1
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
2
|
Shi X, Li W, Guo Z, Wu M, Zhang X, Yuan L, Qiu X, Xing Y, Sun X, Xie H, Tang J. Comparative transcriptomic analysis of maize ear heterosis during the inflorescence meristem differentiation stage. BMC PLANT BIOLOGY 2022; 22:348. [PMID: 35843937 PMCID: PMC9290290 DOI: 10.1186/s12870-022-03695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heterosis is widely used in many crops and is important for global food safety, and maize is one of the most successful crops to take advantage of heterosis. Gene expression patterns control the development of the maize ear, but the mechanisms by which heterosis affects transcriptional-level control are not fully understood. RESULTS In this study, we sampled ear inflorescence meristems (IMs) from the single-segment substitution maize (Zea mays) line lx9801hlEW2b, which contains the heterotic locus hlEW2b associated with ear width, as well as the receptor parent lx9801, the test parent Zheng58, and their corresponding hybrids Zheng58 × lx9801hlEW2b (HY) and Zheng58 × lx9801 (CK). After RNA sequencing and transcriptomic analysis, 2531 unique differentially expressed genes (DEGs) were identified between the two hybrids (HY vs. CK). Our results showed that approximately 64% and 48% of DEGs exhibited additive expression in HY and CK, whereas the other genes displayed a non-additive expression pattern. The DEGs were significantly enriched in GO functional categories of multiple metabolic processes, plant organ morphogenesis, and hormone regulation. These essential processes are potentially associated with heterosis performance during the maize ear developmental stage. In particular, 125 and 100 DEGs from hybrids with allele-specific expression (ASE) were specifically identified in HY and CK, respectively. Comparison between the two hybrids suggested that ASE genes were involved in different development-related processes that may lead to the hybrid vigor phenotype during maize ear development. In addition, several critical genes involved in auxin metabolism and IM development were differentially expressed between the hybrids and showed various expression patterns (additive, non-additive, and ASE). Changes in the expression levels of these genes may lead to differences in auxin homeostasis in the IM, affecting the transcription of core genes such as WUS that control IM development. CONCLUSIONS Our research suggests that additive, non-additive, and allele-specific expression patterns may fine-tune the expression of crucial DEGs that modulate carbohydrate and protein metabolic processes, nitrogen assimilation, and auxin metabolism to optimal levels, and these transcriptional changes may play important roles in maize ear heterosis. The results provide new information that increases our understanding of the relationship between transcriptional variation and heterosis during maize ear development, which may be helpful for clarifying the genetic and molecular mechanisms of heterosis.
Collapse
Affiliation(s)
- Xia Shi
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mingbo Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangge Zhang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Liang Yuan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ye Xing
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaojing Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
3
|
Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics 2022; 49:385-393. [PMID: 35276387 DOI: 10.1016/j.jgg.2022.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
The wide adoption of hybrid rice has greatly increased rice yield in the last several decades. The utilization of heterosis facilitated by male sterility has been a common strategy for hybrid rice development. Here, we summarize our efforts in the genetic and molecular understanding of heterosis and male sterility together with the related progress from other research groups. Analyses of F1 diallel crosses show that strong heterosis widely exists in hybrids of diverse germplasms, and inter-subspecific hybrids often display higher heterosis. Using the elite hybrid Shanyou 63 as a model, an immortalized F2 population design is conducted for systematic characterization of the biological mechanism of heterosis, with identification of loci controlling heterosis of yield and yield component traits. Dominance, overdominance, and epistasis all play important roles in the genetic basis of heterosis; quantitative assessment of these components well addressed the three classical genetic hypotheses for heterosis. Environment-sensitive genic male sterility (EGMS) enables the development of two-line hybrids, and long noncoding RNAs often function as regulators of EGMS. Inter-subspecific hybrids show greatly reduced fertility; the identification and molecular characterization of hybrid sterility genes offer strategies for overcoming inter-subspecific hybrid sterility. These developments have significant implications for future hybrid rice improvement using genomic breeding.
Collapse
|
4
|
Song JM, Xie WZ, Wang S, Guo YX, Koo DH, Kudrna D, Gong C, Huang Y, Feng JW, Zhang W, Zhou Y, Zuccolo A, Long E, Lee S, Talag J, Zhou R, Zhu XT, Yuan D, Udall J, Xie W, Wing RA, Zhang Q, Poland J, Zhang J, Chen LL. Two gap-free reference genomes and a global view of the centromere architecture in rice. MOLECULAR PLANT 2021; 14:1757-1767. [PMID: 34171480 DOI: 10.1016/j.molp.2021.06.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa), a major staple throughout the world and a model system for plant genomics and breeding, was the first crop genome sequenced almost two decades ago. However, reference genomes for all higher organisms to date contain gaps and missing sequences. Here, we report the assembly and analysis of gap-free reference genome sequences for two elite O. sativa xian/indica rice varieties, Zhenshan 97 and Minghui 63, which are being used as a model system for studying heterosis and yield. Gap-free reference genomes provide the opportunity for a global view of the structure and function of centromeres. We show that all rice centromeric regions share conserved centromere-specific satellite motifs with different copy numbers and structures. In addition, the similarity of CentO repeats in the same chromosome is higher than across chromosomes, supporting a model of local expansion and homogenization. Both genomes have over 395 non-TE genes located in centromere regions, of which ∼41% are actively transcribed. Two large structural variants at the end of chromosome 11 affect the copy number of resistance genes between the two genomes. The availability of the two gap-free genomes lays a solid foundation for further understanding genome structure and function in plants and breeding climate-resilient varieties.
Collapse
Affiliation(s)
- Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Wen-Zhao Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Xiong Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Dave Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Chenbo Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yicheng Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Zhou
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Evan Long
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Run Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi-Tong Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Joshua Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; International Rice Research Institute (IRRI), Strategic Innovation, Los Baños, 4031 Laguna, Philippines
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Ding Y, Zhang R, Zhu L, Wang M, Ma Y, Yuan D, Liu N, Hu H, Min L, Zhang X. An enhanced photosynthesis and carbohydrate metabolic capability contributes to heterosis of the cotton (Gossypium hirsutum) hybrid 'Huaza Mian H318', as revealed by genome-wide gene expression analysis. BMC Genomics 2021; 22:277. [PMID: 33865322 PMCID: PMC8052695 DOI: 10.1186/s12864-021-07580-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Heterosis has been exploited for decades in different crops due to resulting in dramatic increases in yield, but relatively little molecular evidence on this topic was reported in cotton. Results The elite cotton hybrid variety ‘Huaza Mian H318’ (H318) and its parental lines were used to explore the source of its yield heterosis. A four-year investigation of yield-related traits showed that the boll number of H318 showed higher stability than that of its two parents, both in suitable and unsuitable climate years. In addition, the hybrid H318 grew faster and showed higher fresh and dry weights than its parental lines at the seedling stage. Transcriptome analysis of seedlings identified 17,308 differentially expressed genes (DEGs) between H318 and its parental lines, and 3490 extremely changed DEGs were screened out for later analysis. Most DEGs (3472/3490) were gathered between H318 and its paternal line (4–5), and only 64 DEGs were found between H318 and its maternal line (B0011), which implied that H318 displays more similar transcriptional patterns to its maternal parent at the seedling stage. GO and KEGG analyses showed that these DEGs were highly enriched in photosynthesis, lipid metabolic, carbohydrate metabolic and oxidation-reduction processes, and the expression level of these DEGs was significantly higher in H318 relative to its parental lines, which implied that photosynthesis, metabolism and stress resistances were enhanced in H318. Conclusion The enhanced photosynthesis, lipid and carbohydrate metabolic capabilities contribute to the heterosis of H318 at the seedling stage, and establishes a material foundation for subsequent higher boll-setting rates in complex field environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07580-8.
Collapse
Affiliation(s)
- Yuanhao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
K. Srivastava R, Bollam S, Pujarula V, Pusuluri M, Singh RB, Potupureddi G, Gupta R. Exploitation of Heterosis in Pearl Millet: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E807. [PMID: 32605134 PMCID: PMC7412370 DOI: 10.3390/plants9070807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
The phenomenon of heterosis has fascinated plant breeders ever since it was first described by Charles Darwin in 1876 in the vegetable kingdom and later elaborated by George H Shull and Edward M East in maize during 1908. Heterosis is the phenotypic and functional superiority manifested in the F1 crosses over the parents. Various classical complementation mechanisms gave way to the study of the underlying potential cellular and molecular mechanisms responsible for heterosis. In cereals, such as maize, heterosis has been exploited very well, with the development of many single-cross hybrids that revolutionized the yield and productivity enhancements. Pearl millet (Pennisetum glaucum (L.) R. Br.) is one of the important cereal crops with nutritious grains and lower water and energy footprints in addition to the capability of growing in some of the harshest and most marginal environments of the world. In this highly cross-pollinating crop, heterosis was exploited by the development of a commercially viable cytoplasmic male-sterility (CMS) system involving a three-lines breeding system (A-, B- and R-lines). The first set of male-sterile lines, i.e., Tift 23A and Tift18A, were developed in the early 1960s in Tifton, Georgia, USA. These provided a breakthrough in the development of hybrids worldwide, e.g., Tift 23A was extensively used by Punjab Agricultural University (PAU), Ludhiana, India, for the development of the first single-cross pearl millet hybrid, named Hybrid Bajra 1 (HB 1), in 1965. Over the past five decades, the pearl millet community has shown tremendous improvement in terms of cytoplasmic and nuclear diversification of the hybrid parental lines, which led to a progressive increase in the yield and adaptability of the hybrids that were developed, resulting in significant genetic gains. Lately, the whole genome sequencing of Tift 23D2B1 and re-sequencing of circa 1000 genomes by a consortium led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) has been a significant milestone in the development of cutting-edge genetic and genomic resources in pearl millet. Recently, the application of genomics and molecular technologies has provided better insights into genetic architecture and patterns of heterotic gene pools. Development of whole-genome prediction models incorporating heterotic gene pool models, mapped traits and markers have the potential to take heterosis breeding to a new level in pearl millet. This review discusses advances and prospects in various fronts of heterosis for pearl millet.
Collapse
Affiliation(s)
- Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad TS 502324, India; (S.B.); (V.P.); (M.P.); (R.B.S.); (G.P.)
| | | | | | | | | | | | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad TS 502324, India; (S.B.); (V.P.); (M.P.); (R.B.S.); (G.P.)
| |
Collapse
|
7
|
Ghaleb MAA, Li C, Shahid MQ, Yu H, Liang J, Chen R, Wu J, Liu X. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles. BMC PLANT BIOLOGY 2020; 20:83. [PMID: 32085735 PMCID: PMC7035737 DOI: 10.1186/s12870-020-2291-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/14/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Neo-tetraploid rice, which is a new germplasm developed from autotetraploid rice, has a powerful biological and yield potential and could be used for commercial utilization. The length of panicle, as a part of rice panicle architecture, contributes greatly to high yield. However, little information about long panicle associated with heterosis or hybrid vigor is available in neo-tetraploid rice. RESULTS In the present study, we developed a neo-tetraploid rice line, Huaduo 8 (H8), with long panicles and harboring wide-compatibility genes for pollen and embryo sac fertility. All the hybrids generated by H8 produced significant high-parent yield heterosis and displayed long panicles similar to H8. RNA-seq analysis detected a total of 4013, 7050, 6787 and 6195 differentially expressed genes uniquely belonging to F1 and specifically (DEGFu-sp) associated with leaf, sheath, main panicle axis and spikelet in the two hybrids, respectively. Of these DEGFu-sp, 279 and 89 genes were involved in kinase and synthase, and 714 cloned genes, such as GW8, OsGA20ox1, Ghd8, GW6a, and LP1, were identified and validated by qRT-PCR. A total of 2925 known QTLs intervals, with an average of 1~100 genes per interval, were detected in both hybrids. Of these, 109 yield-related QTLs were associated with seven important traits in rice. Moreover, 1393 non-additive DEGs, including 766 up-regulated and 627 down-regulated, were detected in both hybrids. Importantly, eight up-regulated genes associated with panicle were detected in young panicles of the two hybrids compared to their parents by qRT-PCR. Re-sequencing analysis depicted that LP (a gene controlling long panicle) sequence of H8 was different from many other neo-tetraploid rice and most of the diploid and autotetraploid lines. The qRT-PCR results showed that LP was up-regulated in the hybrid compared to its parents at very young stage of panicle development. CONCLUSIONS These results suggested that H8 could overcome the intersubspecific autotetraploid hybrid rice sterility caused by embryo sac and pollen sterility loci. Notably, long panicles of H8 showed dominance phenomenon and played an important role in yield heterosis, which is a complex molecular mechanism. The neo-tetraploid rice is a useful germplasm to attain high yield of polyploid rice.
Collapse
Affiliation(s)
- Mohammed Abdullah Abdulraheem Ghaleb
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Cong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Junhong Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Ruoxin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| |
Collapse
|
8
|
Katara JL, Verma RL, Parida M, Ngangkham U, Molla KA, Barbadikar KM, Mukherjee M, C P, Samantaray S, Ravi NR, Singh ON, Mohapatra T. Differential Expression of Genes at Panicle Initiation and Grain Filling Stages Implied in Heterosis of Rice Hybrids. Int J Mol Sci 2020; 21:ijms21031080. [PMID: 32041193 PMCID: PMC7038112 DOI: 10.3390/ijms21031080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
RNA-Seq technology was used to analyze the transcriptome of two rice hybrids, Ajay (based on wild-abortive (WA)-cytoplasm) and Rajalaxmi (based on Kalinga-cytoplasm), and their respective parents at the panicle initiation (PI) and grain filling (GF) stages. Around 293 and 302 million high quality paired-end reads of Ajay and Rajalaxmi, respectively, were generated and aligned against the Nipponbare reference genome. Transcriptome profiling of Ajay revealed 2814 and 4819 differentially expressed genes (DEGs) at the PI and GF stages, respectively, as compared to its parents. In the case of Rajalaxmi, 660 and 5264 DEGs were identified at PI and GF stages, respectively. Functionally relevant DEGs were selected for validation through qRT-PCR, which were found to be co-related with the expression patterns to RNA-seq. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated significant DEGs enriched for energy metabolism pathways, such as photosynthesis, oxidative phosphorylation, and carbon fixation, at the PI stage, while carbohydrate metabolism-related pathways, such as glycolysis and starch and sucrose metabolism, were significantly involved at the GF stage. Many genes involved in energy metabolism exhibited upregulation at the PI stage, whereas the genes involved in carbohydrate biosynthesis had higher expression at the GF stage. The majority of the DEGs were successfully mapped to know yield related rice quantitative trait loci (QTLs). A set of important transcription factors (TFs) was found to be encoded by the identified DEGs. Our results indicated that a complex interplay of several genes in different pathways contributes to higher yield and vigor in rice hybrids.
Collapse
|
9
|
Luo Z, Qian J, Chen S, Li L. Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:593-604. [PMID: 31784779 DOI: 10.1007/s00122-019-03489-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Hybrid vigor, also known as heterosis, has been widely utilized in agronomic production of maize (Zea mays L.) and other crops. However, the molecular mechanisms underlying heterosis are still not fully understood. To provide a more complete understanding of the transcriptomic dynamics associated with heterosis, we collected a comprehensive set of sequence data on linear mRNA transcripts and circular RNAs (circRNAs) from seedling leaves of two widely used maize inbred lines and their F1 hybrid at the V4 growth stage. We detected over 25,000 expressed genes with more than 1200 circRNAs that showed dramatic and distinct variations in expression level across the three genotypes. Although most linear and circular transcripts exhibited additive expression in the hybrid, the expression of circRNAs was more likely to be nonadditive. Interestingly, the levels of linear transcripts and their corresponding circRNAs from the same loci showed a significant relationship and coordinated expression mode across all three genotypes. Notably, in the hybrid, allele-specific expression of linear transcripts was significantly associated with the expression of circRNAs from the same locus, suggesting potential regulatory cross talk between linear and circular transcripts. Our study provides a deeper understanding of dynamic variations for both the linear and circular transcriptome in a classical hybrid triplet of maize.
Collapse
Affiliation(s)
- Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
11
|
Nadir S, Li W, Zhu Q, Khan S, Zhang XL, Zhang H, Wei ZF, Li MT, Zhou L, Li CY, Chen LJ, Lee DS. A novel discovery of a long terminal repeat retrotransposon-induced hybrid weakness in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1197-1207. [PMID: 30576523 PMCID: PMC6382335 DOI: 10.1093/jxb/ery442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Hybrid weakness is a post-zygotic hybridization barrier frequently observed in plants, including rice. In this study, we describe the genomic variation among three temperate japonica rice (Oryza sativa ssp. japonica) varieties 'Aranghyangchalbyeo' ('CH7'), 'Sanghaehyangheolua' ('CH8') and 'Shinseonchalbyeo' ('CH9'), carrying different hybrid weakness genes. The reciprocal progeny obtained from crossing any two varieties displayed characteristic hybrid weakness traits. We mapped and cloned a new locus, Hwc3 (hybrid weakness 3), on chromosome 4. Sequence analysis identified that a long terminal repeat (LTR) retrotransposon was inserted into the promoter region of the Hwc3 gene in 'CH7'. A 4-kb DNA fragment from 'CH7' containing the Hwc3 gene with the inserted LTR retrotransposon was able to induce hybrid weakness in hybrids with 'CH8' plants carrying the Hwc1 gene by genetic complementation. We investigated the differential gene expression profile of F1 plants exhibiting hybrid weakness and detected that the genes associated with energy metabolism were significantly down-regulated compared with the parents. Based on our results, we propose that LTR retrotransposons could be a potential cause of hybrid weakness in intrasubspecific hybrids in japonica rice. Understanding the molecular mechanisms underlying intrasubspecific hybrid weakness is important for increasing our knowledge on reproductive isolation and could have significant implications for rice improvement and hybrid breeding.
Collapse
Affiliation(s)
- Sadia Nadir
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
- Department of Chemistry, University of Science and Technology, Bannu, KPK, Pakistan
- Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wei Li
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Qian Zhu
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Sehroon Khan
- Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- World Agroforestry Centre, East and Central Asia, Kunming, Yunnan, China
| | - Xiao-Ling Zhang
- Agricultural College of Kunming University, Kunming, Yunnan, China
| | - Hui Zhang
- College of Agronomy and Biotechnology, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Zhen-Fei Wei
- Maize Research Institute, Shanxi Academy of Agriculture Sciences, Xinzhou, Shanxi, China
| | - Meng-Ting Li
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Li Zhou
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Cheng-Yun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li-Juan Chen
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dong-Sun Lee
- Rice Research Institute, Yunnan Agriculture University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Chen L, Bian J, Shi S, Yu J, Khanzada H, Wassan GM, Zhu C, Luo X, Tong S, Yang X, Peng X, Yong S, Yu Q, He X, Fu J, Chen X, Hu L, Ouyang L, He H. Genetic analysis for the grain number heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq. RICE (NEW YORK, N.Y.) 2018; 11:37. [PMID: 29904811 PMCID: PMC6003258 DOI: 10.1186/s12284-018-0229-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/06/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Despite the great contributions of utilizing heterosis to crop productivity worldwide, the molecular mechanism of heterosis remains largely unexplored. Thus, the present research is focused on the grain number heterosis of a widely used late-cropping indica super hybrid rice combination in China using a high-throughput next-generation RNA-seq strategy. RESULTS Here, we obtained 872 million clean reads, and at least one read could maps 27,917 transcripts out of 35,679 annotations. Transcript differential expression analysis revealed a total of 5910 differentially expressed genes (DGHP) between super-hybrid rice Wufengyou T025 (WFYT025) and its parents were identified in the young panicles. Out of the 5910 DGHP, 63.1% had a genetic action mode of over-dominance, 17.3% had a complete-dominance action, 15.6% had a partial-dominance action and 4.0% had an additive action. DGHP were significantly enriched in carotenoid biosynthesis, diterpenoid biosynthesis and plant hormone signal transduction pathways, with the key genes involved in the three pathways being up-regulated in the hybrid. By comparing the DGHP enriched in the KEGG pathway with QTLs associated with grain number, several DGHP were located on the same chromosomal segment with some of these grain number QTLs. CONCLUSION Through young panicle development transcriptome analysis, we conclude that the over-dominant effect is probably the major contributor to the grain number heterosis of WFYT025. The DGHP sharing the same location with grain number QTLs could be considered a candidate gene and provide valuable targets for the cloning and functional analysis of these grain number QTLs.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Shilai Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jianfeng Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Hira Khanzada
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Ghulam Mustafa Wassan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Xin Luo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Shan Tong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xiaorong Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Shuang Yong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Qiuying Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| |
Collapse
|
13
|
Cis-regulated additively expressed genes play a fundamental role in the formation of triploid loquat (Eriobotrya japonica (Thunb.) Lindl.) Heterosis. Mol Genet Genomics 2018; 293:967-981. [DOI: 10.1007/s00438-018-1433-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
|
14
|
Tian M, Nie Q, Li Z, Zhang J, Liu Y, Long Y, Wang Z, Wang G, Liu R. Transcriptomic analysis reveals overdominance playing a critical role in nicotine heterosis in Nicotiana tabacum L. BMC PLANT BIOLOGY 2018; 18:48. [PMID: 29566653 PMCID: PMC5863848 DOI: 10.1186/s12870-018-1257-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND As a unique biological phenomenon, heterosis has been concerned with the superior performance of the heterosis than either parents. Despite several F1 hybrids, containing supernal nicotine content, had been discovered and applied to heterosis utilization in Nicotiana tabacum L., nevertheless, the potential molecular mechanism revealing nicotine heterosis has not been illustrated clearly. RESULT Phenotypically, the F1 hybrids (Vall6 × Basma) show prominent heterosis in nicotine content by 3 years of field experiments. Transcriptome analysis revealed that genes participating in nicotine anabolism (ADC, PMT, MPO, QPT, AO, QS, QPT, A622, BBLs) and nicotine transport (JAT2, MATE1 and 2, NUP1 and 2) showed an upregulated expression in the hybrid, a majority of which demonstrated an overdominant performance. RT-PCR confirmed that nicotine anabolism was induced in the hybrid. CONCLUSIONS These findings strongly suggest that nicotine synthesis and transport efficiency improved in hybrid and overdominance at gene-expression level played a critical role in heterosis of nicotine metabolism.
Collapse
Affiliation(s)
- Maozhu Tian
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Qiong Nie
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Zhenhua Li
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
| | - Jie Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yiling Liu
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Yao Long
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Zhiwei Wang
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Guoqing Wang
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Renxiang Liu
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China.
- College of Tobacco, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
15
|
Li K, Yu H, Li T, Chen G, Huang F. Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F 1 hybrids grown in cadmium-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17566-17576. [PMID: 28597385 DOI: 10.1007/s11356-017-9350-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/22/2017] [Indexed: 05/13/2023]
Abstract
Cadmium (Cd) pollution has threatened severely to food safety and human health. A pot experiment and a field experiment were conducted to investigate the difference of Cd accumulation between rice (Oryza sativa L.) lines and F1 hybrids in Cd-contaminated soils. The adverse effect on biomass of rice lines was greater than that of F1 hybrids under Cd treatments in the pot experiment. The variations of Cd concentration among rice cultivars in different organs were smaller in stem and leaf, but larger in root and ear. Average proportion of Cd in root of F1 hybrids was 1.39, 1.39, and 1.16 times higher than those of rice lines at the treatment of 1, 2, and 4 mg Cd kg-1 soil, respectively. Cd concentrations in ear of F1 hybrids were significantly lower than rice lines with the reduction from 29.24 to 50.59%. Cd concentrations in brown rice of all F1 hybrids were less than 0.2 mg kg-1 at 1 mg Cd kg-1 soil, in which Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be screened out as cadmium-safe cultivars (CSCs) for being safe even at 2 mg Cd kg-1 soil. C268A/YaHui2816 showed the lowest Cd concentration in root among F1 hybrids, while Lu98A/YaHui2816 and 5406A/YaHui2816 showed lower capability of Cd translocation from root to shoot under Cd exposure, which eventually caused the lower Cd accumulation in brown rice. The lower level of Cd translocation contributed to reducing the accumulation of Cd in brown rice had been validated by the field experiment. Thus, Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be considered as potential CSCs to cultivate in Cd-contaminated soils (<2 mg Cd kg-1 soil).
Collapse
Affiliation(s)
- Kun Li
- College of Resources, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, Sichuan, People's Republic of China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fu Huang
- College of Agronomy, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, Sichuan, People's Republic of China
| |
Collapse
|
16
|
de Abreu E Lima F, Westhues M, Cuadros-Inostroza Á, Willmitzer L, Melchinger AE, Nikoloski Z. Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:319-329. [PMID: 28122143 DOI: 10.1111/tpj.13495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/14/2016] [Accepted: 01/23/2017] [Indexed: 05/05/2023]
Abstract
Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics-based analysis of young roots from in vitro germinating seedlings and from leaves of field-grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state-of-the-art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation-based analysis highlighted the trade-off between defense-related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse-field gap.
Collapse
Affiliation(s)
| | - Matthias Westhues
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70593, Stuttgart, Germany
| | | | - Lothar Willmitzer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70593, Stuttgart, Germany
| | - Zoran Nikoloski
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
17
|
Thu Ha PT, Khang DT, Tuyen PT, Toan TB, Huong NN, Thi Lang N, Buu BC, Xuan TD. Development of New Drought Tolerant Breeding Lines for Vietnam Using Marker-Assisted Backcrossing. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.56431/p-4l1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Development of drought tolerant high-yielding varieties is essential because increased areas are subject to drought in the Mekong delta, Vietnam. The purpose of this experiment was developed using IR75499-73-1-B as drought tolerant donor and OMCS2000 as a recipient parent basis of a phenotypic and molecular marker for BC2F2 generation. Seven markers (RM219, RM201 RM105, RM23602, RM23877, RM24103 and RM328) were used for a idifying to drought tolerant. Primer RM23877 detected the highest number of lines as homozygous donor alleles (11 lines), followed by RM105 and RM201 (9 lines). The drought gene was introgressed into the new breeding lines. The plant height, number of tillers, and filled grain had positive correlation with yield/hill under drought stress. The lines BC2F2-45 and BC2F2-54 developed as drought tolerant, and gave high yield. This is an opportunity to improve breeding for high yield and drought tolerant rice varieties in Vietnam.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bui Chi Buu
- Institute of Agricultural Sciences for Southern Vietnam (IAS)
| | | |
Collapse
|
18
|
Thu Ha PT, Khang DT, Tuyen PT, Toan TB, Huong NN, Thi Lang N, Buu BC, Xuan TD. Development of New Drought Tolerant Breeding Lines for Vietnam Using Marker-Assisted Backcrossing. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.18052/www.scipress.com/ilns.59.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Development of drought tolerant high-yielding varieties is essential because increased areas are subject to drought in the Mekong delta, Vietnam. The purpose of this experiment was developed using IR75499-73-1-B as drought tolerant donor and OMCS2000 as a recipient parent basis of a phenotypic and molecular marker for BC2F2 generation. Seven markers (RM219, RM201 RM105, RM23602, RM23877, RM24103 and RM328) were used for a idifying to drought tolerant. Primer RM23877 detected the highest number of lines as homozygous donor alleles (11 lines), followed by RM105 and RM201 (9 lines). The drought gene was introgressed into the new breeding lines. The plant height, number of tillers, and filled grain had positive correlation with yield/hill under drought stress. The lines BC2F2-45 and BC2F2-54 developed as drought tolerant, and gave high yield. This is an opportunity to improve breeding for high yield and drought tolerant rice varieties in Vietnam.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bui Chi Buu
- Institute of Agricultural Sciences for Southern Vietnam (IAS)
| | | |
Collapse
|
19
|
Building two indica rice reference genomes with PacBio long-read and Illumina paired-end sequencing data. Sci Data 2016; 3:160076. [PMID: 27622467 PMCID: PMC5020871 DOI: 10.1038/sdata.2016.76] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/29/2016] [Indexed: 01/10/2023] Open
Abstract
Over the past 30 years, we have performed many fundamental studies on two Oryza sativa subsp. indica varieties, Zhenshan 97 (ZS97) and Minghui 63 (MH63). To improve the resolution of many of these investigations, we generated two reference-quality reference genome assemblies using the most advanced sequencing technologies. Using PacBio SMRT technology, we produced over 108 (ZS97) and 174 (MH63) Gb of raw sequence data from 166 (ZS97) and 209 (MH63) pools of BAC clones, and generated ~97 (ZS97) and ~74 (MH63) Gb of paired-end whole-genome shotgun (WGS) sequence data with Illumina sequencing technology. With these data, we successfully assembled two platinum standard reference genomes that have been publicly released. Here we provide the full sets of raw data used to generate these two reference genome assemblies. These data sets can be used to test new programs for better genome assembly and annotation, aid in the discovery of new insights into genome structure, function, and evolution, and help to provide essential support to biological research in general.
Collapse
|
20
|
Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc Natl Acad Sci U S A 2016; 113:E5163-71. [PMID: 27535938 DOI: 10.1073/pnas.1611012113] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy >99.99%, and covered 90.6% and 93.2% of their estimated genome sizes. Comparative analyses of these two indica genomes uncovered surprising structural differences, especially with respect to inversions, translocations, presence/absence variations, and segmental duplications. Approximately 42% of nontransposable element related genes were identical between the two genomes. Transcriptome analysis of three tissues showed that 1,059-2,217 more genes were expressed in the hybrid than in the parents and that the expressed genes in the hybrid were much more diverse due to their divergence between the parental genomes. The public availability of two high-quality reference genomes for the indica subspecies of rice will have large-ranging implications for plant biology and crop genetic improvement.
Collapse
|
21
|
Zhu D, Zhou G, Xu C, Zhang Q. Genetic Components of Heterosis for Seedling Traits in an Elite Rice Hybrid Analyzed Using an Immortalized F2 Population. J Genet Genomics 2016; 43:87-97. [PMID: 26924691 DOI: 10.1016/j.jgg.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/02/2016] [Accepted: 01/08/2016] [Indexed: 11/18/2022]
Abstract
Utilization of heterosis has greatly contributed to rice productivity in China and many Asian countries. Superior hybrids usually show heterosis at two stages: canopy development at vegetative stage and panicle development at reproductive stage resulting in heterosis in yield. Although the genetic basis of heterosis in rice has been extensively investigated, all the previous studies focused on yield traits at maturity stage. In this study, we analyzed the genetic basis of heterosis at seedling stage making use of an "immortalized F2" population composed of 105 hybrids produced by intercrossing recombinant inbred lines (RILs) from a cross between Zhenshan 97 and Minghui 63, the parents of Shanyou 63, which is an elite hybrid widely grown in China. Eight seedling traits, seedling height, tiller number, leaf number, root number, maximum root length, root dry weight, shoot dry weight and total dry weight, were investigated using hydroponic culture. We analyzed single-locus and digenic genetic effects at the whole genome level using an ultrahigh-density SNP bin map obtained by population re-sequencing. The analysis revealed large numbers of heterotic effects for seedling traits including dominance, overdominance and digenic dominance (epistasis) in both positive and negative directions. Overdominance effects were prevalent for all the traits, and digenic dominance effects also accounted for a large portion of the genetic effects. The results suggested that cumulative small advantages of the single-locus effects and two-locus interactions, most of which could not be detected statistically, could explain the genetic basis of seedling heterosis of the F1 hybrid.
Collapse
Affiliation(s)
- Dan Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Caiguo Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Groszmann M, Gonzalez-Bayon R, Lyons RL, Greaves IK, Kazan K, Peacock WJ, Dennis ES. Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc Natl Acad Sci U S A 2015; 112:E6397-406. [PMID: 26527659 PMCID: PMC4655576 DOI: 10.1073/pnas.1519926112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents.
Collapse
Affiliation(s)
| | | | - Rebecca L Lyons
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, QLD 4069, Australia
| | | | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, QLD 4069, Australia
| | - W James Peacock
- CSIRO Agriculture, Canberra, ACT 2601, Australia; University of Technology, Sydney, NSW 2007, Australia
| | - Elizabeth S Dennis
- CSIRO Agriculture, Canberra, ACT 2601, Australia; University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
23
|
Cheng S, Yang J, Liao T, Zhu X, Suo Y, Zhang P, Wang J, Kang X. Transcriptomic changes following synthesis of a Populus full-sib diploid and allotriploid population with different heterozygosities driven by three types of 2n female gamete. PLANT MOLECULAR BIOLOGY 2015; 89:493-510. [PMID: 26419948 DOI: 10.1007/s11103-015-0384-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Diploid gametes are usually applied to produce triploids of Populus [originating from first-division restitution (FDR), second-division restitution (SDR), and postmeiotic restitution (PMR) 2n eggs]. Three types of 2n gametes transmitted different parental heterozygosities in Populus. Failed spindle formation and no chromosomal separation to opposite poles during meiosis I mean that FDR 2n gametes carry nonsister chromatids that are potentially heterozygous. By contrast, SDR 2n gametes result from failed sister chromatid separation in meiosis II, and therefore, they carry sister chromatid that are potentially homozygous. Completely homozygous 2n gametes can arise from the PMR mechanism. The alteration of gene expression resulting from allopolyploidization is a prominent feature in plants. We compared gene expression in the full-sib progeny of three allotriploid Populus populations (triploid-F, triploid-S, and triploid-P) with that in its parent species, and their full-sib diploid F1 hybrid. Genome-wide expression level dominance was biased toward the maternal in the diploid F1 hybrid and three allotriploid populations, whereas our data indicated important, but different, effects of the transmission of different heterozygosity by 2n female gametes in the expression patterns of allopolyploids. Because of the higher level of heterozygosity, the triploids had higher rates of non-additive and transgressive expression patterns in the triploid-F than in triploid-S and triploid-P. Compared with diploid F1, about 30-fold more genes (251) were differently expressed in the triploid-F than in the triploid-S (9) and triploid-P (8), respectively. These findings indicate that hybridization and polyploidization have immediate and distinct effects on the large-scale patterns of gene expression, and different effects on the transmission of heterozygosity by three 2n female gametes.
Collapse
Affiliation(s)
- Shiping Cheng
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Pingdingshan University, Pingdingshan, 467000, Henan Province, People's Republic of China
| | - Jun Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Ting Liao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xiaohu Zhu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- College of Forestry and Horticulture, Xinjiang Agricultural University, No. 311, East Nongda Road, Urumqi, 830052, People's Republic of China
| | - Yujing Suo
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Pingdong Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xiangyang Kang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
24
|
Wang J, Yao W, Zhu D, Xie W, Zhang Q. Genetic basis of sRNA quantitative variation analyzed using an experimental population derived from an elite rice hybrid. eLife 2015; 4:e04250. [PMID: 25821986 PMCID: PMC4415135 DOI: 10.7554/elife.03913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/30/2015] [Indexed: 12/16/2022] Open
Abstract
We performed a genetic analysis of sRNA abundance in flag leaf from an immortalized F2 (IMF2) population in rice. We identified 53,613,739 unique sRNAs and 165,797 sRNA expression traits (s-traits). A total of 66,649 s-traits mapped 40,049 local-sQTLs and 30,809 distant-sQTLs. By defining 80,362 sRNA clusters, 22,263 sRNA cluster QTLs (scQTLs) were recovered for 20,249 of all the 50,139 sRNA cluster expression traits (sc-traits). The expression levels for most of s-traits from the same genes or the same sRNA clusters were slightly positively correlated. While genetic co-regulation between sRNAs from the same mother genes and between sRNAs and their mother genes was observed for a portion of the sRNAs, most of the sRNAs and their mother genes showed little co-regulation. Some sRNA biogenesis genes were located in distant-sQTL hotspots and showed correspondence with specific length classes of sRNAs suggesting their important roles in the regulation and biogenesis of the sRNAs. DOI:http://dx.doi.org/10.7554/eLife.03913.001 Genes within the DNA of a plant or animal contain instructions to make molecules called RNAs. Some RNA molecules can be decoded to make proteins, whereas others have different roles. A single gene often contains the instructions to make both protein-coding RNAs and non-coding RNAs. Molecules called small RNAs (or sRNAs) do not code for proteins. Instead, sRNAs can control protein-coding RNA molecules or chemically alter the DNA itself; this allows them to perform many different roles in living organisms. In plants, for example, these molecules affect how the plant grows, the shapes and structures it forms, and how likely it is to survive challenges such as drought and diseases. Often different plants of the same species have different amounts of sRNAs, but the reasons for this remain unclear. Now, Wang, Yao et al. have made use of a technique called ‘expression quantitative locus’ analysis to look at how sRNAs in rice plants are controlled by additional information encoded within DNA. The analysis identified over 53 million sRNA molecules from a population of rice plants. Many of these sRNAs varied in their abundance between different plants within the population. Wang, Yao et al. also found many thousands of individual instructions within the DNA of the rice that can either increase or reduce the abundance of their associated sRNA. Some of the abundant sRNAs were influenced by instructions within their own genes; some were influenced by instructions from other genes; and some were influenced by both. Wang, Yao et al. also found that the control of protein-coding RNAs was not necessarily related to the control of sRNAs encoded by the same gene. Further work is now needed to identify which specific DNA sequences regulate the abundance of sRNA molecules in plants and other organisms. DOI:http://dx.doi.org/10.7554/eLife.03913.002
Collapse
Affiliation(s)
- Jia Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wen Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dan Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Wang H, Fang Y, Wang L, Zhu W, Ji H, Wang H, Xu S, Sima Y. Heterosis and differential gene expression in hybrids and parents in Bombyx mori by digital gene expression profiling. Sci Rep 2015; 5:8750. [PMID: 25736158 PMCID: PMC4348626 DOI: 10.1038/srep08750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/02/2015] [Indexed: 11/09/2022] Open
Abstract
Heterosis is a concern to all breeders, but the mechanism of heterosis remains unknown. In F1 organisms, genetic material is inherited from the two parents and theoretically, heterosis might be caused by differences in gene expression or modification. Differential gene expression was analyzed in hybrids and parents in Bombyx mori. The results showed that there were significant changes in gene expression in the fat body involving biological regulation, cellular and metabolic processes. Consistent trends in expression patterns covering different hybrid combinations were seen in 74 genes. Moreover, these differential gene expression patterns included overdominance, dominance, and additive effects. By correlating these patterns with economic traits, a potential relationship was found. Differential gene expression was seen in different cross combinations and in different sexes. In addition, a regulatory mechanism involving metabolism and ErbB signaling pathways was also found, suggesting that such a network might also be related to heterosis in Bombyx mori. Together, our data provide a comprehensive overview and useful resource for transcriptional analysis of heterosis of Bombyx mori.
Collapse
Affiliation(s)
- Hua Wang
- 1] Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China [2] Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Fang
- 1] Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China [2] Department of Immunology, Nankai University School of Medicine, Tianjin 300071, China
| | - Lipeng Wang
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Wenjuan Zhu
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Haipeng Ji
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Haiying Wang
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- 1] Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China [2] National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- 1] Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China [2] National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Shen G, Hu W, Zhang B, Xing Y. The regulatory network mediated by circadian clock genes is related to heterosis in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:300-312. [PMID: 25040350 DOI: 10.1111/jipb.12240] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Exploitation of heterosis in rice (Oryza sativa L.) has contributed greatly to global food security. In this study, we generated three sets of reciprocal F1 hybrids of indica and japonica subspecies to evaluate the relationship between yield heterosis and the circadian clock. There were no differences in trait performance or heterosis between the reciprocal hybrids, indicating no maternal effects on heterosis. The indica-indica and indica-japonica reciprocal F1 hybrids exhibited pronounced heterosis for chlorophyll and starch content in leaves and for grain yield/biomass. In contrast, the japonica-japonica F1 hybrids showed low heterosis. The three circadian clock genes investigated expressed in an above-high-parent pattern (AHP) at seedling stage in all the hybrids. The five genes downstream of the circadian clock, and involved in chlorophyll and starch metabolic pathways, were expressed in AHP in hybrids with strong better-parent heterosis (BPH). Similarly, three of these five genes in the japonica-japonica F1 hybrids showing low BPH were expressed in positive overdominance, but the other two genes were expressed in additive or negative overdominance. These results indicated that the expression patterns of circadian clock genes and their downstream genes are associated with heterosis, which suggests that the circadian rhythm pathway may be related to heterosis in rice.
Collapse
Affiliation(s)
- Guojing Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | |
Collapse
|
27
|
Zhang L, Peng Y, Wei X, Dai Y, Yuan D, Lu Y, Pan Y, Zhu Z. Small RNAs as important regulators for the hybrid vigour of super-hybrid rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5989-6002. [PMID: 25129133 PMCID: PMC4203131 DOI: 10.1093/jxb/eru337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heterosis is an important biological phenomenon; however, the role of small RNA (sRNA) in heterosis of hybrid rice remains poorly described. Here, we performed sRNA profiling of F1 super-hybrid rice LYP9 and its parents using high-throughput sequencing technology, and identified 355 distinct mature microRNAs and trans-acting small interfering RNAs, 69 of which were differentially expressed sRNAs (DES) between the hybrid and the mid-parental value. Among these, 34 DES were predicted to target 176 transcripts, of which 112 encoded 94 transcription factors. Further analysis showed that 67.6% of DES expression levels were negatively correlated with their target mRNAs either in flag leaves or panicles. The target genes of DES were significantly enriched in some important biological processes, including the auxin signalling pathway, in which existed a regulatory network mediated by DES and their targets, closely associated with plant growth and development. Overall, 20.8% of DES and their target genes were significantly enriched in quantitative trait loci of small intervals related to important rice agronomic traits including growth vigour, grain yield, and plant architecture, suggesting that the interaction between sRNAs and their targets contributes to the heterotic phenotypes of hybrid rice. Our findings revealed that sRNAs might play important roles in hybrid vigour of super-hybrid rice by regulating their target genes, especially in controlling the auxin signalling pathway. The above finding provides a novel insight into the molecular mechanism of heterosis.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Yonggang Peng
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Xiaoli Wei
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Yan Dai
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Dawei Yuan
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Yufei Lu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Yangyang Pan
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| |
Collapse
|
28
|
Chen JY, Guo L, Ma H, Chen YY, Zhang HW, Ying JZ, Zhuang JY. Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2515-24. [PMID: 25223543 PMCID: PMC4209109 DOI: 10.1007/s00122-014-2395-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/28/2014] [Indexed: 05/04/2023]
Abstract
A minor QTL for heading date located on the long arm of rice chromosome 1 was delimitated to a 95.0-kb region using near isogenic lines with sequential segregating regions. Heading date and grain yield are two key factors determining the commercial potential of a rice variety. In this study, rice populations with sequential segregating regions were developed and used for mapping a minor QTL for heading date, qHd1. A total of 18 populations in six advanced generations through BC2F6 to BC2F11 were derived from a single BC2F3 plant of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The QTL was delimitated to a 95.0-kb region flanked by RM12102 and RM12108 in the terminal region of the long arm of chromosome 1. Results also showed that qHd1 was not involved in the photoperiodic response, having an additive effect ranging from 2.4 d to 2.9 d observed in near isogenic lines grown in the paddy field and under the controlled conditions of either short day or long day. The QTL had pleiotropic effects on yield traits, with the ZS97 allele delaying heading and increasing the number of spikelets per panicle, the number of grains per panicle and grain yield per plant. The candidate region contains ten annotated genes including two genes with functional information related to the control of heading date. These results lay a foundation for the cloning of qHd1. In addition, this kind of minor QTLs could be of great significance in rice breeding for allowing minor adjustment of heading date and yield traits.
Collapse
Affiliation(s)
- Jun-Yu Chen
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Liang Guo
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Huan Ma
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yu-Yu Chen
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hong-Wei Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jie-Zheng Ying
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jie-Yun Zhuang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
29
|
Fu D, Xiao M, Hayward A, Jiang G, Zhu L, Zhou Q, Li J, Zhang M. What is crop heterosis: new insights into an old topic. J Appl Genet 2014; 56:1-13. [PMID: 25027629 DOI: 10.1007/s13353-014-0231-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 01/09/2023]
Abstract
Heterosis (or hybrid vigor) refers to a natural phenomenon whereby hybrid offspring of genetically diverse individuals out-perform their parents in multiple traits including yield, adaptability and resistances to biotic and abiotic stressors. Innovations in technology and research continue to clarify the mechanisms underlying crop heterosis, however the intrinsic relationship between the biological basis of heterosis remain unclear. In this review, we aim to provide insight into the molecular genetic basis of heterosis by presenting recent advances in the 'omics' of heterosis and the role of non-coding regions, particularly in relation to energy-use efficiency. We propose that future research should focus on integrating the expanding datasets from different species and hybrid combinations, to mine key heterotic genes and unravel interactive 'omics' networks associated with heterosis. Improved understanding of heterosis and the biological basis for its manipulation in agriculture should help to streamline its use in enhancing crop productivity.
Collapse
Affiliation(s)
- Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li C, Wang C, Meng L, Xing J, Wang T, Yang H, Yao Y, Peng H, Hu Z, Sun Q, Ni Z. Ectopic expression of a maize hybrid down-regulated gene ZmARF25 decreases organ size by affecting cellular proliferation in Arabidopsis. PLoS One 2014; 9:e94830. [PMID: 24756087 PMCID: PMC3995674 DOI: 10.1371/journal.pone.0094830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/19/2014] [Indexed: 11/29/2022] Open
Abstract
Heterosis is associated with differential gene expression between hybrids and their parental lines, and the genes involved in cell proliferation played important roles. AtARF2 is a general cell proliferation repressor in Arabidopsis. In our previous study, two homologues (ZmARF10 and ZmARF25) of AtARF2 were identified in maize, but their relationship with heterosis was not elucidated. Here, the expression patterns of ZmARF10 and ZmARF25 in seedling leaves of maize hybrids and their parental lines were analyzed. The results of qRT-PCR exhibited that ZmARF25 was down-regulated in leaf basal region of hybrids. Moreover, overexpression of ZmARF25 led to reduced organ size in Arabidopsis, which was mainly due to the decrease in cell number, not cell size. In addition, the cell proliferation related genes AtANT, AtGIF1 and AtGRF5 were down-regulated in 35S::ZmARF25 transgenic lines. Collectively, we proposed that the down-regulation of ZmARF25 in maize hybrid may accelerate cell proliferation and promote leaf development, which, in turn, contributes to the observed leaf size heterosis in maize.
Collapse
Affiliation(s)
- Chuan Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Cheng Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Lingxue Meng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Tianya Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Hua Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- National Plant Gene Research Centre (Beijing), Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Venu RC, Ma J, Jia Y, Liu G, Jia MH, Nobuta K, Sreerekha MV, Moldenhauer K, McClung AM, Meyers BC, Wang GL. Identification of candidate genes associated with positive and negative heterosis in rice. PLoS One 2014; 9:e95178. [PMID: 24743656 PMCID: PMC3990613 DOI: 10.1371/journal.pone.0095178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/24/2014] [Indexed: 12/25/2022] Open
Abstract
To identify the genes responsible for yield related traits, and heterosis, massively parallel signature sequencing (MPSS) libraries were constructed from leaves, roots and meristem tissues from the two parents, 'Nipponbare' and '93-11', and their F1 hybrid. From the MPSS libraries, 1-3 million signatures were obtained. Using cluster analysis, commonly and specifically expressed genes in the parents and their F1 hybrid were identified. To understand heterosis in the F1 hybrid, the differentially expressed genes in the F1 hybrid were mapped to yield related quantitative trait loci (QTL) regions using a linkage map constructed from 131 polymorphic simple sequence repeat markers with 266 recombinant inbred lines derived from a cross between Nipponbare and 93-11. QTLs were identified for yield related traits including days to heading, plant height, plant type, number of tillers, main panicle length, number of primary branches per main panicle, number of kernels per main panicle, total kernel weight per main panicle, 1000 grain weight and total grain yield per plant. Seventy one QTLs for these traits were mapped, of which 3 QTLs were novel. Many highly expressed chromatin-related genes in the F1 hybrid encoding histone demethylases, histone deacetylases, argonaute-like proteins and polycomb proteins were located in these yield QTL regions. A total of 336 highly expressed transcription factor (TF) genes belonging to 50 TF families were identified in the yield QTL intervals. These findings provide the starting genomic materials to elucidate the molecular basis of yield related traits and heterosis in rice.
Collapse
Affiliation(s)
- R. C. Venu
- Dale Bumpers National Rice Research Center (DB NRRC), Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Stuttgart, Arkansas, United States of America
- Rice Research and Extension Center, University of Arkansas Division of Agriculture, Stuttgart, Arkansas, United States of America
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Jianbing Ma
- Dale Bumpers National Rice Research Center (DB NRRC), Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Stuttgart, Arkansas, United States of America
- Rice Research and Extension Center, University of Arkansas Division of Agriculture, Stuttgart, Arkansas, United States of America
| | - Yulin Jia
- Dale Bumpers National Rice Research Center (DB NRRC), Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Stuttgart, Arkansas, United States of America
- * E-mail:
| | - Guangjie Liu
- Dale Bumpers National Rice Research Center (DB NRRC), Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Stuttgart, Arkansas, United States of America
- Rice Research and Extension Center, University of Arkansas Division of Agriculture, Stuttgart, Arkansas, United States of America
| | - Melissa H. Jia
- Dale Bumpers National Rice Research Center (DB NRRC), Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Stuttgart, Arkansas, United States of America
| | - Kan Nobuta
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - M. V. Sreerekha
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Karen Moldenhauer
- Rice Research and Extension Center, University of Arkansas Division of Agriculture, Stuttgart, Arkansas, United States of America
| | - Anna M. McClung
- Dale Bumpers National Rice Research Center (DB NRRC), Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Stuttgart, Arkansas, United States of America
| | - Blake C. Meyers
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
32
|
Marcon C, Lamkemeyer T, Malik WA, Ungrue D, Piepho HP, Hochholdinger F. Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC–MS. J Proteomics 2013; 93:295-302. [DOI: 10.1016/j.jprot.2013.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/28/2013] [Accepted: 04/11/2013] [Indexed: 01/10/2023]
|
33
|
Qin J, Scheuring CF, Wei G, Zhi H, Zhang M, Huang JJ, Zhou X, Galbraith DW, Zhang HB. Identification and characterization of a repertoire of genes differentially expressed in developing top ear shoots between a superior hybrid and its parental inbreds in Zea mays L. Mol Genet Genomics 2013; 288:691-705. [PMID: 24146224 DOI: 10.1007/s00438-013-0781-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/30/2013] [Indexed: 11/29/2022]
Abstract
Heterosis has been widely used in crop breeding and production; however, little is known about the genes controlling trait heterosis. The shortage of genes known to function in heterosis significantly limits our understanding of the molecular basis underlying heterosis. Here, we report 748 genes differentially expressed (DG) in the developing top ear shoots between a maize heterotic F1 hybrid (Mo17 × B73) and its parental inbreds identified using maize microarrays containing 28,608 unigene features. Of the 748 DG, over 600 were new for the inbred and hybrid combination. The DG were enriched for 35 of the total 213 maize gene ontology (GO) terms, including those describing photosynthesis, respiration, DNA replication, metabolism, and hormone biosynthesis. From the DG, we identified six genes involved in glycolysis, three genes in the citrate cycle, and four genes in the C4-dicarboxylic acid cycle. We mapped 533 of the 748 DG to the maize B73 genome, 298 (55.9 %) of which mapped to the QTL intervals of 11 maize ear traits. Moreover, we compared the repertoire of the DG with that of 14-day seedlings of the same inbred and hybrid combination. Only approximately 5 % of the DG was shared between the two organs and developmental stages. Furthermore, we mapped 417 (55.7 %) of the 748 maize DG to the QTL intervals of 26 rice yield-related traits. Therefore, this study provides a repertoire of genes useful for identification of genes involved in maize ear trait heterosis and information for a better understanding of the molecular basis underlying heterosis in maize.
Collapse
Affiliation(s)
- Jun Qin
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Goff SA, Zhang Q. Heterosis in elite hybrid rice: speculation on the genetic and biochemical mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:221-7. [PMID: 23587937 DOI: 10.1016/j.pbi.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 05/09/2023]
Abstract
Because of the tremendous advances in functional genomics and the current availability of a large number of superior hybrids, rice is an excellent model crop system for heterosis research. Genetic dissection of yield and yield component traits of an elite rice hybrid using an ultra-high density linkage map identified overdominance as the principal genetic basis of heterosis in this hybrid. This is not an expected finding based on the reported effects of single genes. Here we propose a gene expression and protein quality control hypothesis as one possible explanation for the overdominance in hybrids bred for yield. Future studies will be directed toward the identification of the genetic and biochemical mechanisms underlying the biology of hybrid vigor.
Collapse
Affiliation(s)
- Stephen A Goff
- iPlant Collaborative, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
35
|
Transcriptome analysis of artificial hybrid pufferfish Jiyan-1 and its parental species: implications for pufferfish heterosis. PLoS One 2013; 8:e58453. [PMID: 23520511 PMCID: PMC3592836 DOI: 10.1371/journal.pone.0058453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/04/2013] [Indexed: 12/18/2022] Open
Abstract
Jiyan-1 puffer, the F1 hybrid of Takifugu rubripes and Takifugu flavidus, displays obvious heterosis in the growth performance, flavor and stress tolerance. In the present study, comparative analysis for the transcriptomes of T. rubripes, T. flavidus and Jiyan-1 was performed aiming to reveal the possible mechanisms of heterosis in pufferfish. Whole transcriptomes were sequenced using the SOLiD4 platform, and a total of 44,305 transcripts corresponding to 18,164 genes were identified collectively. A total of 14,148 transcripts were differentially expressed. By comparing the gene expression patterns of the three samples, the coexistence of overdominance, dominance, underdominance and additivity was observed in the gene action modes of Jiyan-1. There were 2,237 transcripts in the intersection of the differentially expressed transcripts from Jiyan-1 versus T. rubripes and Jiyan-1 versus T. flavidus, among which 213 transcripts were also in the T. rubripes versus T. flavidus. The potential functions of the remaining 2,024 transcripts were mainly associated with metabolic process, nucleotide binding and catalytic activity. The enrichment results indicated metabolism was the most activated biological function in the heterosis. In addition, 35 KEGG pathways were retrieved as affiliated with more than three differentially expressed transcripts and 8,579 potentially novel transcript isoforms were identified for Jiyan-1. The present study revealed the coexistence of multiple gene actions in the hybrid puffer, indicated the importance of metabolism, ion binding function and kinase activity, as well as provided a list of candidate genes and pathways for heterosis. It could be helpful for the better understanding of the determination and regulation mechanisms of heterosis.
Collapse
|
36
|
Schnable PS, Springer NM. Progress toward understanding heterosis in crop plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:71-88. [PMID: 23394499 DOI: 10.1146/annurev-arplant-042110-103827] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although heterosis, or hybrid vigor, is widely exploited in agriculture, a complete description of its molecular underpinnings has remained elusive despite extensive investigation. It appears that there is not a single, simple explanation for heterosis. Instead, it is likely that heterosis arises in crosses between genetically distinct individuals as a result of a diversity of mechanisms. Heterosis generally results from the action of multiple loci, and different loci affect heterosis for different traits and in different hybrids. Hence, multigene models are likely to prove most informative for understanding heterosis. Complementation of allelic variation, as well as complementation of variation in gene content and gene expression patterns, is likely to be an important contributor to heterosis. Epigenetic variation has the potential to interact in hybrid genotypes via novel mechanisms. Several other intriguing hypotheses are also under investigation. In crops, heterosis must be considered within the context of the genomic impacts of prior selection for agronomic traits.
Collapse
Affiliation(s)
- Patrick S Schnable
- Center for Plant Genomics and Department of Agronomy, Iowa State University, Ames, IA 50011-3650, USA.
| | | |
Collapse
|
37
|
Bell GD, Kane NC, Rieseberg LH, Adams KL. RNA-seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations. Genome Biol Evol 2013; 5:1309-23. [PMID: 23677938 PMCID: PMC3730339 DOI: 10.1093/gbe/evt072] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 12/16/2022] Open
Abstract
Hybridization is a prominent process among natural plant populations that can result in phenotypic novelty, heterosis, and changes in gene expression. The effects of intraspecific hybridization on F1 hybrid gene expression were investigated using parents from divergent, natural populations of Cirsium arvense, an invasive Compositae weed. Using an RNA-seq approach, the expression of 68,746 unigenes was quantified in parents and hybrids. The expression levels of 51% of transcripts differed between parents, a majority of which had less than 1.25× fold-changes. More unigenes had higher expression in the invasive parent (P1) than the noninvasive parent (P2). Of those that were divergently expressed between parents, 10% showed additive and 81% showed nonadditive (transgressive or dominant) modes of gene action in the hybrids. A majority of the dominant cases had P2-like expression patterns in the hybrids. Comparisons of allele-specific expression also enabled a survey of cis- and trans-regulatory effects. Cis- and trans-regulatory divergence was found at 70% and 68% of 62,281 informative single-nucleotide polymorphism sites, respectively. Of the 17% of sites exhibiting both cis- and trans-effects, a majority (70%) had antagonistic regulatory interactions (cis x trans); trans-divergence tended to drive higher expression of the P1 allele, whereas cis-divergence tended to increase P2 transcript abundance. Trans-effects correlated more highly than cis with parental expression divergence and accounted for a greater proportion of the regulatory divergence at sites with additive compared with nonadditive inheritance patterns. This study explores the nature of, and types of mechanisms underlying, expression changes that occur in upon intraspecific hybridization in natural populations.
Collapse
Affiliation(s)
| | | | | | - Keith L. Adams
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Yang XS, Staub JM, Pandravada A, Riordan SG, Yan Y, Bannon GA, Martino-Catt SJ. Omics Technologies Reveal Abundant Natural Variation in Metabolites and Transcripts among Conventional Maize Hybrids. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.43044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL. Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. RICE (NEW YORK, N.Y.) 2012; 5:37. [PMID: 24280046 PMCID: PMC4883727 DOI: 10.1186/1939-8433-5-37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/12/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Crop improvement targeting high yield and tolerance to environmental stresses has become the need of the hour. Yield improvement via breeding or gene pyramiding aiming comprehensive incorporation of the agronomically favored traits requires an in-depth understanding of the molecular basis of these traits. The present study describes expression profiling of yield-related genes in rice with respect to different developmental stages and various abiotic stress conditions. RESULTS Our analysis indicates developmental regulation of the yield-related genes pertaining to the genetic reprogramming involved at the corresponding developmental stage. The gene expression data can be utilized to specifically select particular genes which can potentially function synergistically for enhancing the yield while maintaining the source-sink balance. Furthermore, to gain some insights into the molecular basis of yield penalty during various abiotic stresses, the expression of selected yield-related genes has also been analyzed by qRT-PCR under such stress conditions. Our analysis clearly showed a tight transcriptional regulation of a few of these yield-related genes by abiotic stresses. The stress-responsive expression patterns of these genes could explain some of the most important stress-related physiological manifestations such as reduced tillering, smaller panicles and early completion of the life cycle owing to reduced duration of vegetative and reproductive phases. CONCLUSIONS Development of high yielding rice varieties which maintain their yield even under stress conditions may be achieved by simultaneous genetic manipulation of certain combination of genes such as LRK1 and LOG, based on their function and expression profile obtained in the present study. Our study would aid in investigating in future, whether over-expressing or knocking down such yield-related genes can improve the grain yield potential in rice.
Collapse
Affiliation(s)
- Amit K Tripathi
- />Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| | - Ashwani Pareek
- />Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sudhir K Sopory
- />Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| | - Sneh L Singla-Pareek
- />Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| |
Collapse
|
40
|
Wang D, Xia Y, Li X, Hou L, Yu J. The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology. Nucleic Acids Res 2012. [PMID: 23193278 PMCID: PMC3531066 DOI: 10.1093/nar/gks1225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Over the past 10 years, genomes of cultivated rice cultivars and their wild counterparts have been sequenced although most efforts are focused on genome assembly and annotation of two major cultivated rice (Oryza sativa L.) subspecies, 93-11 (indica) and Nipponbare (japonica). To integrate information from genome assemblies and annotations for better analysis and application, we now introduce a comparative rice genome database, the Rice Genome Knowledgebase (RGKbase, http://rgkbase.big.ac.cn/RGKbase/). RGKbase is built to have three major components: (i) integrated data curation for rice genomics and molecular biology, which includes genome sequence assemblies, transcriptomic and epigenomic data, genetic variations, quantitative trait loci (QTLs) and the relevant literature; (ii) User-friendly viewers, such as Gbrowse, GeneBrowse and Circos, for genome annotations and evolutionary dynamics and (iii) Bioinformatic tools for compositional and synteny analyses, gene family classifications, gene ontology terms and pathways and gene co-expression networks. RGKbase current includes data from five rice cultivars and species: Nipponbare (japonica), 93-11 (indica), PA64s (indica), the African rice (Oryza glaberrima) and a wild rice species (Oryza brachyantha). We are also constantly introducing new datasets from variety of public efforts, such as two recent releases—sequence data from ∼1000 rice varieties, which are mapped into the reference genome, yielding ample high-quality single-nucleotide polymorphisms and insertions–deletions.
Collapse
Affiliation(s)
- Dapeng Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, PR China
| | | | | | | | | |
Collapse
|
41
|
Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK, Kapoor S. Heterosis: emerging ideas about hybrid vigour. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6309-14. [PMID: 23095992 DOI: 10.1093/jxb/ers291] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Perceived by Charles Darwin in many vegetable plants and rediscovered by George H Shull and Edward M East in maize, heterosis or hybrid vigour is one of the most widely utilized phenomena, not only in agriculture but also in animal breeding. Although, numerous studies have been carried out to understand its genetic and/or molecular basis in the past 100 years, our knowledge of the underlying molecular processes that results in hybrid vigour can best be defined as superficial. Even after century long deliberations, there is no consensus on the relative/individual contribution of the genetic/epigenetic factors in the manifestation of heterosis. However, with the recent advancements in functional genomics, transcriptomics, proteomics, and metabolomics-related technologies, the riddle of heterosis is being reinvestigated by adopting systems-level approaches to understand the underlying molecular mechanisms. A number of intriguing hypotheses are converging towards the idea of a cumulative positive effect of the differential expression of a variety of genes, on one or several yield-affecting metabolic pathways or overall energy-use efficiency, as the underlying mechanism for the manifestation of heterosis. Presented here is a brief account of clues gathered from various investigative approaches targeted towards better scientific understanding of this process.
Collapse
Affiliation(s)
- Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, New Delhi-110021, India
| | | | | | | | | |
Collapse
|
42
|
Abstract
Heterosis refers to the superior performance of hybrids relative to the parents. Utilization of heterosis has contributed tremendously to the increased productivity in many crops for decades. Although there have been a range of studies on various aspects of heterosis, the key to understanding the biological mechanisms of heterotic performance in crop hybrids is the genetic basis, much of which is still uncharacterized. In this study, we dissected the genetic composition of yield and yield component traits using data of replicated field trials of an "immortalized F(2)" population derived from an elite rice hybrid. On the basis of an ultrahigh-density SNP bin map constructed with population sequencing, we calculated single-locus and epistatic genetic effects in the whole genome and identified components pertaining to heterosis of the hybrid. The results showed that the relative contributions of the genetic components varied with traits. Overdominance/pseudo-overdominance is the most important contributor to heterosis of yield, number of grains per panicle, and grain weight. Dominance × dominance interaction is important for heterosis of tillers per plant and grain weight and has roles in yield and grain number. Single-locus dominance has relatively small contributions in all of the traits. The results suggest that cumulative effects of these components may adequately explain the genetic basis of heterosis in the hybrid.
Collapse
|
43
|
Subbaiyan GK, Waters DLE, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ. Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:623-34. [PMID: 22222031 DOI: 10.1111/j.1467-7652.2011.00676.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Advances in next-generation sequencing technologies have aided discovery of millions of genome-wide DNA polymorphisms, single nucleotide polymorphisms (SNPs) and insertions-deletions (InDels), which are an invaluable resource for marker-assisted breeding. Whole-genome resequencing of six elite indica rice inbreds (three cytoplasmic male sterile and three restorer lines) resulted in the generation of 338 million 75-bp paired-end reads, which provided 85.4% coverage of the Nipponbare genome. A total of 2 819 086 nonredundant DNA polymorphisms including 2 495 052 SNPs, 160 478 insertions and 163 556 deletions were discovered between the inbreds and Nipponbare, providing an average of 6.8 SNPs/kb across the genome. Distribution of SNPs and InDels in the chromosome was nonrandom with SNP-rich and SNP-poor regions being evident across the genome. A contiguous 4.3-Mb region on chromosome 5 with extremely low SNP density was identified. Overall, 83 262 nonsynonymous SNPs spanning 16 379 genes and 3620 nonsynonymous InDels in 2625 genes have been discovered which provide valuable insights into the basis underlying performance of the inbreds and the hybrids between these inbred combinations. SNPs and InDels discovered from this diverse set of indica rice inbreds not only enrich SNP resources for molecular breeding but also enable the study of genome-wide variations on hybrid performance.
Collapse
Affiliation(s)
- Gopala K Subbaiyan
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Thalapati S, Batchu AK, Neelamraju S, Ramanan R. Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice. Funct Integr Genomics 2012; 12:277-89. [PMID: 22367483 DOI: 10.1007/s10142-012-0265-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/27/2012] [Accepted: 02/07/2012] [Indexed: 12/11/2022]
Abstract
Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.
Collapse
Affiliation(s)
- Sudhakar Thalapati
- Biotechnology Unit, Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, India
| | | | | | | |
Collapse
|
45
|
Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLoS One 2012; 7:e29607. [PMID: 22363404 PMCID: PMC3283606 DOI: 10.1371/journal.pone.0029607] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/30/2011] [Indexed: 12/17/2022] Open
Abstract
Fixed heterosis resulting from favorable interactions between the genes on their homoeologous genomes in an allopolyploid is considered analogous to classical heterosis accruing from interactions between homologous chromosomes in heterozygous plants of a diploid species. It has been hypothesized that fixed heterosis may be one of the causes of low classical heterosis in allopolyploids. We used Indian mustard (Brassica juncea, 2n = 36; AABB) as a model system to analyze this hypothesis due to ease of its resynthesis from its diploid progenitors, B. rapa (2n = 20; AA) and B. nigra (2n = 16; BB). Both forms of heterosis were investigated in terms of ploidy level, gene action and genetic diversity. To facilitate this, eleven B. juncea genotypes were resynthesized by hybridizing ten near inbred lines of B. rapa and nine of B. nigra. Three half diallel combinations involving resynthesized B. juncea (11×11) and the corresponding progenitor genotypes of B. rapa (10×10) and B. nigra (9×9) were evaluated. Genetic diversity was estimated based on DNA polymorphism generated by SSR primers. Heterosis and genetic diversity in parental diploid species appeared not to predict heterosis and genetic diversity at alloploid level. There was also no association between combining ability, genetic diversity and heterosis across ploidy. Though a large proportion (0.47) of combinations showed positive values, the average fixed heterosis was low for seed yield but high for biomass yield. The genetic diversity was a significant contributor to fixed heterosis for biomass yield, due possibly to adaptive advantage it may confer on de novo alloploids during evolution. Good general/specific combiners at diploid level did not necessarily produce good general/specific combiners at amphiploid level. It was also concluded that polyploidy impacts classical heterosis indirectly due to the negative association between fixed heterosis and classical heterosis.
Collapse
|
46
|
Li A, Fang MD, Song WQ, Chen CB, Qi LW, Wang CG. Gene expression profiles of two intraspecific Larix lines and their reciprocal hybrids. Mol Biol Rep 2011; 39:3773-84. [PMID: 21750915 DOI: 10.1007/s11033-011-1154-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 06/30/2011] [Indexed: 12/17/2022]
Abstract
Heterosis has been widely explored in Larix breeding for more than a century, but the molecular mechanisms underlying this phenomenon remain elusive. In the present study, the genome-wide transcript profiles from two Larix genotypes and their reciprocal hybrids were analyzed using Arabidopsis 70-mer oligonucleotide microarrays. Despite sharing the same two parental lines, one of the hybrids showed obvious heterosis, while the other did not. In total, 1,171 genes were differentially expressed between the heterotic hybrid and its parents, of which 133 genes were nonadditive expression. The number of differentially expressed genes between the non-heterotic hybrid and the parents was 939, but only 54 of these genes were nonadditive expression. Further, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses indicated that most of these differentially expressed genes in the heterotic hybrid were associated with several important biological functions such as physiological processes, responses to stimulus, and starch and sucrose metabolism. The reliability of the microarray data was further validated by the Real-time quantitative RT-PCR. A high Pearson linear correlation coefficient value was detected (r = 0.759, P < 0.01). In conclusion, the gene expression profile in the Larix heterotic hybrid was significantly different from that obtained from the non-heterotic hybrid, and more nonadditive differentially expressed genes were detected in the heterotic hybrid, implying that nonadditive effects may be closely associated with the formation of heterosis in the intraspecific Larix hybridization.
Collapse
Affiliation(s)
- Ai Li
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Goff SA. A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding. THE NEW PHYTOLOGIST 2011; 189:923-937. [PMID: 21166808 DOI: 10.1111/j.1469-8137.2010.03574.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hybrids between genetically diverse varieties display enhanced growth, and increased total biomass, stress resistance and grain yield. Gene expression and metabolic studies in maize, rice and other species suggest that protein metabolism plays a role in the growth differences between hybrids and inbreds. Single trait heterosis can be explained by the existing theories of dominance, overdominance and epistasis. General multigenic heterosis is observed in a wide variety of different species and is likely to share a common underlying biological mechanism. This review presents a model to explain differences in growth and yield caused by general multigenic heterosis. The model describes multigenic heterosis in terms of energy-use efficiency and faster cell cycle progression where hybrids have more efficient growth than inbreds because of differences in protein metabolism. The proposed model is consistent with the observed variation of gene expression in different pairs of inbred lines and hybrid offspring as well as growth differences in polyploids and aneuploids. It also suggests an approach to enhance yield gains in both hybrid and inbred crops via the creation of an appropriate computational analysis pipeline coupled to an efficient molecular breeding program.
Collapse
Affiliation(s)
- Stephen A Goff
- iPlant Collaborative, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
48
|
Zhang X, Liu F, Wang W, Li S, Wang C, Zhang X, Wang Y, Wang K. Primary analysis of QTG contribution to heterosis in upland cotton. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-4020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Jahnke S, Sarholz B, Thiemann A, Kühr V, Gutiérrez-Marcos JF, Geiger HH, Piepho HP, Scholten S. Heterosis in early seed development: a comparative study of F1 embryo and endosperm tissues 6 days after fertilization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:389-400. [PMID: 19915820 DOI: 10.1007/s00122-009-1207-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 10/22/2009] [Indexed: 05/12/2023]
Abstract
Heterosis specifies the superior performance of heterozygous individuals and although used in plant breeding the underlying molecular mechanisms still remain largely elusive. In this study, we demonstrate the manifestation of heterosis in hybrid maize embryo and endosperm tissue 6 days after fertilization in crosses of several inbred lines. We provide a comparative analysis of heterosis-associated gene expression in these tissues by a combined approach of suppression subtractive hybridization and microarray hybridizations. Non-additive expression pattern indicated a trans-regulatory mechanism to act early after fertilization in hybrid embryo and endosperm although the majority of genes showed mid-parental expression levels in embryo and dosage dependent expression levels in endosperm. The consistent expression pattern within both tissues and both inbred line genotype combinations of genes coding for chromatin related proteins pointed to heterosis-related epigenetic processes. These and genes involved in other biological processes, identified in this study, might provide entry points for the investigation of regulatory networks associated with the specification of heterosis.
Collapse
Affiliation(s)
- Stephanie Jahnke
- Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Riddle NC, Jiang H, An L, Doerge RW, Birchler JA. Gene expression analysis at the intersection of ploidy and hybridity in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:341-53. [PMID: 19657617 DOI: 10.1007/s00122-009-1113-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 07/13/2009] [Indexed: 05/24/2023]
Abstract
Heterosis and polyploidy are two important aspects of plant evolution. To examine these issues, we conducted a global gene expression study of a maize ploidy series as well as a set of tetraploid inbred and hybrid lines. This gene expression analysis complements an earlier phenotypic study of these same materials. We find that ploidy change affects a large fraction of the genome, albeit at low levels; gene expression changes rarely exceed 2-fold and are typically not statistically significant. The most common gene expression profile we detected is greater than linear increase from monoploid to diploid, and reductions from diploid to triploid and from triploid to tetraploid, a trend that mirrors plant stature. When examining heterosis in tetraploid maize lines, we found a large fraction of the genome impacted but the majority of changes were not statistically significant at 2-fold or less. Non-additive expression was common in the hybrids, and the extent of non-additivity increased both in number and magnitude from duplex to quadruplex hybrids. Overall, we find that gene expression trends mirror observations from the phenotypic studies; however, obvious mechanistic connections remain unknown.
Collapse
Affiliation(s)
- Nicole C Riddle
- Division of Biological Sciences, University of Missouri, 117 Tucker Hall, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|