1
|
Su ZL, Li AM, Wang M, Qin CX, Pan YQ, Liao F, Chen ZL, Zhang BQ, Cai WG, Huang DL. The Role of AP2/ERF Transcription Factors in Plant Responses to Biotic Stress. Int J Mol Sci 2025; 26:4921. [PMID: 40430060 PMCID: PMC12112388 DOI: 10.3390/ijms26104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The APETALA2/ethylene response factor (AP2/ERF) family of transcription factors (TFs) is one of the largest and most important TF families in plants. This family plays a crucial role in regulating growth, development, and responses to both biotic and abiotic stresses. This study provides a comprehensive overview of the structure, classification, and distribution of AP2/ERF TFs in various plant species, with particular emphasis on their roles in responses to biotic stress. These findings provide valuable insights for future research on AP2/ERF TFs and their potential applications in crop improvement through molecular breeding.
Collapse
Affiliation(s)
- Ze-Lin Su
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ao-Mei Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Qiang Pan
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Bao-Qing Zhang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wen-Guo Cai
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dong-Liang Huang
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
2
|
Bakhtari B, Razi H, Alemzadeh A, Dadkhodaie A, Moghadam A. Identification and characterization of the Quinoa AP2/ERF gene family and their expression patterns in response to salt stress. Sci Rep 2024; 14:29529. [PMID: 39604476 PMCID: PMC11603269 DOI: 10.1038/s41598-024-81046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play crucial roles in plant growth, development, and responses to biotic and abiotic stresses. This study was performed to comprehensively identify and characterize the AP2/ERF gene family in quinoa (Chenopodium quinoa Willd.), a highly resilient pseudocereal crop known for its salinity tolerance. A total of 150 CqAP2/ERF genes were identified in the quinoa genome; these genes were unevenly distributed across the chromosomes. Phylogenetic analysis divided the CqAP2/ERFs into five subfamilies: 71 ERF, 49 DREB, 23 AP2, 3 RAV, and 4 Soloist. Additionally, the DREB and ERF subfamilies were subdivided into four and seven subgroups, respectively. The exon-intron structure of the putative CqAP2/ERF genes and the conserved motifs of their encoded proteins were also identified, showing general conservation within the phylogenetic subgroups. Promoter analysis revealed many cis-regulatory elements associated with light, hormones, and response mechanisms within the promoter regions of CqAP2/ERF genes. Synteny analysis revealed that segmental duplication under purifying selection pressure was the major evolutionary driver behind the expansion of the CqAP2/ERF gene family. The protein-protein interaction network predicted the pivotal CqAP2/ERF proteins and their interactions involved in the regulation of various biological processes including stress response mechanisms. The expression profiles obtained from RNA-seq and qRT-PCR data detected several salt-responsive CqAP2/ERF genes, particularly from the ERF, DREB, and RAV subfamilies, with varying up- and downregulation patterns, indicating their potential roles in salt stress responses in quinoa. Overall, this study provides insights into the structural and evolutionary features of the AP2/ERF gene family in quinoa, offering candidate genes for further analysis of their roles in salt tolerance and molecular breeding.
Collapse
Affiliation(s)
- Bahlanes Bakhtari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Abbas Alemzadeh
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Mandal D, Datta S, Mitra S, Nag Chaudhuri R. ABSCISIC ACID INSENSITIVE 3 promotes auxin signalling by regulating SHY2 expression to control primary root growth in response to dehydration stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5111-5129. [PMID: 38770693 DOI: 10.1093/jxb/erae237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Plants combat dehydration stress through different strategies including root architectural changes. Here we show that when exposed to varying levels of dehydration stress, primary root growth in Arabidopsis is modulated by regulating root meristem activity. Abscisic acid (ABA) in concert with auxin signalling adjust primary root growth according to stress levels. ABSCISIC ACID INSENSITIVE 3 (ABI3), an ABA-responsive transcription factor, stands at the intersection of ABA and auxin signalling and fine-tunes primary root growth in response to dehydration stress. Under low ABA or dehydration stress, induction of ABI3 expression promotes auxin signalling by decreasing expression of SHY2, a negative regulator of auxin response. This further enhances the expression of auxin transporter gene PIN1 and cell cycle gene CYCB1;1, resulting in an increase in primary root meristem size and root length. Higher levels of dehydration stress or ABA repress ABI3 expression and promote ABSCISIC ACID INSENSITIVE 5 (ABI5) expression. This elevates SHY2 expression, thereby impairing primary root meristem activity and retarding root growth. Notably, ABI5 can promote SHY2 expression only in the absence of ABI3. Such ABA concentration-dependent expression of ABI3 therefore functions as a regulatory sensor of dehydration stress levels and orchestrates primary root growth by coordinating its downstream regulation.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Sicon Mitra
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata-700016, India
| |
Collapse
|
4
|
Negroni YL, Doro I, Tamborrino A, Luzzi I, Fortunato S, Hensel G, Khosravi S, Maretto L, Stevanato P, Lo Schiavo F, de Pinto MC, Krupinska K, Zottini M. The Arabidopsis Mitochondrial Nucleoid-Associated Protein WHIRLY2 Is Required for a Proper Response to Salt Stress. PLANT & CELL PHYSIOLOGY 2024; 65:576-589. [PMID: 38591870 PMCID: PMC11094760 DOI: 10.1093/pcp/pcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.
Collapse
Affiliation(s)
- Yuri L Negroni
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Doro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Alberto Tamborrino
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Luzzi
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Götz Hensel
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Solmaz Khosravi
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Karin Krupinska
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| |
Collapse
|
5
|
Park YS, Cho HJ, Kim S. Identification and expression analyses of B3 genes reveal lineage-specific evolution and potential roles of REM genes in pepper. BMC PLANT BIOLOGY 2024; 24:201. [PMID: 38500065 PMCID: PMC10949715 DOI: 10.1186/s12870-024-04897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The B3 gene family, one of the largest plant-specific transcription factors, plays important roles in plant growth, seed development, and hormones. However, the B3 gene family, especially the REM subfamily, has not been systematically and functionally studied. RESULTS In this study, we performed genome-wide re-annotation of B3 genes in five Solanaceae plants, Arabidopsis thaliana, and Oryza sativa, and finally predicted 1,039 B3 genes, including 231 (22.2%) newly annotated genes. We found a striking abundance of REM genes in pepper species (Capsicum annuum, Capsicum baccatum, and Capsicum chinense). Comparative motif analysis revealed that REM and other subfamilies (ABI3/VP1, ARF, RAV, and HSI) consist of different amino acids. We verified that the large number of REM genes in pepper were included in the specific subgroup (G8) through the phylogenetic analysis. Chromosome location and evolutionary analyses suggested that the G8 subgroup genes evolved mainly via a pepper-specific recent tandem duplication on chromosomes 1 and 3 after speciation between pepper and other Solanaceae. RNA-seq analyses suggested the potential functions of REM genes under salt, heat, cold, and mannitol stress conditions in pepper (C. annuum). CONCLUSIONS Our study provides evolutionary and functional insights into the REM gene family in pepper.
Collapse
Affiliation(s)
- Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hye Jeong Cho
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
6
|
Ma N, Sun P, Li ZY, Zhang FJ, Wang XF, You CX, Zhang CL, Zhang Z. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. STRESS BIOLOGY 2024; 4:2. [PMID: 38163824 PMCID: PMC10758382 DOI: 10.1007/s44154-023-00140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity.
Collapse
Affiliation(s)
- Ning Ma
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Ping Sun
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Zhao-Yang Li
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Ling Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
7
|
Cui T, Zang S, Sun X, Zhang J, Su Y, Wang D, Wu G, Chen R, Que Y, Lin Q, You C. Molecular identification and functional characterization of a transcription factor GeRAV1 from Gelsemium elegans. BMC Genomics 2024; 25:22. [PMID: 38166591 PMCID: PMC10759518 DOI: 10.1186/s12864-023-09919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gelsemium elegans is a traditional Chinese medicinal plant and temperature is one of the key factors affecting its growth. RAV (related to ABI3/VP1) transcription factor plays multiple roles in higher plants, including the regulation of plant growth, development, and stress response. However, RAV transcription factor in G. elegans has not been reported. RESULTS In this study, three novel GeRAV genes (GeRAV1-GeRAV3) were identified from the transcriptome of G. elegans under low temperature stress. Phylogenetic analysis showed that GeRAV1-GeRAV3 proteins were clustered into groups II, IV, and V, respectively. RNA-sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) analyses indicated that the expression of GeRAV1 and GeRAV2 was increased in response to cold stress. Furthermore, the GeRAV1 gene was successfully cloned from G. elegans leaf. It encoded a hydrophilic, unstable, and non-secretory protein that contained both AP2 and B3 domains. The amino acid sequence of GeRAV1 protein shared a high similarity of 81.97% with Camptotheca acuminata CaRAV. Subcellular localization and transcriptional self-activation experiments demonstrated that GeRAV1 was a nucleoprotein without self-activating activity. The GeRAV1 gene was constitutively expressed in the leaves, stems, and roots of the G. elegans, with the highest expression levels in roots. In addition, the expression of the GeRAV1 gene was rapidly up-regulated under abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) stresses, suggesting that it may be involved in hormonal signaling pathways. Moreover, GeRAV1 conferred improved cold and sodium chloride tolerance in Escherichia coli Rosetta cells. CONCLUSIONS These findings provided a foundation for further understanding on the function and regulatory mechanism of the GeRAV1 gene in response to low-temperature stress in G. elegans.
Collapse
Affiliation(s)
- Tianzhen Cui
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinlu Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guran Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiqi Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| |
Collapse
|
8
|
Zhao C, Liu W, Zhang Y, Li Y, Ma C, Tian R, Li R, Li M, Huang L. Two transcription factors, AcREM14 and AcC3H1, enhance the resistance of kiwifruit Actinidiachinensis var. chinensis to Pseudomonas syringae pv. actinidiae. HORTICULTURE RESEARCH 2024; 11:uhad242. [PMID: 38222821 PMCID: PMC10782502 DOI: 10.1093/hr/uhad242] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2024]
Abstract
Kiwifruit bacterial canker is a global disease caused by Pseudomonas syringae pv. actinidiae (Psa), which poses a major threat to kiwifruit production worldwide. Despite the economic importance of Actinidia chinensis var. chinensis, only a few resistant varieties have been identified to date. In this study, we screened 44 kiwifruit F1 hybrid lines derived from a cross between two A. chinensis var. chinensis lines and identified two offspring with distinct resistance to Psa: resistant offspring RH12 and susceptible offspring SH14. To identify traits associated with resistance, we performed a comparative transcriptomic analysis of these two lines. We identified several highly differentially expressed genes (DEGs) associated with flavonoid synthesis, pathogen interactions, and hormone signaling pathways, which play essential roles in disease resistance. Additionally, using weighted gene co-expression network analysis, we identified six core transcription factors. Moreover, qRT-PCR results demonstrated the high expression of AcC3H1 and AcREM14 in Psa-induced highly resistant hybrid lines. Ultimately, Overexpression of AcC3H1 and AcREM14 in kiwifruit enhanced disease resistance, and this was associated with upregulation of enzymatic activity and gene expression in the salicylic acid (SA) signaling pathway. Our study elucidates a molecular mechanism underlying disease resistance in kiwifruit and contributes to the advancement of research on kiwifruit breeding.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yali Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yuanzhe Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Chao Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Rui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
9
|
Schillaci M, Zampieri E, Brunetti C, Gori A, Sillo F. Root transcriptomic provides insights on molecular mechanisms involved in the tolerance to water deficit in Pisum sativum inoculated with Pseudomonas sp. PLANTA 2023; 259:33. [PMID: 38160210 DOI: 10.1007/s00425-023-04310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
MAIN CONCLUSION Root transcriptomics and biochemical analyses in water-stressed Pisum sativum plants inoculated with Pseudomonas spp. suggested preservation of ABA-related pathway and ROS detoxification, resulting in an improved tolerance to stress. Drought already affects agriculture in large areas of the globe and, due to climate change, these areas are predicted to become increasingly unsuitable for agriculture. For several years, plant growth-promoting bacteria (PGPB) have been used to improve legume yields, but many aspects of this interaction are still unclear. To elucidate the mechanisms through which root-associated PGPB can promote plant growth in dry environments, we investigated the response of pea plants inoculated with a potentially beneficial Pseudomonas strain (PK6) and subjected to two different water regimes. Combined biometric, biochemical, and root RNA-seq analyses revealed that PK6 improved pea growth specifically under water deficit, as inoculated plants showed an increased biomass, larger leaves, and longer roots. Abscisic acid (ABA) and proline quantification, together with the transcriptome analysis, suggested that PK6-inoculated plant response to water deficit was more diversified compared to non-inoculated plants, involving alternative metabolic pathways for the detoxification of reactive oxygen species (ROS) and the preservation of the ABA stress signaling pathway. We suggest that the metabolic response of PK6-inoculated plants was more effective in their adaptation to water deprivation, leading to their improved biometric traits. Besides confirming the positive role that PGPB can have in the growth of a legume crop under adverse conditions, this study offers novel information on the mechanisms regulating plant-bacteria interaction under varying water availability. These mechanisms and the involved genes could be exploited in the future for the development of legume varieties, which can profitably grow in dry climates.
Collapse
Affiliation(s)
- Martino Schillaci
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Turin, Italy
| | - Elisa Zampieri
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Turin, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Turin, Italy.
| |
Collapse
|
10
|
Ding J, Yao B, Yang X, Shen L. SmRAV1, an AP2 and B3 Transcription Factor, Positively Regulates Eggplant's Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4174. [PMID: 38140500 PMCID: PMC10747502 DOI: 10.3390/plants12244174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Salt stress is a lethal abiotic stress threatening global food security on a consistent basis. In this study, we identified an AP2 and B3 domain-containing transcription factor (TF) named SmRAV1, and its expression levels were significantly up-regulated by NaCl, abscisic acid (ABA), and hydrogen peroxide (H2O2) treatment. High expression of SmRAV1 was observed in the roots and sepal of mature plants. The transient expression assay in Nicotiana benthamiana leaves revealed that SmRAV1 was localized in the nucleus. Silencing of SmRAV1 via virus-induced gene silencing (VIGS) decreased the tolerance of eggplant to salt stress. Significant down-regulation of salt stress marker genes, including SmGSTU10 and SmNCED1, was observed. Additionally, increased H2O2 content and decreased catalase (CAT) enzyme activity were recorded in the SmRAV1-silenced plants compared to the TRV:00 plants. Our findings elucidate the functions of SmRAV1 and provide opportunities for generating salt-tolerant lines of eggplant.
Collapse
Affiliation(s)
| | | | | | - Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (J.D.); (B.Y.); (X.Y.)
| |
Collapse
|
11
|
Jiao MY, Zhang J, Cheng WW, Song X, Long YH, Xing ZB. Identification of the AP2/ERF transcription factor family of Eleutherococcus senticosus and its expression correlation with drought stress. 3 Biotech 2023; 13:259. [PMID: 37405267 PMCID: PMC10314890 DOI: 10.1007/s13205-023-03678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
In this study, through analysis of the genome of Eleutherococcus senticosus (ES). 228 AP2/ERF genes were identified and classified into 5 groups AP2 (47 genes), ERF (108 genes), RAV (6 genes), DREB (64 genes), and soloist (3 genes). According to the AP2/ERF classification of Arabidopsis thaliana, the ES AP2/ERF proteins were subdivided into 15 groups. The gene structure and motifs of each group of AP2/ERF in ES were highly similar, which confirmed the conservation of AP2/ERF genes. The ES AP2/ERF genes were unevenly distributed on chromosomes, and a total of four pairs of tandem repeats, and 84 co-linear gene pairs were found, so the AP2/ERF genes expanded in a fragment replication manner, and dominated by pure selection during evolution. By analyzing the transcriptome data of ES under different drought stress conditions, 87 AP2/ERF genes with differential expression were obtained, of which 10 genes with highly significant differences were further analyzed and screened for qRT-PCR validation. To the best of our knowledge, this is the first report on the AP2/ERF gene of Eleutherococcus senticosus, and the bioinformatics analysis and experimental validation provided valuable information about them, which is of great significance for further research on the molecular mechanisms of ES in response to drought stress.
Collapse
Affiliation(s)
- Meng-Ying Jiao
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Jie Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Wen-wen Cheng
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Xin Song
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Yue-Hong Long
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Zhao-Bin Xing
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| |
Collapse
|
12
|
Viswanath KK, Kuo SY, Tu CW, Hsu YH, Huang YW, Hu CC. The Role of Plant Transcription Factors in the Fight against Plant Viruses. Int J Mol Sci 2023; 24:ijms24098433. [PMID: 37176135 PMCID: PMC10179606 DOI: 10.3390/ijms24098433] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.
Collapse
Affiliation(s)
- Kotapati Kasi Viswanath
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Tu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
13
|
Chandan RK, Kumar R, Swain DM, Ghosh S, Bhagat PK, Patel S, Bagler G, Sinha AK, Jha G. RAV1 family members function as transcriptional regulators and play a positive role in plant disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:39-54. [PMID: 36703574 DOI: 10.1111/tpj.16114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Phytopathogens pose a severe threat to agriculture and strengthening the plant defense response is an important strategy for disease control. Here, we report that AtRAV1, an AP2 and B3 domain-containing transcription factor, is required for basal plant defense in Arabidopsis thaliana. The atrav1 mutant lines demonstrate hyper-susceptibility against fungal pathogens (Rhizoctonia solani and Botrytis cinerea), whereas AtRAV1 overexpressing lines exhibit disease resistance against them. Enhanced expression of various defense genes and activation of mitogen-activated protein kinases (AtMPK3 and AtMPK6) are observed in the R. solani infected overexpressing lines, but not in the atrav1 mutant plants. An in vitro phosphorylation assay suggests AtRAV1 to be a novel phosphorylation target of AtMPK3. Bimolecular fluorescence complementation and yeast two-hybrid assays support physical interactions between AtRAV1 and AtMPK3. Overexpression of the native as well as phospho-mimic but not the phospho-defective variant of AtRAV1 imparts disease resistance in the atrav1 mutant A. thaliana lines. On the other hand, overexpression of AtRAV1 fails to impart disease resistance in the atmpk3 mutant. These analyses emphasize that AtMPK3-mediated phosphorylation of AtRAV1 is important for the elaboration of the defense response in A. thaliana. Considering that RAV1 homologs are conserved in diverse plant species, we propose that they can be gainfully deployed to impart disease resistance in agriculturally important crop plants. Indeed, overexpression of SlRAV1 (a member of the RAV1 family) imparts disease tolerance against not only fungal (R. solani and B. cinerea), but also against bacterial (Ralstonia solanacearum) pathogens in tomato, whereas silencing of the gene enhances disease susceptibility.
Collapse
Affiliation(s)
- Ravindra Kumar Chandan
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - Rahul Kumar
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Durga Madhab Swain
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - Ganesh Bagler
- Centre for Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi), New Delhi, 110020, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
14
|
Li J, Song C, Li H, Wang S, Hu L, Yin Y, Wang Z, He W. Comprehensive analysis of cucumber RAV family genes and functional characterization of CsRAV1 in salt and ABA tolerance in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1115874. [PMID: 36818828 PMCID: PMC9933981 DOI: 10.3389/fpls.2023.1115874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The RAV (related to ABI3 and VP1) transcription factors are specific and exist in plants, which contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. RAVs have been extensively studied in plants, and more and more evidences show that RAVs are involved in various aspects of plant growth and development, stress resistance and hormone signal transduction. However, the systematic analysis of RAV family in cucumber is rarely reported. In this study, eight CsRAV genes were identified in cucumber genome and we further comprehensively analyzed their protein physicochemical properties, conserved domains, gene structure and phylogenetic relationships. The synteny analysis and gene duplications of CsRAV genes were also analysed. Cis-element analysis revealed that the CsRAVs promoter contained several elements related to plant hormones and abiotic stress. Expression analysis showed that NaCl and ABA could significantly induce CsRAV genes expression. Subcellular localization revealed that all CsRAVs were localized in the nucleus. In addition, 35S:CsRAV1 transgenic Arabidopsis and cucumber seedlings enhanced NaCl and ABA tolerance, revealing CsRAV1 may be an important regulator of abiotic stress response. In conclusion, comprehensive analysis of CsRAVs would provide certain reference for understanding the evolution and function of the CsRAV genes.
Collapse
Affiliation(s)
- Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chunying Song
- Xilin Gol League Agricultural and Animal Product Quality and Safety Monitoring Center, Xilinhot, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Siqi Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Linyue Hu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
15
|
Transcription Factor ERF194 Modulates the Stress-Related Physiology to Enhance Drought Tolerance of Poplar. Int J Mol Sci 2023; 24:ijms24010788. [PMID: 36614232 PMCID: PMC9821289 DOI: 10.3390/ijms24010788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Drought is one of the main environmental factors limiting plant growth and development. The AP2/ERF transcription factor (TF) ERF194 play key roles in poplar growth and drought-stress tolerance. However, the physiological mechanism remains to be explored. In this study, the ERF194-overexpression (OX), suppressed-expression (RNA interference, RNAi), and non-transgenic (WT) poplar clone 717 were used to study the physiology role of ERF194 transcription factor in poplar growth and drought tolerance. Morphological and physiological methods were used to systematically analyze the growth status, antioxidant enzyme activity, malondialdehyde (MDA), soluble sugars, starch, and non-structural carbohydrate (NSC) contents of poplar. Results showed that, compared with WT, OX plants had decrease in plant height, internode length, and leaf area and increased number of fine roots under drought stress. In addition, OX had higher water potential, activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), contents of chlorophyll, soluble sugar, starch, and NSC, implying that ERF194 positively regulates drought tolerance in poplar. The growth status of RNAi was similar to those of WT, but the relative water content and CAT activity of RNAi were lower than those of WT under drought treatment. Based on the transcriptome data, functional annotation and expression pattern analysis of differentially expressed genes were performed and further confirmed by RT-qPCR analysis. Gene ontology (GO) enrichment and gene expression pattern analysis indicated that overexpression of ERF194 upregulated the expression of oxidoreductases and metabolism-related genes such as POD and SOD. Detection of cis-acting elements in the promoters suggested that ERF194 may bind to these genes through MeJA-responsive elements, ABA-responsive elements, or elements involved in defense and stress responses. The above results show that ERF194 improved tolerance to drought stress in poplar by regulating its growth and physiological factors. This study provides a new idea for the role of ERF194 transcription factor in plant growth and drought-stress response.
Collapse
|
16
|
Mandal D, Datta S, Raveendar G, Mondal PK, Nag Chaudhuri R. RAV1 mediates cytokinin signaling for regulating primary root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:106-126. [PMID: 36423224 DOI: 10.1111/tpj.16039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Root growth dynamics is an outcome of complex hormonal crosstalk. The primary root meristem size, for example, is determined by antagonizing actions of cytokinin and auxin. Here we show that RAV1, a member of the AP2/ERF family of transcription factors, mediates cytokinin signaling in roots to regulate meristem size. The rav1 mutants have prominently longer primary roots, with a meristem that is significantly enlarged and contains higher cell numbers, compared with wild-type. The mutant phenotype could be restored on exogenous cytokinin application or by inhibiting auxin transport. At the transcript level, primary cytokinin-responsive genes like ARR1, ARR12 were significantly downregulated in the mutant root, indicating impaired cytokinin signaling. In concurrence, cytokinin induced regulation of SHY2, an Aux/IAA gene, and auxin efflux carrier PIN1 was hindered in rav1, leading to altered auxin transport and distribution. This effectively altered root meristem size in the mutant. Notably, CRF1, another member of the AP2/ERF family implicated in cytokinin signaling, is transcriptionally repressed by RAV1 to promote cytokinin response in roots. Further associating RAV1 with cytokinin signaling, our results demonstrate that cytokinin upregulates RAV1 expression through ARR1, during post-embryonic root development. Regulation of RAV1 expression is a part of secondary cytokinin response that eventually represses CRF1 to augment cytokinin signaling. To conclude, RAV1 functions in a branch pathway downstream to ARR1 that regulates CRF1 expression to enhance cytokinin action during primary root development in Arabidopsis.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Giridhar Raveendar
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Pranab Kumar Mondal
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| |
Collapse
|
17
|
Genome-Wide Analysis of the Almond AP2/ERF Superfamily and Its Functional Prediction during Dormancy in Response to Freezing Stress. BIOLOGY 2022; 11:biology11101520. [PMID: 36290423 PMCID: PMC9598233 DOI: 10.3390/biology11101520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary The ethylene-responsive element (AP2/ERF) is one of the key and conserved transcription factors (TFs) in plants, and it plays a crucial role in regulating plant growth, development, and stress response. The cultivated almond in Xinjiang is often affected by short-term ultralow temperature freezing stress during the winter dormancy period, resulting in the death of large-scale almond plants. In this study, we conducted the first genome-wide analysis of the PdAP2/ERF family in almond, including protein physicochemical properties, phylogenetic relationships, motif types, gene structures, gene replication types, collinearity relationships, and cis-element types in promoter regions. We further analyzed the expression patterns of the PdAP2/ERF gene in different tissues of almond and under freezing stress at different temperatures in annual dormant branches using transcriptome data. In addition, we also analyzed the expression levels of 13 PdAP2/ERF genes in four tissues of almond and in annual dormant branches treated with freezing stress at different temperatures using fluorescence quantitative technology. This study laid the foundation for further exploring the function of the PdAP2/ERF gene in almond. Abstract The AP2/ERF transcription factor family is one of the largest transcription factor families in plants and plays an important role in regulating plant growth and development and the response to biotic and abiotic stresses. However, there is no report on the AP2/ERF gene family in almond (Prunus dulcis). In this study, a total of 136 PdAP2/ERF genes were identified from the almond genome, and their protein physicochemical properties were analyzed. The PdAP2/ERF members were divided into five subgroups: AP2, RAV, ERF, DREB, and Soloist. The PdAP2/ERF members in each subgroup had conserved motif types and exon/intron numbers. PdAP2/ERFS members are distributed on eight chromosomes, with 22 pairs of segmental duplications and 28 pairs of tandem duplications. We further explored the colinear relationship between almond and Arabidopsis thaliana, Oryza sativa, Malus domestica, and Prunus persicaAP2/ERF genes and their evolution. The results of cis-acting elements showed that PdAP2/ERF members are widely involved in various processes, such as growth and development, hormone regulation, and stress response. The results based on transcriptome expression patterns showed that PdAP2/ERF genes had significant tissue-specific expression characteristics and were involved in the response of annual dormant branches of almond to low-temperature freezing stress. In addition, the fluorescence quantitative relative expression results of 13 representative PdAP2/ERF genes in four tissues of ‘Wanfeng’ almond and under six low-temperature freezing treatments of annual dormant branches were consistent with the transcriptome results. It is worth noting that the fluorescence quantitative expression level showed that the PdERF24 gene was extremely significant at −30 °C, suggesting that this gene may play an important role in the response of almond dormancy to ultralow temperature freezing stress. Finally, we identified 7424 and 6971 target genes based on AP2 and ERF/DREB DNA-binding sites, respectively. The GO and KEGG enrichment results showed that these target genes play important roles in protein function and multiple pathways. In summary, we conducted bioinformatics and expression pattern studies on PdAP2/ERF genes, including 13 PdAP2/ERF genes, and performed fluorescence quantitative analysis of annual dormant shoots under different low-temperature freezing stress treatments to understand the tolerance of almond dormancy to freezing stress and suggest future improvements.
Collapse
|
18
|
Wu Y, Zhang L, Nie L, Zheng Y, Zhu S, Hou J, Li R, Chen G, Tang X, Wang C, Yuan L. Genome-wide analysis of the DREB family genes and functional identification of the involvement of BrDREB2B in abiotic stress in wucai (Brassica campestris L.). BMC Genomics 2022; 23:598. [PMID: 35978316 PMCID: PMC9382803 DOI: 10.1186/s12864-022-08812-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Dehydration responsive element binding protein (DREB) is a significant transcription factor class known to be implicated in abiotic stresses. In this study, we systematically conducted a genome-wide identification and expression analysis of the DREB gene family, including gene structures, evolutionary relationships, chromosome distribution, conserved domains, and expression patterns. A total of 65 DREB family gene members were identified in Chinese cabbage (Brassica rapa L.) and were classified into five subgroups based on phylogenetic analysis. Through analysis of the conserved domains of BrDREB family genes, only one exon existed in the gene structure. Through the analysis of cis-acting elements, these genes were mainly involved in hormone regulation and adversity stress. In order to identify the function of BrDREB2B, overexpressed transgenic Arabidopsis was constructed. After different stress treatments, the germination rate, root growth, survival rate, and various plant physiological indicators were measured. The results showed that transgenic Arabidopsis thaliana plants overexpressing BrDREB2B exhibited enhanced tolerance to salt, heat and drought stresses. Taken together, our results are the first to report the BrDREB2B gene response to drought and heat stresses in Chinese cabbage and provide a basis for further studies to determine the function of BrDREBs in response to abiotic stresses.
Collapse
Affiliation(s)
- Ying Wu
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Liting Zhang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Libing Nie
- College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Yushan Zheng
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Renjie Li
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guohu Chen
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Chenggang Wang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China.
| | - Lingyun Yuan
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China.
| |
Collapse
|
19
|
Xie Z, Yang C, Liu S, Li M, Gu L, Peng X, Zhang Z. Identification of AP2/ERF transcription factors in Tetrastigma hemsleyanum revealed the specific roles of ERF46 under cold stress. FRONTIERS IN PLANT SCIENCE 2022; 13:936602. [PMID: 36017255 PMCID: PMC9396264 DOI: 10.3389/fpls.2022.936602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tetrastigma hemsleyanum (T. hemsleyanum) is a traditional medicinal plant that is widely used in China. Cultivated T. hemsleyanum usually encounters cold stress, limiting its growth and quality at key developmental stages. APETALA2 (AP2)/ethylene-responsive factor (ERF) transcription factors (TFs) comprise one of the largest gene superfamilies in plants and are widely involved in biotic and abiotic stresses. To reveal the roles of AP2/ERF TFs during T. hemsleyanum development, 70 AP2/ERF TFs were identified in T. hemsleyanum. Among them, 18 and 2 TFs were classified into the AP2 and RAV families, respectively. The other 50 TFs belonged to the ERF family and were further divided into the ERF and (dehydration reaction element binding factor) DREB subfamilies. The ERF subfamily contained 46 TFs, while the DREB subfamily contained 4 TFs. Phylogenetic analysis indicated that AP2/ERF TFs could be classified into five groups, in which 10 conserved motifs were confirmed. Several motifs were group- or subgroup-specific, implying that they were significant for the functions of the AP2/ERF TFs of these clades. In addition, 70 AP2/ERF TFs from the five groups were used for an expression pattern analysis under three low-temperature levels, namely, -4, 0, and 4°C. The majority of these AP2/ERF TFs exhibited a positive response to cold stress conditions. Specifically, ThERF5, ThERF31, ThERF46, and ThERF55 demonstrated a more sensitive response to cold stress. Moreover, AP2/ERF TFs exhibited specific expression patterns under cold stress. Transient overexpression and RNA interference indicated that ThERF46 has a specific tolerance to cold stress. These new insights provide the basis for further studies on the roles of AP2/ERF TFs in cold stress tolerance in T. hemsleyanum.
Collapse
Affiliation(s)
- Zhuomi Xie
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuyun Yang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siyi Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingjie Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Gu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- Medicinal Plant Resource Center, Ningbo Research Institute of Traditional Chinese Medicine, Ningbo, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Genome-Wide Analysis of the RAV Gene Family in Wheat and Functional Identification of TaRAV1 in Salt Stress. Int J Mol Sci 2022; 23:ijms23168834. [PMID: 36012100 PMCID: PMC9408559 DOI: 10.3390/ijms23168834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
RAV transcription factors (TFs) are unique to higher plants and contain both B3 and APETALA2 (AP2) DNA binding domains. Although sets of RAV genes have been identified from several species, little is known about this family in wheat. In this study, 26 RAV genes were identified in the wheat genome. These wheat RAV TFs were phylogenetically clustered into three classes based on their amino acid sequences. A TaRAV gene located on chromosome 1D was cloned and named TaRAV1. TaRAV1 was expressed in roots, stems, leaves, and inflorescences, and its expression was up-regulated by heat while down-regulated by salt, ABA, and GA. Subcellular localization analysis revealed that the TaRAV1 protein was localized in the nucleus. The TaRAV1 protein showed DNA binding activity in the EMSA assay and transcriptional activation activity in yeast cells. Overexpressing TaRAV1 enhanced the salt tolerance of Arabidopsis and upregulated the expression of SOS genes and other stress response genes. Collectively, our data suggest that TaRAV1 functions as a transcription factor and is involved in the salt stress response by regulating gene expression in the SOS pathway.
Collapse
|
21
|
Zhu X, Su M, Wang B, Wei X. Transcriptome analysis reveals the main metabolic pathway of c-GMP induced by salt stress in tomato ( Solanum lycopersicum) seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:784-798. [PMID: 35930479 DOI: 10.1071/fp21337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Tomato (Solanum lycopersicum L.) is a model crop as well as an important food worldwide. In arid areas, increasing soil salinity has limited higher yields in tomato production. As a second messenger molecule, cyclic guanosine monophosphate (c-GMP) plays an indispensable role in plant response to salt stress by regulating cell processes to promote plant growth and development. However, this mechanism has not been fully explored in tomato seedlings. In this experiment, tomato seeds were cultured in four treatments: (1) distilled water (CK); (2) 20μM c-GMP (T1); (3) 50mM NaCl (T2); and (4) 20μM c-GMP+50mM NaCl (T3). The results show that 20μM c-GMP effectively alleviated the inhibitory effect of 50mM NaCl on growth and development, and induced the expression of 1580 differentially expressed genes (DEGs). Seedlings in the CK vs T1 shared 95 upregulated and 442 downregulated DEGs, whereas T2 vs T3 shared 271 upregulated and 772 downregulated DEGs. Based on KEGG (Kyoto Encyclopaedia of Genes and Genomes) analysis, the majority of DEGs were involved in metabolism; exogenous c-GMP induced significant enrichment of pathways associated with carbohydrates, phenylpropanoids and fatty acid metabolism. Most PMEs , acCoA , PAL , PODs , FADs , and AD were upregulated, and GAPDHs , PL , PG , BXL4 , and β-G were downregulated, which reduced susceptibility of tomato seedlings to salt and promoted their salt tolerance. The application of c-GMP increased soluble sugar, flavonoid and lignin contents, reduced accumulation of malondialdehyde (MDA), and enhanced the activity of peroxidase (POD). Thus, our results provide insights into the molecular mechanisms associated with salt tolerance of tomato seedlings.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meifei Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
22
|
Li C, Duan C, Zhang H, Zhao Y, Meng Z, Zhao Y, Zhang Q. Adaptative Mechanisms of Halophytic Eutrema salsugineum Encountering Saline Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:909527. [PMID: 35837468 PMCID: PMC9274170 DOI: 10.3389/fpls.2022.909527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Salt cress (Eutrema salsugineum), an Arabidopsis-related halophyte, can naturally adapt to various harsh climates and soil conditions; thus, it is considered a desirable model plant for deciphering mechanisms of salt and other abiotic stresses. Accumulating evidence has revealed that compared with Arabidopsis, salt cress possesses stomata that close more tightly and more succulent leaves during extreme salt stress, a noticeably higher level of proline, inositols, sugars, and organic acids, as well as stress-associated transcripts in unstressed plants, and they are induced rapidly under stress. In this review, we systematically summarize the research on the morphology, physiology, genome, gene expression and regulation, and protein and metabolite profile of salt cress under salt stress. We emphasize the latest advances in research on the genome adaptive evolution encountering saline environments, and epigenetic regulation, and discuss the mechanisms underlying salt tolerance in salt cress. Finally, we discuss the existing questions and opportunities for future research in halophytic Eutrema. Together, the review fosters a better understanding of the mechanism of plant salt tolerance and provides a reference for the research and utilization of Eutrema as a model extremophile in the future. Furthermore, the prospects for salt cress applied to explore the mechanism of salt tolerance provide a theoretical basis to develop new strategies for agricultural biotechnology.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research Team of Plant Pathogen Microbiology and Immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
23
|
Zhang C, Wang X, Li H, Wang J, Zeng Q, Huang W, Huang H, Xie Y, Yu S, Kan Q, Wang Q, Cheng Y. GLRaV-2 protein p24 suppresses host defenses by interaction with a RAV transcription factor from grapevine. PLANT PHYSIOLOGY 2022; 189:1848-1865. [PMID: 35485966 PMCID: PMC9237672 DOI: 10.1093/plphys/kiac181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Grapevine leafroll-associated virus 2 (GLRaV-2) is a prevalent virus associated with grapevine leafroll disease, but the molecular mechanism underlying GLRaV-2 infection is largely unclear. Here, we report that 24-kDa protein (p24), an RNA-silencing suppressor (RSS) encoded by GLRaV-2, promotes GLRaV-2 accumulation via interaction with the B3 DNA-binding domain of grapevine (Vitis vinifera) RELATED TO ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 (VvRAV1), a transcription factor belonging to the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) superfamily. Salicylic acid-inducible VvRAV1 positively regulates the grapevine pathogenesis-related protein 1 (VvPR1) gene by directly binding its promoter, indicating that VvRAV1 may function in the regulation of host basal defense responses. p24 hijacks VvRAV1 to the cytoplasm and employs the protein to sequester 21-nt double-stranded siRNA together, thereby enhancing its own RSS activity. Moreover, p24 enters the nucleus via interaction with VvRAV1 and weakens the latter's binding affinity to the VvPR1 promoter, leading to decreased expression of VvPR1. Our results provide a mechanism by which a viral RSS interferes with both the antiviral RNA silencing and the AP2/ERF-mediated defense responses via the targeting of one specific host factor.
Collapse
Affiliation(s)
| | - Xianyou Wang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Hanwei Li
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Jinying Wang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qi Zeng
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Haoqiang Huang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Yinshuai Xie
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Shangzhen Yu
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qing Kan
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
24
|
Wang P, Yan Y, Lu Y, Liu G, Liu J, Shi H. The co-modulation of RAV transcription factors in ROS burst and extensive transcriptional reprogramming underlies disease resistance in cassava. PLANT CELL REPORTS 2022; 41:1261-1272. [PMID: 35275280 DOI: 10.1007/s00299-022-02855-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
MeRAVs positively regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam. Cassava (Manihot esculenta Crantz) is an important food crop and energy crop, but its yield is seriously affected by cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam). Related to ABI3/VP1 (RAV) transcription factor family belongs to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, which plays an important role in plant growth, development and response to biotic and abiotic stresses. In this study, we found that MeRAVs positively co-regulates the resistance to Xam and stimulates the innate immune response by regulating reactive oxygen species (ROS) burst in cassava. Dual-luciferase assay showed that seven MeRAVs exhibited transcriptional activate activity by binding CAACA motif and CACCTG motif. A large number of differentially expressed genes (DEGs) were identified through RNA-seq analysis of MeRAVs-silenced lines, and the DEGs co-regulated by seven MeRAVs accounted for more than 45% of the total DEGs. In addition, seven MeRAVs positively regulate expression of disease resistance-related genes through directly binding to their promoters. In summary, MeRAVs co-regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam.
Collapse
Affiliation(s)
- Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Jinping Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China.
| |
Collapse
|
25
|
Ye X, Wang S, Zhao X, Gao N, Wang Y, Yang Y, Wu E, Jiang C, Cheng Y, Wu W, Liu S. Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:978-993. [PMID: 35218100 DOI: 10.1111/tpj.15714] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as versatile regulators in diverse biological processes. However, little is known about their cis- and trans-regulatory contributions in gene expression under salt stress. Using 27 RNA-seq data sets from Populus trichocarpa leaves, stems and roots, we identified 2988 high-confidence lncRNAs, including 1183 salt-induced differentially expressed lncRNAs. Among them, 301 lncRNAs have potential for positively affecting their neighboring genes, predominantly in a cis-regulatory manner rather than by co-transcription. Additionally, a co-expression network identified six striking salt-associated modules with a total of 5639 genes, including 426 lncRNAs, and in these lncRNA sequences, the DNA/RNA binding motifs are enriched. This suggests that lncRNAs might contribute to distant gene expression of the salt-associated modules in a trans-regulatory manner. Moreover, we found 30 lncRNAs that have potential to simultaneously cis- and trans-regulate salt-responsive homologous genes, and Ptlinc-NAC72, significantly induced under long-term salt stress, was selected for validating its regulation of the expression and functional roles of the homologs PtNAC72.A and PtNAC72.B (PtNAC72.A/B). The transient transformation of Ptlinc-NAC72 and a dual-luciferase assay of Ptlinc-NAC72 and PtNAC72.A/B promoters confirmed that Ptlinc-NAC72 can directly upregulate PtNAC72.A/B expression, and a presence/absence assay was further conducted to show that the regulation is probably mediated by Ptlinc-NAC72 recognizing the tandem elements (GAAAAA) in the PtNAC72.A/B 5' untranslated region (5'-UTR). Finally, the overexpression of Ptlinc-NAC72 produces a hypersensitive phenotype under salt stress. Altogether, our results shed light on the cis- and trans-regulation of gene expression by lncRNAs in Populus and provides an example of long-term salt-induced Ptlinc-NAC72 that could be used to mitigate growth costs by conferring plant resilience to salt stress.
Collapse
Affiliation(s)
- Xiaoxue Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ni Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yanmei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ernest Wu
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
26
|
Genome-Wide Identification, Characterization, and Expression Profiling of AP2/ERF Superfamily Genes under Different Development and Abiotic Stress Conditions in Pecan ( Carya illinoinensis). Int J Mol Sci 2022; 23:ijms23062920. [PMID: 35328341 PMCID: PMC8950532 DOI: 10.3390/ijms23062920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ethylene-responsive element (AP2/ERF) is one of the keys and conserved transcription factors (TFs) in plants that play a vital role in regulating plant growth, development, and stress response. A total of 202 AP2/ERF genes were identified from the pecan genome and renamed according to the chromosomal distribution of the CiAP2/ERF genes. They were divided into four subfamilies according to the domain and phylogenetic analysis, including 26 AP2, 168 ERF, six RAV, and two Soloist gene family members. These genes were distributed randomly across the 16 chromosomes, and we found 19 tandem and 146 segmental duplications which arose from ancient duplication events. The gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the AP2/ERF genes. Several cis-regulatory elements, which were related to light responsiveness, stress, and defense responses, were identified in the promoter regions of AP2/ERFs. The expression profiling of 202 CiAP2/ERF genes was assessed by using RNA-Seq data and qRT-PCR during development (pistillate flowering development, graft union development, and kernel development) and under abiotic stresses (waterlogging, drought). Moreover, the results suggested that the ERF-VII members may play a critical role in waterlogging stress. These findings provided new insights into AP2/ERF gene evolution and divergence in pecan and can be considered a valuable resource for further functional validation, as well as for utilization in a stress-resistance-variety development program.
Collapse
|
27
|
Zhang J, Liao J, Ling Q, Xi Y, Qian Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics 2022; 23:125. [PMID: 35151253 PMCID: PMC8841118 DOI: 10.1186/s12864-022-08345-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background As one of the largest transcription factor families in plants, the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily is involved in various biological processes and plays significant roles in plant growth, development and responses to various stresses. Although identification and characterization of AP2/ERF superfamily genes have been accomplished in many plant species, very little is known regarding the structure and function of AP2/ERF genes in maize. Results In this study, a total of 214 genes encoding ZmAP2/ERF proteins with complete AP2/ERF domain were eventually identified according to the AGPv4 version of the maize B73 genome. Based on the number of AP2/ERF domain and similarities of amino acid sequences among AP2/ERF proteins from Arabidopsis, rice and maize, all 214 putative ZmAP2/ERF proteins were categorized into three distinct families, including the AP2 family (44), the ERF family (166) and the RAV family (4), respectively. Among them, the ERF family was further subdivided into two diverse subfamilies, including the DREB and ERF subfamilies with 61 and 105 members, respectively. Further, based on phylogenetic analysis, the members of DREB and ERF subfamilies were subdivided into four (Group I-IV) and eight (Group V-XII) groups, respectively. The characteristics of exon-intron structure of these putative ZmAP2/ERF genes and conserved protein motifs of their encoded ZmAP2/ERF proteins were also presented respectively, which was in accordance with the results of group classification. Promoter analysis suggested that ZmAP2/ERF genes shared many stress- and hormone-related cis-regulatory elements. Gene duplication and synteny analysis revealed that tandem or segmental duplication and purifying selection might play significant roles in evolution and functional differentiation of AP2/ERF superfamily genes among three various gramineous species (maize, rice and sorghum). Using RNA-seq data, transcriptome analysis indicated that the majority of ZmAP2/ERF genes displayed differential expression patterns at different developmental stages of maize. In addition, the following analyses of co-expression network among ZmAP2/ERF genes and protein protein interaction between ZmAP2 and ZmERF proteins further enabled us to understand the regulatory relationship among members of the AP2/ERF superfamily in maize. Furthermore, by quantitative real-time PCR analysis, twenty-seven selected ZmAP2/ERF genes were further confirmed to respond to three different abiotic stresses, suggesting their potential roles in various abiotic stress responses. Collectively, these results revealed that these ZmAP2/ERF genes play essential roles in abiotic stress tolerance. Conclusions Taken together, the present study will serve to present an important theoretical basis for further exploring the function and regulatory mechanism of ZmAP2/ERF genes in the growth, development, and adaptation to abiotic stresses in maize. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08345-7.
Collapse
|
28
|
Hu P, Zhang K, Yang C. Functional roles of the birch BpRAV1 transcription factor in salt and osmotic stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111131. [PMID: 35067301 DOI: 10.1016/j.plantsci.2021.111131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
RAV (Related to ABI3/VP1) transcription factors play vital roles in regulating plant response to abiotic stresses; however, the regulatory mechanisms underlying stress response are still poorly understood for most of the RAVgenes. In this study, a novel gene BpRAV1 was cloned from white birch (Betula platyphylla). BpRAV1 protein is localized in the nucleus and serves as a transcriptional activator. The expression of BpRAV1 was induced by salt and osmotic stress treatments. BpRAV1-overexpression birch seedlings exhibited dramatically less ROS accumulation and reduced cell death in response to salt and osmotic stresses. BpRAV1 can specifically bind to the known RAV1A element. In addition, a novel cis-acting element (termed RBS1) bound by BpRAV1 was identified by transcription factor (TF)- centered Y1H assay. BpRAV1 activated the RAV1A and RBS1 elements to induce the expression of SOD and POD genes, resulting in increased SOD and POD activities to enhance ROS scavenging ability, thus improving salt and osmotic stress tolerance. These results indicate that BpRAV1 is a positive regulator governing abiotic stress response.
Collapse
Affiliation(s)
- Ping Hu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Kaimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
29
|
Li Q, Zhang L, Chen P, Wu C, Zhang H, Yuan J, Zhou J, Li X. Genome-Wide Identification of APETALA2/ETHYLENE RESPONSIVE FACTOR Transcription Factors in Cucurbita moschata and Their Involvement in Ethylene Response. FRONTIERS IN PLANT SCIENCE 2022; 13:847754. [PMID: 35371131 PMCID: PMC8965380 DOI: 10.3389/fpls.2022.847754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/11/2022] [Indexed: 05/03/2023]
Abstract
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF), a plant-specific transcription factor (TF) family, plays an essential role in the growth and development of plants, and in their response to biotic and abiotic stresses. However, information on AP2/ERF in Cucurbita moschata (pumpkin), an edible and medicinal vegetable used worldwide, is scarce. A total of 212 AP2/ERF genes were identified in the C. moschata genome (CmoAP2/ERFs). Based on phylogenetic analysis, they were divided into four groups-28 AP2s, 92 ERFs, 86 dehydration-responsive element-binding (DREB) factors, and 6 ABI3/VPs (RAV). The 212 AP2/ERF genes were unevenly distributed on the 20 chromosomes of C. moschata. The results of structural analysis showed the absence of introns on 132 CmoAP2/ERFs. Four pairs of tandem duplication and 155 pairs of segmental duplication events were identified, which indicated that segmental duplications might be the main reason for the expansion of the CmoAP2/ERF family. The analysis of cis-regulatory elements (CREs) showed that most of the CmoAP2/ERFs contained hormone response elements (ABREs, EREs) in their promoters, suggesting that AP2/ERFs could contribute to the processes regulated by ethylene and abscisic acid. By comparing the transcriptome of ethephon-treated and control plants, we found that 16 CmoAP2/ERFs were significantly upregulated after ethephon treatment. Furthermore, we determined the expression patterns of these genes at different developmental stages of female and male flowers. This study provides insights into the identification, classification, physicochemical property, phylogenetic analysis, chromosomal location, gene structure, motif identification, and CRE prediction of the AP2/ERF superfamily in C. moschata. Sixteen CmoAP2/ERF genes were identified as ethylene-inducible genes. The results of this study will be valuable for understanding the roles of CmoAP2/ERFs in ethylene response and should provide a foundation for elucidating the function of AP2/ERF TFs in C. moschata.
Collapse
Affiliation(s)
- Qingfei Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Li Zhang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Peiwen Chen
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Chunhui Wu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Huaixia Zhang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Jingping Yuan
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xinzheng Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
- *Correspondence: Xinzheng Li,
| |
Collapse
|
30
|
Karami M, Fatahi N, Lohrasebi T, Razavi K. RAV transcription factor regulatory function in response to salt stress in two Iranian wheat landraces. JOURNAL OF PLANT RESEARCH 2022; 135:121-136. [PMID: 34853907 DOI: 10.1007/s10265-021-01356-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Amongst the transcription factor groups, the AP2/ERF (Apetala2/Ethylene Response Factor) superfamily is one of the main groups in plants and plays an essential role in tolerating abiotic and biotic stresses. The AP2/ERF superfamily consists of ERF, AP2, RAV, and Soloist families based on the AP2 domain number. The RAV (Related to ABI3/VP1) family members have been revealed to be stimulate by a number of biotic and abiotic environmental incentives; including pathogen infection, salicylic acid, osmotic stress, cold, high salinity, wounding, and exogenous hormone application. However, limited data are available on the contributions of RAV transcription factors in wheat (Triticum aestivum L.). In the present study, a total of 26 RAV genes were identified in wheat from a genome-wide search against the latest wheat genome data. Phylogenetic and sequence alignment analyses divided the wheat RAV genes into 4 clusters, I, II, III and IV. Chromosomal distribution, gene structure and motif composition were subsequently investigated. The 26 TaRAV genes were unevenly distributed on 21 chromosomes. After cloning and sequencing of 7 TaRAVs candidate genes the expression levels of two TaRAVs, TaRAV4 and TaRAV5, were validated through qPCR analyses in two salt-tolerant Iranian landraces of wheat. Our results showed that the TaRAV4 and TaRAV5 were co-expressed in wheat tissues and were highly correlated to salt tolerance indices such as the K+/Na+ ratio. Protein interaction revealed that the TaRAV4 and TaRAV5 were related to vital proteins such as PK4 and PP2C, and MYB and Zinc finger transcription factors, and Gigantea proteins. This study improved our knowledge of the RAV gene family function in wheat and the probable role of RAVs in salt tolerance mechanisms to improve crop production under changing environments. Also, the two relatively salt-tolerant landraces of wheat that were examined in this study could be suitable candidates for future breeding studies.
Collapse
Affiliation(s)
- Mohamad Karami
- Agriculture Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Narjes Fatahi
- Tehranshargh, Science Faculty, Payamnoor University, Tehran, Iran
| | - Tahmineh Lohrasebi
- Agriculture Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Khadijeh Razavi
- Agriculture Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
31
|
Kabir N, Lin H, Kong X, Liu L, Qanmber G, Wang Y, Zhang L, Sun Z, Yang Z, Yu Y, Zhao N. Identification, evolutionary analysis and functional diversification of RAV gene family in cotton (G. hirsutum L.). PLANTA 2021; 255:14. [PMID: 34862931 DOI: 10.1007/s00425-021-03782-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Genome wide analysis, expression pattern analysis, and functional characterization of RAV genes highlight their roles in roots, stem development and hormonal response. RAV (Related to ABI3 and VP1) gene family members have been involved in tissues/organs growth and hormone signaling in various plant species. Here, we identified 247 RAVs from 12 different species with 33 RAV genes from G. hirsutum. Phylogenetic analysis classified RAV genes into four distinct groups. Analysis of gene structure showed that most GhRAVs lack introns. Motif distribution pattern and protein sequence logos indicated that GhRAV genes were highly conserved during the process of evolution. Promotor cis-acting elements revealed that promotor regions of GhRAV genes encode numerous elements related to plant growth, abiotic stresses and phytohormones. Chromosomal location information showed uneven distribution of 33 GhRAV genes on different chromosomes. Collinearity analysis identified 628 and 52 orthologous/ paralogous gene pairs in G. hirsutum and G. barbadense, respectively. Ka/Ks values indicated that GhRAV and GbRAV genes underwent strong purifying selection pressure. Selecton model and codon model selection revealed that GhRAV amino acids were under purifying selection and adaptive evolution exists among GhRAV proteins. Three dimensional structure of GhRAVs indicated the presence of numerous alpha helix and beta-barrels. Expression level revealed that some GhRAV genes exhibited high expression in roots (GhRAV3, GhRAV4, GhRAV11, GhRAV18, GhRAV20 and GhRAV30) and stem (GhRAV3 and GhRAV18), indicating their potential role in roots and stem development. GhRAV genes can be regulated by phytohormonal stresses (BL, JA and IAA). Our study provides a reference for future studies related to the functional analysis of GhRAVs in cotton.
Collapse
Affiliation(s)
- Nosheen Kabir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hai Lin
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Xianhui Kong
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - YuXuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lian Zhang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Zhuojing Sun
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100122, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Yu Yu
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China.
| | - Na Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
32
|
Xing H, Jiang Y, Zou Y, Long X, Wu X, Ren Y, Li Y, Li HL. Genome-wide investigation of the AP2/ERF gene family in ginger: evolution and expression profiling during development and abiotic stresses. BMC PLANT BIOLOGY 2021; 21:561. [PMID: 34823471 PMCID: PMC8620233 DOI: 10.1186/s12870-021-03329-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/08/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND AP2/ERF transcription factors (TFs) constitute one of the largest TF families in plants, which play crucial roles in plant metabolism, growth, and development as well as biotic and abiotic stresses responses. Although the AP2/ERF family has been thoroughly identified in many plant species and several AP2/ERF TFs have been functionally characterized, little is known about this family in ginger (Zingiber officinale Roscoe), an important affinal drug and diet vegetable. Recent completion of the ginger genome sequencing provides an opportunity to investigate the expression profiles of AP2/ERF genes in ginger on a genome-wide basis. RESULTS A total of 163 AP2/ERF genes were obtained in the Z.officinale genome and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. Phylogenetic analysis divided them into three subfamilies, of which 35 belonged to the AP2 subfamily, 120 to ERF, three to RAV, and five to Sololist, respectively, which is in accordance with the number of conserved domains and gene structure analysis. A total of 10 motifs were detected in ZoAP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes. The chromosomal localization, gene structure, and conserved protein motif analyses, as well as the characterization of gene duplication events provided deep insight into the evolutionary features of these ZoAP2/ERF genes. The expression profiles derived from the RNA-seq data and quantitative reserve transcription (qRT-PCR) analysis of ZoAP2/ERFs during development and responses to abiotic stresses were investigated in ginger. CONCLUSION A comprehensive analysis of the AP2/ERF gene expression patterns in various tissues by RNA-seq and qRT-PCR showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminary identified. In additionally, the ZoAP2/ERF family genes that responded to abiotic stresses were also identified. This study is the first time to identify the ZoAP2/ERF family, which contributes to research on evolutionary characteristics and better understanding the molecular basis for development and abiotic stress response, as well as further functional characterization of ZoAP2/ERF genes with an aim of ginger crop improvement.
Collapse
Affiliation(s)
- Haitao Xing
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yusong Jiang
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yong Zou
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Xiaoling Long
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Xiaoli Wu
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yun Ren
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yuan Li
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| | - Hong-Lei Li
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| |
Collapse
|
33
|
He S, Hao X, He S, Hao X, Chen X. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in sweet potato. BMC Genomics 2021; 22:748. [PMID: 34656106 PMCID: PMC8520649 DOI: 10.1186/s12864-021-08043-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background In recent years, much attention has been given to AP2/ERF transcription factors because they play indispensable roles in many biological processes, such as plant development and biotic and abiotic stress responses. Although AP2/ERFs have been thoroughly characterised in many plant species, the knowledge about this family in the sweet potato, which is a vital edible and medicinal crop, is still limited. In this study, a comprehensive genome-wide investigation was conducted to characterise the AP2/ERF gene family in the sweet potato. Results Here, 198 IbAP2/ERF transcription factors were obtained. Phylogenetic analysis classified the members of the IbAP2/ERF family into three groups, namely, ERF (172 members), AP2 (21 members) and RAV (5 members), which was consistent with the analysis of gene structure and conserved protein domains. The evolutionary characteristics of these IbAP2/ERF genes were systematically investigated by analysing chromosome location, conserved protein motifs and gene duplication events, indicating that the expansion of the IbAP2/ERF gene family may have been caused by tandem duplication. Furthermore, the analysis of cis-acting elements in IbAP2/ERF gene promoters implied that these genes may play crucial roles in plant growth, development and stress responses. Additionally, the available RNA-seq data and quantitative real-time PCR (qRT-PCR) were used to investigate the expression patterns of IbAP2/ERF genes during sweet potato root development as well as under multiple forms of abiotic stress, and we identified several developmental stage-specific and stress-responsive IbAP2/ERF genes. Furthermore, g59127 was differentially expressed under various stress conditions and was identified as a nuclear protein, which was in line with predicted subcellular localization results. Conclusions This study originally revealed the characteristics of the IbAP2/ERF superfamily and provides valuable resources for further evolutionary and functional investigations of IbAP2/ERF genes in the sweet potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08043-w.
Collapse
Affiliation(s)
- Shutao He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaomeng Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuli He
- Jining College Affiliated Senior High School, Jining, 272004, China
| | - Xiaoge Hao
- Tsinghua University, Beijing, 100084, China
| | | |
Collapse
|
34
|
Cui M, Haider MS, Chai P, Guo J, Du P, Li H, Dong W, Huang B, Zheng Z, Shi L, Zhang X, Han S. Genome-Wide Identification and Expression Analysis of AP2/ERF Transcription Factor Related to Drought Stress in Cultivated Peanut ( Arachis hypogaea L.). Front Genet 2021; 12:750761. [PMID: 34721538 PMCID: PMC8548641 DOI: 10.3389/fgene.2021.750761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
APETALA2/ethylene response element-binding factor (AP2/ERF) transcription factors (TFs) have been found to regulate plant growth and development and response to various abiotic stresses. However, detailed information of AP2/ERF genes in peanut against drought has not yet been performed. Herein, 185 AP2/ERF TF members were identified from the cultivated peanut (A. hypogaea cv. Tifrunner) genome, clustered into five subfamilies: AP2 (APETALA2), ERF (ethylene-responsive-element-binding), DREB (dehydration-responsive-element-binding), RAV (related to ABI3/VP), and Soloist (few unclassified factors)). Subsequently, the phylogenetic relationship, intron-exon structure, and chromosomal location of AhAP2/ERF were further characterized. All of these AhAP2/ERF genes were distributed unevenly across the 20 chromosomes, and 14 tandem and 85 segmental duplicated gene pairs were identified which originated from ancient duplication events. Gene evolution analysis showed that A. hypogaea cv. Tifrunner were separated 64.07 and 66.44 Mya from Medicago truncatula L. and Glycine max L., respectively. Promoter analysis discovered many cis-acting elements related to light, hormones, tissues, and stress responsiveness process. The protein interaction network predicted the exitance of functional interaction among families or subgroups. Expression profiles showed that genes from AP2, ERF, and dehydration-responsive-element-binding subfamilies were significantly upregulated under drought stress conditions. Our study laid a foundation and provided a panel of candidate AP2/ERF TFs for further functional validation to uplift breeding programs of drought-resistant peanut cultivars.
Collapse
Affiliation(s)
- Mengjie Cui
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | | | - Pengpei Chai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Junjia Guo
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Pei Du
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Hongyan Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Wenzhao Dong
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Bingyan Huang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Zheng Zheng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Lei Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Suoyi Han
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| |
Collapse
|
35
|
Yan Y, Wang P, Lu Y, Bai Y, Wei Y, Liu G, Shi H. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:847-860. [PMID: 34022096 DOI: 10.1111/tpj.15350] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Cassava, an important food and energy crop, is relatively more resistant to drought stress than other crops. However, the molecular mechanism underlying this resistance remains elusive. Herein, we report that silencing a drought stress-responsive transcription factor MeRAV5 significantly reduced drought stress resistance, with higher levels of hydrogen peroxide (H2 O2 ) and less lignin during drought stress. Yeast two-hybrid, pull down and bimolecular fluorescence complementation (BiFC) showed that MeRAV5 physically interacted with peroxidase (MePOD) and lignin-related cinnamyl alcohol dehydrogenase 15 (MeCAD15) in vitro and in vivo. MeRAV5 promoted the activities of both MePOD and MeCAD15 to affect H2 O2 and endogenous lignin accumulation respectively, which are important in drought stress resistance in cassava. When either MeCAD15 or MeRAV5 was silenced, or both were co-silenced, cassava showed lower lignin content and drought-sensitive phenotype, whereas exogenous lignin alkali treatment increased drought stress resistance and alleviated the drought-sensitive phenotype of these silenced cassava plants. This study documents that the modulation of H2 O2 and lignin by MeRAV5 is essential for drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, 570228, China
| |
Collapse
|
36
|
Wang S, Guo T, Shen Y, Wang Z, Kang J, Zhang J, Yi F, Yang Q, Long R. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:154-165. [PMID: 33845331 DOI: 10.1016/j.plaphy.2021.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
Related to ABI3/VP1 (RAV) transcription factors play important roles in regulating plant growth and stress tolerance, which have been studied in many plant species, but have remained largely unidentified in legumes. To functionally characterize RAV in legumes, MtRAV3 from legume model plant Medicago truncatula was isolated and its function was investigated by overexpressing MtRAV3 in M. truncatula. Expression analysis demonstrated that MtRAV3 was markedly induced by NaCl and polyethylene glycol (PEG). MtRAV3 overexpression enhanced tolerance of transgenic M. truncatula to mannitol, drought and salt stresses, and induced the expression of adversity-related genes, including MtWRKY76, MtMYB61, cold-acclimation specific protein 31 (MtCAS31), alternative oxidase 1 (MtAOX1) and ethylene response factor 1 (MtERF1). There were lower relative electrolyte leakage and higher chlorophyll content of leaves in the MtRAV3 overexpression plants than in wild type plants under both salt and drought stress. MtRAV3 overexpression M. truncatula were featured by some phenotypes of dwarfing, late flowering, more branches, smaller flower and leaf organs. Further investigations showed that the expression levels of DWARF14 (MtD14), CAROTENOID CLEAVAGE DIOXYGENASES 7 (MtCCD7) and GA3-oxidase1 (MtGA3ox1), which related to dwarf and branch phenotype, were obviously reduced, as well as MtGA3ox1' (MTR_1g011580), GA20-oxidase1 (MtGA20ox1), MtGA20ox1' (MTR_1g102070) and GA20-oxidase2 (MtGA20ox2) involved in gibberellins (GAs) pathway. Overall, our results revealed that MtRAV3 exerted an important role in adversity response and plant growth, was a multifunctional gene in M. truncatula, which provided reference for genetic improvement of alfalfa (Medicago sativa).
Collapse
Affiliation(s)
- Shumin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Shen
- College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaju Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengyan Yi
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
37
|
Chen C, Li Y, Zhang H, Ma Q, Wei Z, Chen J, Sun Z. Genome-Wide Analysis of the RAV Transcription Factor Genes in Rice Reveals Their Response Patterns to Hormones and Virus Infection. Viruses 2021; 13:v13050752. [PMID: 33922971 PMCID: PMC8146320 DOI: 10.3390/v13050752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The RAV family is part of the B3 superfamily and is one of the most abundant transcription factor families in plants. Members have highly conserved B3 or AP2 DNA binding domains. Although the RAV family genes of several species have been systematically identified from genome-wide studies, there has been no comprehensive study to identify rice RAV family genes. Here, we identified 15 genes of the RAV family in the rice genome and analyzed their phylogenetic relationships, gene structure, conserved domains, and chromosomal distribution. Based on domain similarity and phylogenetic topology, rice RAV transcription factors were phylogenetically clustered into four groups. qRT-PCR analyses showed that expression of these RAV genes was significantly up-regulated or down-regulated by plant hormone treatments, including BL, NAA, IAA, MeJA, and SA. Most of the rice RAV genes were dramatically down-regulated in response to rice stripe virus (RSV) and mostly up-regulated in response to Southern rice black-streaked dwarf virus (SRBSDV). These results suggest that the rice RAV genes are involved in diverse signaling pathways and in varied responses to virus infection.
Collapse
|
38
|
Yan Y, Wang P, Wei Y, Bai Y, Lu Y, Zeng H, Liu G, Reiter RJ, He C, Shi H. The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:785-800. [PMID: 33128298 PMCID: PMC8051611 DOI: 10.1111/pbi.13505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 09/27/2020] [Indexed: 05/05/2023]
Abstract
Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Nitrate reductase (NR) plays an important role in plant nitrogen metabolism in plants. However, the in vivo role of NR and the corresponding signalling pathway remain unclear in cassava. In this study, we isolated MeNR1/2 and revealed their novel upstream transcription factor MeRAV5. We also identified MeCatalase1 (MeCAT1) as the interacting protein of MeRAV5. In addition, we investigated the role of MeCatalase1 and MeRAV5-MeNR1/2 module in cassava defence response. MeNRs positively regulates cassava disease resistance against CBB through modulation of nitric oxide (NO) and extensive transcriptional reprogramming especially in mitogen-activated protein kinase (MAPK) signalling. Notably, MeRAV5 positively regulates cassava disease resistance through the coordination of NO and hydrogen peroxide (H2 O2 ) level. On the one hand, MeRAV5 directly activates the transcripts of MeNRs and NO level by binding to CAACA motif in the promoters of MeNRs. On the other hand, MeRAV5 interacts with MeCAT1 to inhibit its activity, so as to negatively regulate endogenous H2 O2 level. This study highlights the precise coordination of NR activity and CAT activity by MeRAV5 through directly activating MeNRs and interacting with MeCAT1 in plant immunity.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Russel J. Reiter
- Department of Anatomy and Cell SystemUT Health San AntonioSan AntonioTXUSA
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| |
Collapse
|
39
|
Genome-Wide Identification and Characterization of AP2/ ERF Transcription Factor Family Genes in Oil Palm under Abiotic Stress Conditions. Int J Mol Sci 2021; 22:ijms22062821. [PMID: 33802225 PMCID: PMC8000548 DOI: 10.3390/ijms22062821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
The AP2/ERF transcription factor family members play crucial roles in controlling plant growth and development, as well as responses to various abiotic stresses. Genome-wide identification and characterization of AP2/ERF genes has not yet been carried out in the oil palm genome. In the present work, we reported the occurrence of 172 EgAP2/ERFs (AP2, ERF, RAV & Soloist members) through genome-wide identification. Phylogenetic analysis was used to divide them into four groups, including: 34 AP2, 131 ERF, 5 RAV, and 2 Soloist gene family members. All 172 AP2/ERF members were unevenly distributed across 16 chromosomes of oil palm. Gene duplication analysis elucidated the tandem duplication of AP2/ERFs on chromosome blocks of the oil palm genome during evolution. Gene structure as well as conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the AP2/ERF genes. Several cis-regulatory elements—related to hormone, stress, and defense responses—were identified in the promoter regions of AP2/ERFs. Tissue-specific expression of 172 AP2/ERFs in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Finally, abiotic stress (salinity, cold & drought)-responsive AP2/ERFs in the oil palm genome were validated through qPCR analysis. Our study provided valuable information on oil palm AP2/ERF superfamily members and dissected their role in abiotic stress conditions.
Collapse
|
40
|
Genome-wide identification and analysis of AP2/ERF transcription factors related to camptothecin biosynthesis in Camptotheca acuminata. Chin J Nat Med 2021; 18:582-593. [PMID: 32768165 DOI: 10.1016/s1875-5364(20)30070-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/18/2022]
Abstract
Camptotheca acuminata produces camptothecin (CPT), a monoterpene indole alkaloid (MIA) that is widely used in the treatment of lung, colorectal, cervical, and ovarian cancers. Its biosynthesis pathway has attracted significant attention, but the regulation of CPT biosynthesis by the APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors (TFs) remains unclear. In this study, a systematic analysis of the AP2/ERF TFs family in C. acuminata was performed, including phylogeny, gene structure, conserved motifs, and gene expression profiles in different tissues and organs (immature bark, cotyledons, young flower, immature fruit, mature fruit, mature leaf, roots, upper stem, and lower stem) of C. acuminata. A total of 198 AP2/ERF genes were identified and divided into five relatively conserved subfamilies, including AP2 (26 genes), DREB (61 genes), ERF (92 genes), RAV (18 genes), and Soloist (one gene). The combination of gene expression patterns in different C. acuminata tissues and organs, the phylogenetic tree, the co-expression analysis with biosynthetic genes, and the analysis of promoter sequences of key enzymes genes involved in CPT biosynthesis pathways revealed that eight AP2/ERF TFs in C. acuminata might be involved in CPT synthesis regulation, which exhibit relatively high expression levels in the upper stem or immature bark. Among these, four genes (CacAP2/ERF123, CacAP2/ERF125, CacAP2/ERF126, and CacAP2/ERF127) belong to the ERF-B2 subgroup; two genes (CacAP2/ERF149 and CacAP2/ERF152) belong to the ERF-B3 subgroup; and two more genes (CacAP2/ERF095 and CacAP2/ERF096) belong to the DREB-A6 subgroup. These results provide a foundation for future functional characterization of the AP2/ERF genes to enhance the biosynthesis of CPT compounds of C. acuminata.
Collapse
|
41
|
Zhang H, Pan X, Liu S, Lin W, Li Y, Zhang X. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development. Genomics 2021; 113:474-489. [PMID: 33359830 DOI: 10.1016/j.ygeno.2020.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
The APETALA2/ethylene-responsive factor (AP2/ERF) has important roles in regulating developmental processes and hormone signaling transduction in plants. Pineapple demonstrates a special sensitivity to ethylene, and AP2/ERFs may contribute to this distinct sensitivity of pineapples to ethylene. However, little information is available on the AP2/ERF of pineapple. In this study, 97 AP2/ERF family members were identified from the pineapple genome. The AcAP2/ERF superfamily could be further divided into five subfamilies, and different subfamily existed functional divergence in multifarious biological processes. ERF and RAV subfamily genes might play important roles in the process of ethylene response of pineapple; ERF and DREB subfamily genes had particular functions in the floral organ development. This study is the first to provide detailed information on the features of AP2/ERFs in pineapple, provide new insights into the potential functional roles of the AP2/ERF superfamily members, and will facilitate a better understanding of the molecular mechanism of flower in pineapple.
Collapse
Affiliation(s)
- Hongna Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; Hainan University, Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Tropical Crop New Variety Breeding Education Engineering Center, Haikou 570102, PR China
| | - Xiaolu Pan
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; Hainan University, Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Tropical Crop New Variety Breeding Education Engineering Center, Haikou 570102, PR China
| | - Shenghui Liu
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Wenqiu Lin
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Yunhe Li
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Xiumei Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| |
Collapse
|
42
|
Osnato M, Cereijo U, Sala J, Matías-Hernández L, Aguilar-Jaramillo AE, Rodríguez-Goberna MR, Riechmann JL, Rodríguez-Concepción M, Pelaz S. The floral repressors TEMPRANILLO1 and 2 modulate salt tolerance by regulating hormonal components and photo-protection in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:7-21. [PMID: 33111454 DOI: 10.1111/tpj.15048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 05/18/2023]
Abstract
Members of the plant specific RAV family of transcription factors regulate several developmental and physiological processes. In the model plant Arabidopsis thaliana, the RAV TEMPRANILLO 1 (TEM1) and TEM2 control important phase changes such as the juvenile to adult and the vegetative to reproductive transitions. Besides their known regulatory function in plant development, a transcriptomics analysis of transgenic plants overexpressing TEM1 also revealed overrepresentation of Gene Ontology (GO) categories related to abiotic stress responses. Therefore, to investigate the biological relevance of these TEM-dependent transcriptomic changes and elucidate whether TEMs contribute to the modulation of plant growth in response to salinity, we analyzed the behavior of TEM gain and loss of function mutants subjected to mild and high salt stresses at different development stages. With respect to increasing salinity, TEM overexpressing plants were hypersensitive whereas the tem1 tem2 double mutants were more tolerant. Precisely, tem1 tem2 mutants germinated and flowered faster than the wild-type plants under salt stress conditions. Also, tem1 tem2 plants showed a delay in salt-induced leaf senescence, possibly as a consequence of downregulation of jasmonic acid biosynthesis genes. Besides a shorter life cycle and delayed senescence, tem1 tem2 mutants appeared to be better suited to withstand oxidative stress as they accumulated higher levels of α-tocopherol (an important antioxidant metabolite) and displayed a slower degradation of photosynthetic pigments. Taken together, our studies suggest novel and crucial roles for TEM in adaptive growth as they modulate plant development in response to environmental changes such as increasing soil salinity.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | - Jan Sala
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | - Luis Matías-Hernández
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | - Andrea E Aguilar-Jaramillo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | | | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | | | - Soraya Pelaz
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
43
|
The AP2/ERF Gene Family in Triticum durum: Genome-Wide Identification and Expression Analysis under Drought and Salinity Stresses. Genes (Basel) 2020; 11:genes11121464. [PMID: 33297327 PMCID: PMC7762271 DOI: 10.3390/genes11121464] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Members of the AP2/ERF transcription factor family play critical roles in plant development, biosynthesis of key metabolites, and stress response. A detailed study was performed to identify TtAP2s/ERFs in the durum wheat (Triticum turgidum ssp. durum) genome, which resulted in the identification of 271 genes distributed on chromosomes 1A-7B. By carrying 27 genes, chromosome 6A had the highest number of TtAP2s/ERFs. Furthermore, a duplication assay of TtAP2s/ERFs demonstrated that 70 duplicated gene pairs had undergone purifying selection. According to RNA-seq analysis, the highest expression levels in all tissues and in response to stimuli were associated with DRF and ERF subfamily genes. In addition, the results revealed that TtAP2/ERF genes have tissue-specific expression patterns, and most TtAP2/ERF genes were significantly induced in the root tissue. Additionally, 13 TtAP2/ERF genes (six ERFs, three DREBs, two DRFs, one AP2, and one RAV) were selected for further analysis via qRT-PCR of their potential in coping with drought and salinity stresses. The TtAP2/ERF genes belonging to the DREB subfamily were markedly induced under both drought-stress and salinity-stress conditions. Furthermore, docking simulations revealed several residues in the pocket sites of the proteins associated with the stress response, which may be useful in future site-directed mutagenesis studies to increase the stress tolerance of durum wheat. This study could provide valuable insights for further evolutionary and functional assays of this important gene family in durum wheat.
Collapse
|
44
|
Zhang Z, Shi Y, Ma Y, Yang X, Yin X, Zhang Y, Xiao Y, Liu W, Li Y, Li S, Liu X, Grierson D, Allan AC, Jiang G, Chen K. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2267-2279. [PMID: 32216018 PMCID: PMC7589338 DOI: 10.1111/pbi.13382] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 02/27/2020] [Indexed: 05/13/2023]
Abstract
The RAV (related to ABI3/viviparous 1) group of transcription factors (TFs) play multifaceted roles in plant development and stress responses. Here, we show that strawberry (Fragaria × ananassa) FaRAV1 positively regulates anthocyanin accumulation during fruit ripening via a hierarchy of activation processes. Dual-luciferase assay screening of all fruit-expressed AP2/ERFs showed FaRAV1 had the highest transcriptional activation of the promoter of FaMYB10, a key activator of anthocyanin biosynthesis. Yeast one-hybrid and electrophoretic mobility shift assays indicated that FaRAV1 could directly bind to the promoter of FaMYB10. Transient overexpression of FaRAV1 in strawberry fruit increased FaMYB10 expression and anthocyanin production significantly. Correspondingly, transient RNA interference-induced silencing of FaRAV1 led to decreases in FaMYB10 expression and anthocyanin content. Transcriptome analysis of FaRAV1-overexpressing strawberry fruit revealed that transcripts of phenylpropanoid and flavonoid biosynthesis pathway genes were up-regulated. Luciferase assays showed that FaRAV1 could also activate the promoters of strawberry anthocyanin biosynthetic genes directly, revealing a second level of FaRAV1 action in promoting anthocyanin accumulation. These results show that FaRAV1 stimulates anthocyanin accumulation in strawberry both by direct activation of anthocyanin pathway gene promoters and by up-regulation of FaMYB10, which also positively regulates these genes.
Collapse
Affiliation(s)
- Zuying Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yanna Shi
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Yuchen Ma
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xiaofang Yang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xueren Yin
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Yuanyuan Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yuwei Xiao
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wenli Liu
- College of Mathematical ScienceZhejiang UniversityHangzhouChina
| | - Yunduan Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Shaojia Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xiaofen Liu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
- Division of Plant and Crop SciencesSchool of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Guihua Jiang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Kunsong Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| |
Collapse
|
45
|
Li P, Chai Z, Lin P, Huang C, Huang G, Xu L, Deng Z, Zhang M, Zhang Y, Zhao X. Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.). BMC Genomics 2020; 21:685. [PMID: 33008299 PMCID: PMC7531145 DOI: 10.1186/s12864-020-07076-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors play essential roles in plant growth, development, metabolism, and responses to biotic and abiotic stresses. However, few studies concerning AP2/ERF genes in sugarcane which are the most critical sugar and energy crops worldwide. RESULTS A total of 218 AP2/ERF genes were identified in the Saccharum spontaneum genome. Phylogenetic analysis showed that these genes could be divided into four groups, including 43 AP2s, 160 ERFs and Dehydration-responsive element-binding (DREB) factors, 11 ABI3/VPs (RAV), and four Soloist genes. These genes were unevenly distributed on 32 chromosomes. The structural analysis of SsAP2/ERF genes showed that 91 SsAP2/ERFs lacked introns. Sugarcane and sorghum had a collinear relationship between 168 SsAP2/ERF genes and sorghum AP2/ERF genes that reflected their similarity. Multiple cis-regulatory elements (CREs) present in the SsAP2/ERF promoter were related to abiotic stresses, suggesting that SsAP2/ERF activity could contribute to sugarcane adaptation to environmental changes. The tissue-specific analysis showed spatiotemporal expression of SsAP2/ERF in the stems and leaves of sugarcane at different development stages. In ten sugarcane samples, 39 SsAP2/ERFs were not expressed, whereas 58 SsAP2/ERFs were expressed in all samples. Quantitative PCR experiments showed that SsERF52 expression was up-regulated under salt stress, but suppressed under dehydration stress. SsSoloist4 had the most considerable upregulation in response to treatment with the exogenous hormones ABA and GA. Within 3 h of ABA or PEG6000 treatment, SsSoloist4 expression was up-regulated, indicating that this gene could play a role in the responses to ABA and GA-associated dehydration stress. Analysis of AP2/ERF gene expression patterns under different treatments indicated that SsAP2/ERF genes played an essential role in dehydration and salt stress responses of S. spontaneum. CONCLUSIONS In this study, a total of 218 members of the AP2 / ERF superfamily were identified in sugarcane, and their genetic structure, evolution characteristics, and expression patterns were studied and analyzed. The results of this study provide a foundation for future analyses to elucidate the importance of AP2/ERF transcription factors in the function and molecular breeding of sugarcane.
Collapse
Affiliation(s)
- Peiting Li
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory for Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhe Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Pingping Lin
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory for Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaohua Huang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory for Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoqiang Huang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory for Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory for Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory for Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China.
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinwang Zhao
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory for Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China. .,Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
46
|
Sengupta S, Ray A, Mandal D, Nag Chaudhuri R. ABI3 mediated repression of RAV1 gene expression promotes efficient dehydration stress response in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194582. [DOI: 10.1016/j.bbagrm.2020.194582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023]
|
47
|
Burke R, Schwarze J, Sherwood OL, Jnaid Y, McCabe PF, Kacprzyk J. Stressed to Death: The Role of Transcription Factors in Plant Programmed Cell Death Induced by Abiotic and Biotic Stimuli. FRONTIERS IN PLANT SCIENCE 2020; 11:1235. [PMID: 32903426 PMCID: PMC7434935 DOI: 10.3389/fpls.2020.01235] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled pathway that plants can use to selectively eliminate redundant or damaged cells. In addition to its fundamental role in plant development, PCD can often be activated as an essential defense response when dealing with biotic and abiotic stresses. For example, localized, tightly controlled PCD can promote plant survival by restricting pathogen growth, driving the development of morphological traits for stress tolerance such as aerenchyma, or triggering systemic pro-survival responses. Relatively little is known about the molecular control of this essential process in plants, especially in comparison to well-described cell death models in animals. However, the networks orchestrating transcriptional regulation of plant PCD are emerging. Transcription factors (TFs) regulate the clusters of stimuli inducible genes and play a fundamental role in plant responses, such as PCD, to abiotic and biotic stresses. Here, we discuss the roles of different classes of transcription factors, including members of NAC, ERF and WRKY families, in cell fate regulation in response to environmental stresses. The role of TFs in stress-induced mitochondrial retrograde signaling is also reviewed in the context of life-and-death decisions of the plant cell and future research directions for further elucidation of TF-mediated control of stress-induced PCD events are proposed. An increased understanding of these complex signaling networks will inform and facilitate future breeding strategies to increase crop tolerance to disease and/or abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Xu L, Feng G, Yang Z, Xu X, Huang L, Yang Q, Zhang X. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchardgrass (Dactylis glomerata). Mol Biol Rep 2020; 47:5225-5241. [PMID: 32577992 DOI: 10.1007/s11033-020-05598-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
The AP2/ERF transcription factor (TF) family is of great importance in developmental regulation and responses to stress and pathogenic stimuli. Orchardgrass (Dactylis glomerata), a perennial cold-season forage of high quality in the world's temperate zones, contributes to grazing land through mixed sowing with alfalfa (Medicago sativa) and white clover (Trifolium repens). However, little is known about AP2/ERF TFs in orchardgrass. In this study, 193 AP2/ERF genes were classified into five subfamilies and 13 subgroups through phylogenetic analysis. Chromosome structure analysis showed that AP2/ERF family genes in orchardgrass were distributed on seven chromosomes and specific conservative sequences were found in each subgroup. Exon-intron structure and motifs in the same subgroup were almost identical, and the unique motifs contributed to the classification and functional annotation of DgERFs. Expression analysis showed tissue-specific expression of DgERFs in roots and flowers, with most DgERFs widely expressed in roots. The expression levels of each subgroup (subgroups Vc, VIIa, VIIIb, IXa, and XIa) were high at the before-heading and heading stages (BH_DON and H_DON). In addition, 12 DgERFs in various tissues and five DgERFs associated with abiotic stresses were selected for qRT-PCR analysis showed that four dehydration-responsive element binding (DREB) genes and one ERF subfamily gene in orchardgrass were regulated with PEG, heat and salt stresses. DgERF056 belonged to ERF subfamily was involved in the processes of flowering and development stage. This study systematic explored the DgERFs at the genome level for the first time, which lays a foundation for a better understanding of AP2/ERF gene function in Dactylis glomerata and other types of forage.
Collapse
Affiliation(s)
- Lei Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,The State Key Laboratory of Grassland Farming Systems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Guangyan Feng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoheng Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingchuan Yang
- The State Key Laboratory of Grassland Farming Systems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000, China
| | - Xinquan Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
49
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
50
|
Wang S, Guo T, Wang Z, Kang J, Yang Q, Shen Y, Long R. Expression of Three Related to ABI3/VP1 Genes in Medicago truncatula Caused Increased Stress Resistance and Branch Increase in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:611. [PMID: 32523590 PMCID: PMC7261895 DOI: 10.3389/fpls.2020.00611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/21/2020] [Indexed: 05/18/2023]
Abstract
Related to ABSCISIC ACID INSENSITIVE3 (ABI3)/VIVIPAROUS1(VP1)(RAV) transcription factors, which encode a B3 domain and an APETALA2(AP2) domain, belong to the APETALA2/ethylene-responsive element binding factor(AP2/ERF) or B3 superfamily and play an important role in regulating plant growth and development and responding to abiotic stress. Although there have been many functional studies on RAV, the functional differences between RAVs are not clear. Therefore, in this study, the functional differences of RAVs of Medicago truncatula were analyzed. Based on sequence data from the plant transcription factor database and the M. truncatula genome database, we cloned three RAV genes from M. truncatula, named MtRAV1, MtRAV2, and MtRAV3. The cis-acting elements of these genes promoters were predicted, and the expression patterns of MtRAVs under exogenous conditions (4°C, NaCl, Polyethylene Glycol, Abscisic acid) were analyzed. MtRAVs transgenic Arabidopsis thaliana were obtained and subjected to adversity treatment. Subcellular localization results indicated that MtRAVs were located in the nucleus. A much lower expression level was observed for MtRAV3 than the levels of MtRAV1 and MtRAV2 in M. truncatula for growth in normal conditions, but under 4°C or PEG and NaCl treatment, the expression level of MtRAV3 was significantly increased. Only the MtRAV3 overexpression transgenic plants showed strong cold resistance, but the overexpressed MtRAV1 and MtRAV2 transgenic plants showed no difference from wild type plants. MtRAV transgenic plants exhibited similar response to exogenous mannitol, NaCl, and ABA, and the expression of some adverse-related marker genes were up-regulated, such as COLD REGULATED 414 THYLAKOID MEMBRANE 1 (COR414-TM1), Arabidopsis thaliana drought-induced 21 (AtDI21), and Arabidopsis thaliana phosphatidylinositol-specific phospholipase C (ATPLC). MtRAVs transgenic Arabidopsis thaliana exhibited increasing of branch number. These results indicated that there was some function redundancy during MtRAVs proteins of M. truncatula, and MtRAV3 has increased function compared to the other two genes. The results of this study should provide the foundation for future application of MtRAVs in legumes.
Collapse
Affiliation(s)
- Shumin Wang
- College of Agro-Grassland Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yixin Shen
- College of Agro-Grassland Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yixin Shen,
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Ruicai Long,
| |
Collapse
|