tolerance occurs in a unique group of species termed 'resurrection plants'. Here, we review the molecular genetic, physiological, biochemical, ultrastructural and biophysical studies that have been performed on a variety of resurrection plants to discover the mechanisms responsible for their tolerance. Desiccation tolerance in resurrection plants involves a combination of molecular genetic mechanisms, metabolic and antioxidant systems as well as macromolecular and structural stabilizing processes. We propose that a systems-biology approach coupled with multivariate data analysis is best suited to unraveling the mechanisms responsible for plant desiccation tolerance, as well as their integration with one another. This is of particular relevance to molecular biological engineering strategies for improving plant drought tolerance in important crop species, such as maize (Zea mays) and grapevine (Vitis vinifera).
Collapse
Affiliation(s)
- John P Moore
- Institute for Wine Biotechnology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | | | |
Collapse
|
16
|
Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. PLANT PHYSIOLOGY 2008; 148:1938-52. [PMID: 18931143 PMCID: PMC2593664 DOI: 10.1104/pp.108.128199] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/15/2008] [Indexed: 05/17/2023]
Abstract
OsbZIP23 is a member of the basic leucine zipper (bZIP) transcription factor family in rice (Oryza sativa). Expression of OsbZIP23 is strongly induced by a wide spectrum of stresses, including drought, salt, abscisic acid (ABA), and polyethylene glycol treatments, while other stress-responsive genes of this family are slightly induced only by one or two of the stresses. Transactivation assay in yeast demonstrated that OsbZIP23 functions as a transcriptional activator, and the sequences at the N terminus (amino acids 1-59) and a region close to the C terminus (amino acids 210-240) are required for the transactivation activity. Transient expression of OsbZIP23-green fluorescent protein in onion (Allium cepa) cells revealed a nuclear localization of the protein. Transgenic rice overexpressing OsbZIP23 showed significantly improved tolerance to drought and high-salinity stresses and sensitivity to ABA. On the other hand, a null mutant of this gene showed significantly decreased sensitivity to a high concentration of ABA and decreased tolerance to high-salinity and drought stress, and this phenotype can be complemented by transforming the OsbZIP23 back into the mutant. GeneChip and real-time polymerase chain reaction analyses revealed that hundreds of genes were up- or down-regulated in the rice plants overexpressing OsbZIP23. More than half of these genes have been annotated or evidenced for their diverse functions in stress response or tolerance. In addition, more than 30 genes that are possible OsbZIP23-specific target genes were identified based on the comparison of the expression profiles in the overexpressor and the mutant of OsbZIP23. Collectively, these results indicate that OsbZIP23 functions as a transcriptional regulator that can regulate the expression of a wide spectrum of stress-related genes in response to abiotic stresses through an ABA-dependent regulation pathway. We propose that OsbZIP23 is a major player of the bZIP family in rice for conferring ABA-dependent drought and salinity tolerance and has high potential usefulness in genetic improvement of stress tolerance.
Collapse
Affiliation(s)
- Yong Xiang
- National Center of Plant Gene Research , National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
17
|
Tran MK, Schultz CJ, Baumann U. Conserved upstream open reading frames in higher plants. BMC Genomics 2008; 9:361. [PMID: 18667093 PMCID: PMC2527020 DOI: 10.1186/1471-2164-9-361] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 07/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) can down-regulate the translation of the main open reading frame (mORF) through two broad mechanisms: ribosomal stalling and reducing reinitiation efficiency. In distantly related plants, such as rice and Arabidopsis, it has been found that conserved uORFs are rare in these transcriptomes with approximately 100 loci. It is unclear how prevalent conserved uORFs are in closely related plants. RESULTS We used a homology-based approach to identify conserved uORFs in five cereals (monocots) that could potentially regulate translation. Our approach used a modified reciprocal best hit method to identify putative orthologous sequences that were then analysed by a comparative R-nomics program called uORFSCAN to find conserved uORFs. CONCLUSION This research identified new genes that may be controlled at the level of translation by conserved uORFs. We report that conserved uORFs are rare (<150 loci contain them) in cereal transcriptomes, are generally short (less than 100 nt), highly conserved (50% median amino acid sequence similarity), position independent in their 5'-UTRs, and their start codon context and the usage of rare codons for translation does not appear to be important.
Collapse
Affiliation(s)
- Michael K Tran
- Australian Centre for Plant Functional Genomics PMB 1 Glen Osmond SA 5064, Australia.
| | | | | |
Collapse
|
18
|
Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:301-10. [PMID: 18397374 PMCID: PMC2607530 DOI: 10.1111/j.1365-313x.2008.03505.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/11/2008] [Accepted: 03/17/2008] [Indexed: 05/18/2023]
Abstract
Ethylene is required for climacteric fruit ripening. Inhibition of ethylene biosynthesis genes, 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase, prevents or delays ripening, but it is not known how these genes are modulated during normal development. LeHB-1, a previously uncharacterized tomato homeobox protein, was shown by gel retardation assay to interact with the promoter of LeACO1, an ACC oxidase gene expressed during ripening. Inhibition of LeHB-1 mRNA accumulation in tomato fruit, using virus-induced gene silencing, greatly reduced LeACO1 mRNA levels, and inhibited ripening. Conversely, ectopic overexpression of LeHB-1 by viral delivery to developing flowers elsewhere on injected plants triggered altered floral organ morphology, including production of multiple flowers within one sepal whorl, fusion of sepals and petals, and conversion of sepals into carpel-like structures that grew into fruits and ripened. Our findings suggest that LeHB-1 is not only involved in the control of ripening but also plays a critical role in floral organogenesis.
Collapse
Affiliation(s)
- Zhefeng Lin
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | | | | | | | | | |
Collapse
|
19
|
Phillips JR, Fischer E, Baron M, van den Dries N, Facchinelli F, Kutzer M, Rahmanzadeh R, Remus D, Bartels D. Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:938-48. [PMID: 18346195 DOI: 10.1111/j.1365-313x.2008.03478.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A particular adaptation to survival under limited water availability has been realized in the desiccation-tolerant resurrection plants, which tend to grow in a habitat with seasonal rainfall and long dry periods. One of the best-studied examples is Craterostigma plantagineum. Here we report an unexpected finding: Lindernia brevidens, a close relative of C. plantagineum, exhibits desiccation tolerance, even though it is endemic to the montane rainforests of Tanzania and Kenya, where it never experiences seasonal dry periods. L. brevidens has been found exclusively in two fragments of the ancient Eastern Arc Mountains, which were protected from the devastating Pleistocene droughts by the stable Indian Ocean temperature. Analysis of the microhabitat reveals that L. brevidens is found in the same habitat as hygrophilous plant species, which further indicates that the plant never dries out completely. The objective of this investigation was to address whether C. plantagineum and L. brevidens have desiccation-related pathways in common, or whether L. brevidens has acquired novel pathways. A third, closely related, desiccation-sensitive species, Lindernia subracemosa, has been included for comparison. Mechanisms that confer cellular protection during extreme water loss are well conserved between C. plantagineum and L. brevidens, including the interconversion of 2-octulose to sucrose within the two desiccation-tolerant species. Furthermore, transcriptional control regions of desiccation-related genes belonging to the late embryogenesis abundant (LEA) protein family are also highly conserved. We propose that L. brevidens is a neoendemic species that has retained desiccation tolerance through genome stability, despite tolerance being superfluous to environmental conditions.
Collapse
Affiliation(s)
- Jonathan R Phillips
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Guo B, Chen X, Dang P, Scully BT, Liang X, Holbrook CC, Yu J, Culbreath AK. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC DEVELOPMENTAL BIOLOGY 2008; 8:12. [PMID: 18248674 PMCID: PMC2257936 DOI: 10.1186/1471-213x-8-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 02/04/2008] [Indexed: 02/02/2023]
Abstract
Background Peanut (Arachis hypogaea L.) is an important crop economically and nutritionally, and is one of the most susceptible host crops to colonization of Aspergillus parasiticus and subsequent aflatoxin contamination. Knowledge from molecular genetic studies could help to devise strategies in alleviating this problem; however, few peanut DNA sequences are available in the public database. In order to understand the molecular basis of host resistance to aflatoxin contamination, a large-scale project was conducted to generate expressed sequence tags (ESTs) from developing seeds to identify resistance-related genes involved in defense response against Aspergillus infection and subsequent aflatoxin contamination. Results We constructed six different cDNA libraries derived from developing peanut seeds at three reproduction stages (R5, R6 and R7) from a resistant and a susceptible cultivated peanut genotypes, 'Tifrunner' (susceptible to Aspergillus infection with higher aflatoxin contamination and resistant to TSWV) and 'GT-C20' (resistant to Aspergillus with reduced aflatoxin contamination and susceptible to TSWV). The developing peanut seed tissues were challenged by A. parasiticus and drought stress in the field. A total of 24,192 randomly selected cDNA clones from six libraries were sequenced. After removing vector sequences and quality trimming, 21,777 high-quality EST sequences were generated. Sequence clustering and assembling resulted in 8,689 unique EST sequences with 1,741 tentative consensus EST sequences (TCs) and 6,948 singleton ESTs. Functional classification was performed according to MIPS functional catalogue criteria. The unique EST sequences were divided into twenty-two categories. A similarity search against the non-redundant protein database available from NCBI indicated that 84.78% of total ESTs showed significant similarity to known proteins, of which 165 genes had been previously reported in peanuts. There were differences in overall expression patterns in different libraries and genotypes. A number of sequences were expressed throughout all of the libraries, representing constitutive expressed sequences. In order to identify resistance-related genes with significantly differential expression, a statistical analysis to estimate the relative abundance (R) was used to compare the relative abundance of each gene transcripts in each cDNA library. Thirty six and forty seven unique EST sequences with threshold of R > 4 from libraries of 'GT-C20' and 'Tifrunner', respectively, were selected for examination of temporal gene expression patterns according to EST frequencies. Nine and eight resistance-related genes with significant up-regulation were obtained in 'GT-C20' and 'Tifrunner' libraries, respectively. Among them, three genes were common in both genotypes. Furthermore, a comparison of our EST sequences with other plant sequences in the TIGR Gene Indices libraries showed that the percentage of peanut EST matched to Arabidopsis thaliana, maize (Zea mays), Medicago truncatula, rapeseed (Brassica napus), rice (Oryza sativa), soybean (Glycine max) and wheat (Triticum aestivum) ESTs ranged from 33.84% to 79.46% with the sequence identity ≥ 80%. These results revealed that peanut ESTs are more closely related to legume species than to cereal crops, and more homologous to dicot than to monocot plant species. Conclusion The developed ESTs can be used to discover novel sequences or genes, to identify resistance-related genes and to detect the differences among alleles or markers between these resistant and susceptible peanut genotypes. Additionally, this large collection of cultivated peanut EST sequences will make it possible to construct microarrays for gene expression studies and for further characterization of host resistance mechanisms. It will be a valuable genomic resource for the peanut community. The 21,777 ESTs have been deposited to the NCBI GenBank database with accession numbers ES702769 to ES724546.
Collapse
Affiliation(s)
- Baozhu Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, Georgia 31793, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|