1
|
Bhujbal SK, Rai AN, Joshi-Saha A. Dwarfs standing tall: breeding towards the 'Yellow revolution' through insights into plant height regulation. PLANT MOLECULAR BIOLOGY 2025; 115:34. [PMID: 39971832 PMCID: PMC11839727 DOI: 10.1007/s11103-025-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
High oilseed production is an exigency due to the increasing edible oil consumption of the growing population. Rapeseed and mustard are cultivated worldwide and contribute significantly to the world's total oilseed production. Already a plateau is reached in terms of area and yield in most of the existing cultivars. Most of the commercially cultivated high yielding rapeseed and mustard varieties are tall, mainly due to a wider use of heterosis. However, they are susceptible to lodging and consequent yield losses. Plant yield is strongly dependent upon its architecture; therefore, 'ideotype breeding' is the key approach adopted to develop new varieties with enhanced yield potential, which is less explored in these crops. Dwarf/ semi dwarf plant type varieties has shown its improved yield potential over tall plant type in cereals which further leads to 'Green revolution' in Asian countries. Although, many induced dwarf mutants in rapeseed and mustard were isolated, unlike dwarf green-revolution varieties of cereals, most of them had undesirable plant types with defects including extreme dwarfism and sterility, leading to poor yield potential. Understanding the genetic and molecular mechanisms governing plant height and its correlation with yield and yield contributing characters is crucial. In this review, recent insights into genetic, molecular, and anatomical regulation of plant height have been discussed. The role of hormones, their crosstalk, and hormonal control for cell division and expansion have been delineated with respect to plant architecture. Many dwarfing genes are identified as being part of various phytohormone pathways. Parallelly, molecular links between plant height and flowering time have been explored. The overall synthesis of the review points out some key target pathways and genes that will be useful for plant breeders as well as biotechnologists for targeted genome editing for improving plant architecture without a yield penalty.
Collapse
Affiliation(s)
- Shankar K Bhujbal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Archana N Rai
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| | - Archana Joshi-Saha
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| |
Collapse
|
2
|
Hu Q, Liu H, He Y, Hao Y, Yan J, Liu S, Huang X, Yan Z, Zhang D, Ban X, Zhang H, Li Q, Zhang J, Xin P, Jing Y, Kou L, Sang D, Wang Y, Wang Y, Meng X, Fu X, Chu J, Wang B, Li J. Regulatory mechanisms of strigolactone perception in rice. Cell 2024; 187:7551-7567.e17. [PMID: 39500324 DOI: 10.1016/j.cell.2024.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 12/29/2024]
Abstract
Strigolactones (SLs) are hormones essential for plant development and environmental responses. SL perception requires the formation of the complex composed of an SL receptor DWARF14 (D14), F-box protein D3, and transcriptional repressor D53, triggering ubiquitination and degradation of D53 to activate signal transduction. However, mechanisms of SL perception and their influence on plant architecture and environmental responses remain elusive and controversial. Here, we report that key residues at interfaces of the AtD14-D3-ASK1 complex are essential for the activation of SL perception, discover that overexpression of the D3-CTH motif negatively regulates SL perception to enhance tillering, and reveal the importance of phosphorylation and N-terminal disordered (NTD) domain in mediating ubiquitination and degradation of D14. Importantly, low nitrogen promotes phosphorylation and stabilization of D14 to repress rice tillering. These findings reveal a panorama of the activation, termination, and regulation of SL perception, which determines the plasticity of plant architecture in complex environments.
Collapse
Affiliation(s)
- Qingliang Hu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Huihui Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yajun He
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanrong Hao
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Simao Liu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiahe Huang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zongyun Yan
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dahan Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinwei Ban
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianqian Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jingkun Zhang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanhui Jing
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liquan Kou
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dajun Sang
- Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| | - Yonghong Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, 271018 Shandong, China
| | - Yingchun Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiangbing Meng
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangdong Fu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bing Wang
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Jiayang Li
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Yazhouwan National Laboratory, Sanya, 572024 Hainan, China
| |
Collapse
|
3
|
Zhang Y, Han P, Zhao R, Yu S, Liu H, Wu H, Weng J, Zhang H. RNA-Seq Transcriptomics and iTRAQ Proteomics Analysis Reveal the Dwarfing Mechanism of Blue Fescue ( Festuca glauca). PLANTS (BASEL, SWITZERLAND) 2024; 13:3357. [PMID: 39683150 DOI: 10.3390/plants13233357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Blue fescue is a widely used ornamental grass because of its strong ecological adaptability. To maintain the optimal ornamental plant shape, blue fescue requires many nutrients and labor. Using dwarf varieties with slow growth is an effective way to fulfill these requirements. In this study, we investigated the dwarfing mechanism of dw-1, a blue fescue dwarfing mutant, using physiological, transcriptomic, and proteomic methods. The peroxidase (POD) enzyme activity and chlorophyll content of dw-1 significantly increased, while the lignin, gibberellin (GA), and indoleacetic acid (IAA) content significantly decreased. A total of 7668 differentially expressed genes (DEGs) were detected using RNA-seq, of which 2543 were upregulated and 5125 were downregulated. A total of 165 differentially expressed proteins (DEPs) were detected using iTRAQ, of which 68 were upregulated and 97 were downregulated. KEGG enrichment analysis showed that the diterpene biosynthesis pathway, tryptophan metabolism pathway, and phenylpropanoid biosynthesis pathway were significantly enriched at both the transcriptional and protein levels. As a result, we can formulate the following hypothesis about the dw-1 dwarfing phenotype: the downregulation of genes and proteins related to IAA and GA biosynthesis is associated with the dwarf phenotype's formation, and metabolic pathways related to lignin synthesis, such as phenylpropanoid biosynthesis, also play an important role. Our work will contribute to a new understanding of the genes and proteins involved in the blue fescue dwarf phenotype.
Collapse
Affiliation(s)
- Yong Zhang
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Peng Han
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruijie Zhao
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuhan Yu
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hang Liu
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Hong Wu
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Jinyang Weng
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Hengfeng Zhang
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| |
Collapse
|
4
|
Guercio AM, Gilio AK, Pawlak J, Shabek N. Structural insights into rice KAI2 receptor provide functional implications for perception and signal transduction. J Biol Chem 2024; 300:107593. [PMID: 39032651 PMCID: PMC11350264 DOI: 10.1016/j.jbc.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
KAI2 receptors, classified as plant α/β hydrolase enzymes, are capable of perceiving smoke-derived butenolide signals and endogenous yet unidentified KAI2-ligands (KLs). While the number of functional KAI2 receptors varies among land plant species, rice has only one KAI2 gene. Rice, a significant crop and representative of grasses, relies on KAI2-mediated Arbuscular mycorrhiza (AM) symbioses to flourish in traditionally arid and nutrient-poor environments. This study presents the first crystal structure of an active rice (Oryza sativa, Os) KAI2 hydrolase receptor. Our structural and biochemical analyses uncover grass-unique pocket residues influencing ligand sensitivity and hydrolytic activity. Through structure-guided analysis, we identify a specific residue whose mutation enables the increase or decrease of ligand perception, catalytic activity, and signal transduction. Furthermore, we investigate OsKAI2-mediated signaling by examining its ability to form a complex with its binding partner, the F-box protein DWARF3 (D3) ubiquitin ligase and subsequent degradation of the target substrate OsSMAX1, demonstrating the significant role of hydrophobic interactions in the OsKAI2-D3 interface. This study provides new insights into the diverse and pivotal roles of the OsKAI2 signaling pathway in the plant kingdom, particularly in grasses.
Collapse
Affiliation(s)
- Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Amelia K Gilio
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Jacob Pawlak
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California - Davis, Davis, California, USA.
| |
Collapse
|
5
|
Dunker JC, St. John ME, Martin CH. Phenotypic covariation predicts diversification in an adaptive radiation of pupfishes. Ecol Evol 2024; 14:e11642. [PMID: 39114171 PMCID: PMC11303982 DOI: 10.1002/ece3.11642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Phenotypic covariation among suites of traits may constrain or promote diversification both within and between species, yet few studies have empirically tested this relationship. In this study, we investigate whether phenotypic covariation of craniofacial traits is associated with diversification in an adaptive radiation of pupfishes found only on San Salvador Island, Bahamas (SSI). The radiation includes generalist, durophagous, and lepidophagous species. We compared phenotypic variation and covariation (i.e., the P matrix) between (1) allopatric populations of generalist pupfish from neighboring islands and estuaries in the Caribbean, (2) SSI pupfish allopatric lake populations with only generalist pupfish, and (3) SSI lake populations containing the full radiation in sympatry. Additionally, we examine patterns observed in the P matrices of two independent lab-reared F2 hybrid crosses of the two most morphologically distinct members of the radiation to make inferences about the underlying mechanisms contributing to the variation in craniofacial traits in SSI pupfishes. We found that the P matrix of SSI allopatric generalist populations exhibited higher levels of mean trait correlation, constraints, and integration with simultaneously lower levels of flexibility compared to allopatric generalist populations on other Caribbean islands and sympatric populations of all three species on SSI. We also document that while many craniofacial traits appear to result from additive genetic effects, variation in key traits such as head depth, maxilla length, and lower jaw length may be produced via non-additive genetic mechanisms. Ultimately, this study suggests that differences in phenotypic covariation significantly contribute to producing and maintaining organismal diversity.
Collapse
Affiliation(s)
- Julia C. Dunker
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Michelle E. St. John
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Present address:
Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Christopher H. Martin
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
6
|
Wang Z, Wang R, Yuan H, Fan F, Li S, Cheng M, Tian Z. Comprehensive identification and analysis of DUF640 genes associated with rice growth. Gene 2024; 914:148404. [PMID: 38521113 DOI: 10.1016/j.gene.2024.148404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Protein domains with conserved amino acid sequences and uncharacterized functions are called domains of unknown function (DUF). The DUF640 gene family plays a crucial role in plant growth, particularly in light regulation, floral organ development, and fruit development. However, there exists a lack of systematic understanding of the evolutionary relationships and functional differentiation of DUF640 within the Oryza genus. In this study, 61 DUF640 genes were identified in the Oryza genus. The expression of DUF640s is induced by multiple hormonal stressors including abscisic acid (ABA), cytokinin (CK), ethylene (ETH), and indole-3-acetic acid (IAA). Specifically, OiDUF640-10 expression significantly increased after ETH treatment. Transgenic experiments showed that overexpressing OiDUF640-10 lines were sensitive to ETH, and seedling length was obstructed. Evolutionary analysis revealed differentiation of the OiDUF640-10 gene in O. sativa ssp. indica and japonica varieties, likely driven by natural selection during the domestication of cultivated rice. These results indicate that OiDUF640-10 plays a vital role in the regulation of rice seedling length.
Collapse
Affiliation(s)
- Zhikai Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Life Science, Yangtze University, Jingzhou, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Zhihong Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Life Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
7
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. Multi-model genome-wide association studies for appearance quality in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1304388. [PMID: 38273959 PMCID: PMC10808671 DOI: 10.3389/fpls.2023.1304388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
Improving the quality of the appearance of rice is critical to meet market acceptance. Mining putative quality-related genes has been geared towards the development of effective breeding approaches for rice. In the present study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA, mrMLM, and FASTmrMLM) genome-wide association studies were conducted in a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers. A total of 594 SNP markers were identified using the mixed linear model method for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs) detected by the ML-GWAS models were strongly associated with grain aroma (AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC, %). Finally, 39 QTNs were identified using single- and multi-locus GWAS methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the above-mentioned three quality-related traits. Based on annotation and previous studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140, LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%), and PGC (%), which could be utilized in rice breeding to improve grain quality traits.
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, International Crop Reseach Institute for Semi Arid Tropics (ICRISAT), Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
8
|
Zhang Q, Xie J, Zhu X, Ma X, Yang T, Khan NU, Zhang S, Liu M, Li L, Liang Y, Pan Y, Li D, Li J, Li Z, Zhang H, Zhang Z. Natural variation in Tiller Number 1 affects its interaction with TIF1 to regulate tillering in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1044-1057. [PMID: 36705337 PMCID: PMC10106862 DOI: 10.1111/pbi.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 05/04/2023]
Abstract
Tiller number per plant-a cardinal component of ideal plant architecture-affects grain yield potential. Thus, alleles positively affecting tillering must be mined to promote genetic improvement. Here, we report a Tiller Number 1 (TN1) protein harbouring a bromo-adjacent homology domain and RNA recognition motifs, identified through genome-wide association study of tiller numbers. Natural variation in TN1 affects its interaction with TIF1 (TN1 interaction factor 1) to affect DWARF14 expression and negatively regulate tiller number in rice. Further analysis of variations in TN1 among indica genotypes according to geographical distribution revealed that low-tillering varieties with TN1-hapL are concentrated in Southeast Asia and East Asia, whereas high-tillering varieties with TN1-hapH are concentrated in South Asia. Taken together, these results indicate that TN1 is a tillering regulatory factor whose alleles present apparent preferential utilization across geographical regions. Our findings advance the molecular understanding of tiller development.
Collapse
Affiliation(s)
- Quan Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jianyin Xie
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoyang Zhu
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoqian Ma
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Tao Yang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shuyang Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Miaosong Liu
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Lin Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Jinjie Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zichao Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Hongliang Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Sanya Nanfan Research Institute of Hainan UniversitySanyaChina
| | - Zhanying Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Cheng X, Huang Y, Tan Y, Tan L, Yin J, Zou G. Potentially Useful Dwarfing or Semi-dwarfing Genes in Rice Breeding in Addition to the sd1 Gene. RICE (NEW YORK, N.Y.) 2022; 15:66. [PMID: 36542176 PMCID: PMC9772376 DOI: 10.1186/s12284-022-00615-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The "Green revolution" gene sd1 has been used widely in the breeding of modern rice varieties for over half a century. The application of this gene has increased rice yields and thereby supported a significant proportion of the global population. The use of a single gene, however, has raised concerns in the scientific community regarding its durability, especially given the bottleneck in genetic background and the need for large input of fertilizer. New dwarfing or semi-dwarfing genes are needed to alleviate our dependence on the sole "Green revolution" gene. In the past few years, several new dwarfing and semi-dwarfing genes as well as their mutants have been reported. Here, we provide an extensive review of the recent discoveries concerning newly identified genes that are potentially useful in rice breeding, including methods employed to create and effectively screen new rice mutants, the phenotypic characteristics of the new dwarfing and semi-dwarfing mutants, potential values of the new dwarfing and semi-dwarfing genes in rice breeding, and potential molecular mechanisms associated with the newly identified genes.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Yongping Huang
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Jianhua Yin
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China.
| |
Collapse
|
10
|
Luo L. Is strigolactone signaling a key player in regulating tiller formation in response to nitrogen? FRONTIERS IN PLANT SCIENCE 2022; 13:1081740. [PMID: 36589130 PMCID: PMC9800024 DOI: 10.3389/fpls.2022.1081740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
|
11
|
Xiang YH, Yu JJ, Liao B, Shan JX, Ye WW, Dong NQ, Guo T, Kan Y, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Lin HX. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. MOLECULAR PLANT 2022; 15:1908-1930. [PMID: 36303433 DOI: 10.1016/j.molp.2022.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.
Collapse
Affiliation(s)
- You-Huang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Jun Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hai Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Chao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
12
|
Zhao J, Liu X, Wang M, Xie L, Wu Z, Yu J, Wang Y, Zhang Z, Jia Y, Liu Q. The miR528-D3 Module Regulates Plant Height in Rice by Modulating the Gibberellin and Abscisic Acid Metabolisms. RICE (NEW YORK, N.Y.) 2022; 15:27. [PMID: 35596029 PMCID: PMC9123139 DOI: 10.1186/s12284-022-00575-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/13/2022] [Indexed: 05/02/2023]
Abstract
Plant height, as one of the important agronomic traits of rice, is closely related to yield. In recent years, plant height-related genes have been characterized and identified, among which the DWARF3 (D3) gene is one of the target genes of miR528, and regulates rice plant height and tillering mainly by affecting strigolactone (SL) signal transduction. However, it remains unknown whether the miR528 and D3 interaction functions in controlling plant height, and the underlying regulatory mechanism in rice. In this study, we found that the plant height, internode length, and cell length of internodes of d3 mutants and miR528-overexpressing (OE-miR528) lines were greatly shorter than WT, D3-overexpressing (OE-D3), and miR528 target mimicry (OE-MIM528) transgenic plants. Knockout of D3 gene (d3 mutants) or miR528-overexpressing (OE-miR528) triggers a substantial reduction of gibberellin (GA) content, but a significant increase of abscisic acid (ABA) accumulation than in WT. The d3 and OE-miR528 transgenic plants were much more sensitive to GA, but less sensitive to ABA than WT. Moreover, the expression level of GA biosynthesis-related key genes, including OsCPS1, OsCPS2, OsKO2 and OsKAO was remarkably higher in OE-D3 plants, while the NECD2 expression, a key gene involved in ABA biosynthesis, was significantly higher in d3 mutants than in WT and OE-D3 plants. The results indicate that the miR528-D3 module negatively regulates plant height in rice by modulating the GA and ABA homeostasis, thereby further affecting the elongation of internodes, and resulting in lower plant height, which adds a new regulatory role to the D3-mediated plant height controlling in rice.
Collapse
Affiliation(s)
- Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Xing Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Mei Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Lingjuan Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Zhengxin Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Jiuming Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Yuchen Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Zhiqiao Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Yufang Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
13
|
Pendergast TH, Qi P, Odeny DA, Dida MM, Devos KM. A high-density linkage map of finger millet provides QTL for blast resistance and other agronomic traits. THE PLANT GENOME 2022; 15:e20175. [PMID: 34904374 DOI: 10.1002/tpg2.20175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Finger millet [Eleusine coracana (L.) Gaertn.] is a critical subsistence crop in eastern Africa and southern Asia but has few genomic resources and modern breeding programs. To aid in the understanding of finger millet genomic organization and genes underlying disease resistance and agronomically important traits, we generated a F2:3 population from a cross between E. coracana (L.) Gaertn. subsp. coracana accession ACC 100007 and E. coracana (L.) Gaertn. subsp. africana , accession GBK 030647. Phenotypic data on morphology, yield, and blast (Magnaporthe oryzae) resistance traits were taken on a subset of the F2:3 population in a Kenyan field trial. The F2:3 population was genotyped via genotyping-by-sequencing (GBS) and the UGbS-Flex pipeline was used for sequence alignment, nucleotide polymorphism calling, and genetic map construction. An 18-linkage-group genetic map consisting of 5,422 markers was generated that enabled comparative genomic analyses with rice (Oryza sativa L.), foxtail millet [Setaria italica (L.) P. Beauv.], and sorghum [Sorghum bicolor (L.) Moench]. Notably, we identified conserved acrocentric homoeologous chromosomes (4A and 4B in finger millet) across all species. Significant quantitative trait loci (QTL) were discovered for flowering date, plant height, panicle number, and blast incidence and severity. Sixteen putative candidate genes that may underlie trait variation were identified. Seven LEUCINE-RICH REPEAT-CONTAINING PROTEIN genes, with homology to nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance proteins, were found on three chromosomes under blast resistance QTL. This high-marker-density genetic map provides an important tool for plant breeding programs and identifies genomic regions and genes of critical interest for agronomic traits and blast resistance.
Collapse
Affiliation(s)
- Thomas H Pendergast
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Peng Qi
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics-Eastern and Southern Africa, Nairobi, Kenya
| | - Mathews M Dida
- Dep. of Applied Sciences, Maseno Univ., Private Bag-40105, Maseno, Kenya
| | - Katrien M Devos
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
14
|
Kandpal M, Dhaka N, Sharma R. Genome-wide in silico analysis of long intergenic non-coding RNAs from rice peduncles at the heading stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2389-2406. [PMID: 34744373 PMCID: PMC8526681 DOI: 10.1007/s12298-021-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Long intergenic non-coding RNAs (lincRNAs) belong to the category of long non-coding RNAs (lncRNAs), originated from intergenic regions, which do not code for proteins. LincRNAs perform prominent role in regulation of gene expression during plant development and stress response by directly interacting with DNA, RNA, or proteins, or triggering production of small RNA regulatory molecules. Here, we identified 2973 lincRNAs and investigated their expression dynamics during peduncle elongation in two Indian rice cultivars, Pokkali and Swarna, at the time of heading. Differential expression analysis revealed common and cultivar-specific expression patterns, which we utilized to infer the lincRNA candidates with potential involvement in peduncle elongation and panicle exsertion. Their putative targets were identified using in silico prediction methods followed by pathway mapping and literature-survey based functional analysis. Further, to infer the mechanism of action, we identified the lincRNAs which potentially act as miRNA precursors or target mimics. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01059-2.
Collapse
Affiliation(s)
- Manu Kandpal
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana India
| | - Rita Sharma
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| |
Collapse
|
15
|
Zhang Y, Liu J, Yu J, Zhang H, Yang Z. Relationship between the Phenylpropanoid Pathway and Dwarfism of Paspalum seashore Based on RNA-Seq and iTRAQ. Int J Mol Sci 2021; 22:ijms22179568. [PMID: 34502485 PMCID: PMC8431245 DOI: 10.3390/ijms22179568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Seashore paspalum is a major warm-season turfgrass requiring frequent mowing. The use of dwarf cultivars with slow growth is a promising method to decrease mowing frequency. The present study was conducted to provide an in-depth understanding of the molecular mechanism of T51 dwarfing in the phenylpropane pathway and to screen the key genes related to dwarfing. For this purpose, we obtained transcriptomic information based on RNA-Seq and proteomic information based on iTRAQ for the dwarf mutant T51 of seashore paspalum. The combined results of transcriptomic and proteomic analysis were used to identify the differential expression pattern of genes at the translational and transcriptional levels. A total of 8311 DEGs were detected at the transcription level, of which 2540 were upregulated and 5771 were downregulated. Based on the transcripts, 2910 proteins were identified using iTRAQ, of which 392 (155 upregulated and 237 downregulated) were DEPs. The phenylpropane pathway was found to be significantly enriched at both the transcriptional and translational levels. Combined with the decrease in lignin content and the increase in flavonoid content in T51, we found that the dwarf phenotype of T51 is closely related to the abnormal synthesis of lignin and flavonoids in the phenylpropane pathway. CCR and HCT may be the key genes for T51 dwarf. This study provides the basis for further study on the dwarfing mechanism of seashore paspalum. The screening of key genes lays a foundation for further studies on the molecular mechanism of seashore paspalum dwarfing.
Collapse
|
16
|
Xu X, Jibran R, Wang Y, Dong L, Flokova K, Esfandiari A, McLachlan ARG, Heiser A, Sutherland-Smith AJ, Brummell DA, Bouwmeester HJ, Dijkwel PP, Hunter DA. Strigolactones regulate sepal senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5462-5477. [PMID: 33970249 DOI: 10.1093/jxb/erab199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/08/2021] [Indexed: 05/07/2023]
Abstract
Flower sepals are critical for flower development and vary greatly in life span depending on their function post-pollination. Very little is known about what controls sepal longevity. Using a sepal senescence mutant screen, we identified two Arabidopsis mutants with delayed senescence directly connecting strigolactones with senescence regulation in a novel floral context that hitherto has not been explored. The mutations were in the strigolactone biosynthetic gene MORE AXILLARY GROWTH1 (MAX1) and in the strigolactone receptor gene DWARF14 (AtD14). The mutation in AtD14 changed the catalytic Ser97 to Phe in the enzyme active site, which is the first mutation of its kind in planta. The lesion in MAX1 was in the haem-iron ligand signature of the cytochrome P450 protein, converting the highly conserved Gly469 to Arg, which was shown in a transient expression assay to substantially inhibit the activity of MAX1. The two mutations highlighted the importance of strigolactone activity for driving to completion senescence initiated both developmentally and in response to carbon-limiting stress, as has been found for the more well-known senescence-associated regulators ethylene and abscisic acid. Analysis of transcript abundance in excised inflorescences during an extended night suggested an intricate relationship among sugar starvation, senescence, and strigolactone biosynthesis and signalling.
Collapse
Affiliation(s)
- Xi Xu
- Massey University, School of Fundamental Sciences, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Yanting Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Lemeng Dong
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Kristyna Flokova
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Azadeh Esfandiari
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Andrew R G McLachlan
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Axel Heiser
- Hopkirk Research Institute, AgResearch Limited, Palmerston North, New Zealand
| | | | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul P Dijkwel
- Massey University, School of Fundamental Sciences, Palmerston North, New Zealand
| | - Donald A Hunter
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
17
|
Kwon YH, Kabange NR, Lee JY, Lee SM, Cha JK, Shin DJ, Cho JH, Kang JW, Ko JM, Lee JH. Novel QTL Associated with Shoot Branching Identified in Doubled Haploid Rice ( Oryza sativa L.) under Low Nitrogen Cultivation. Genes (Basel) 2021; 12:745. [PMID: 34069231 PMCID: PMC8157147 DOI: 10.3390/genes12050745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Shoot branching is considered as an important trait for the architecture of plants and contributes to their growth and productivity. In cereal crops, such as rice, shoot branching is controlled by many factors, including phytohormones signaling networks, operating either in synergy or antagonizing each other. In rice, shoot branching indicates the ability to produce more tillers that are essential for achieving high productivity and yield potential. In the present study, we evaluated the growth and development, and yield components of a doubled haploid population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica), grown under normal nitrogen and low nitrogen cultivation open field conditions. The results of the phenotypic evaluation indicated that parental lines 93-11 (P1, a high tillering indica cultivar) and Milyang352 (P2, a low tillering japonica cultivar) showed distinctive phenotypic responses, also reflected in their derived population. In addition, the linkage mapping and quantitative trait locus (QTL) analysis detected three QTLs associated with tiller number on chromosome 2 (qTNN2-1, 130 cM, logarithm of the odds (LOD) 4.14, PVE 14.5%; and qTNL2-1, 134 cM, LOD: 6.05, PVE: 20.5%) and chromosome 4 (qTN4-1, 134 cM, LOD 3.92, PVE 14.5%), with qTNL2-1 having the highest phenotypic variation explained, and the only QTL associated with tiller number under low nitrogen cultivation conditions, using Kompetitive Allele-Specific PCR (KASP) and Fluidigm markers. The additive effect (1.81) of qTNL2-1 indicates that the allele from 93-11 (P1) contributed to the observed phenotypic variation for tiller number under low nitrogen cultivation. The breakthrough is that the majority of the candidate genes harbored by the QTLs qTNL2-1 and qTNN4-1 (here associated with the control of shoot branching under low and normal nitrogen cultivation, respectively), were also proposed to be involved in plant stress signaling or response mechanisms, with regard to their annotations and previous reports. Therefore, put together, these results would suggest that a possible crosstalk exists between the control of plant growth and development and the stress response in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (Y.-H.K.); (N.-R.K.); (J.-Y.L.); (S.-M.L.); (J.-K.C.); (D.-J.S.); (J.-H.C.); (J.-W.K.); (J.-M.K.)
| |
Collapse
|
18
|
Liu R, Hou J, Li H, Xu P, Zhang Z, Zhang X. Association of TaD14-4D, a Gene Involved in Strigolactone Signaling, with Yield Contributing Traits in Wheat. Int J Mol Sci 2021; 22:ijms22073748. [PMID: 33916852 PMCID: PMC8038469 DOI: 10.3390/ijms22073748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Tillering is a crucial agronomic trait of wheat; it determines yield and plant architecture. Strigolactones (SLs) have been reported to inhibit plant branching. D14, a receptor of SLs, has been described to affect tillering in rice, yet it has seldomly been studied in wheat. In this study, three TaD14 homoeologous genes, TaD14-4A, TaD14-4B, and TaD14-4D, were identified. TaD14-4A, TaD14-4B, and TaD14-4D were constitutively expressed, and TaD14-4D had a higher expression level in most tissues. TaD14 proteins were localized in both cytoplasm and nucleus. An SNP and a 22 bp insertion/deletion (Indel) at the exon regions of TaD14-4D were detected, forming three haplotypes, namely 4D-HapI, 4D-HapII, and 4D-HapIII. Due to the frameshift mutation in the coding region of 4D-HapII, the interaction of 4D-HapII with TaMAX2 and TaD53 was blocked, which led to the blocking of SL signal transduction. Based on the two variation sites, two molecular markers, namely dCAPS-250 and Indel-747, were developed. Association analysis suggested that haplotypes of TaD14-4D were associated with effective tillering number (ETN) and thousand kernel weight (TKW) simultaneously in four environments. The favorable haplotype 4D-HapIII underwent positive selection in global wheat breeding. This study provides insights into understanding the function of natural variations of TaD14-4D and develops two useful molecular markers for wheat breeding.
Collapse
Affiliation(s)
- Ruifang Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China; (R.L.); (P.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (H.L.)
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (H.L.)
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (H.L.)
| | - Ping Xu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China; (R.L.); (P.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China; (R.L.); (P.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Z.Z.); (X.Z.)
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (H.L.)
- Correspondence: (Z.Z.); (X.Z.)
| |
Collapse
|
19
|
Niu K, Zhang R, Zhu R, Wang Y, Zhang D, Ma H. Cadmium stress suppresses the tillering of perennial ryegrass and is associated with the transcriptional regulation of genes controlling axillary bud outgrowth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112002. [PMID: 33529920 DOI: 10.1016/j.ecoenv.2021.112002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 05/04/2023]
Abstract
Perennial ryegrass (Lolium perenne L.), a grass species with superior tillering capacity, plays a potential role in the phytoremediation of cadmium (Cd)-contaminated soils. Tiller production is inhibited in response to serious Cd stress. However, the regulatory mechanism of Cd stress-induced inhibition of tiller development is not well documented. To address this issue, we investigated the phenotype, the expression levels of genes involved in axillary bud initiation and bud outgrowth, and endogenous hormone biosynthesis and signaling pathways in seedlings of perennial ryegrass under Cd stress. The results showed that the number of tillers and axillary buds in the Cd-treated seedlings decreased by 67% and 21%, respectively. The suppression of tiller production in the Cd-treated seedlings was more closely associated with the inhibition of axillary bud outgrowth than with bud initiation. Cd stress upregulated the expression level of genes related to axillary bud dormancy and downregulated bud activity genes. Additionally, genes involved in strigolactone biosynthesis and signaling, auxin transport and signaling, and cytokinin degradation were upregulated in Cd-treated seedlings, and cytokinin biosynthesis gene expression were decreased by Cd stress. The content of zeatin in the Cd-treated pants was significantly reduced by 69~85% compared to the control plants. The content of indole-3-acetic acid (IAA) remains constant under Cd stress. Overall, Cd stress induced axillary bud dormancy and subsequently inhibited axillary bud outgrowth. The decrease of zeatin content and upregulation of genes involved in strigolactone signaling and bud dormancy might be responsible for the inhibition of axillary bud outgrowth.
Collapse
Affiliation(s)
- Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ran Zhang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ruiting Zhu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Dan Zhang
- Gansu Provincial Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
20
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
21
|
Zeng D, Cui J, Yin Y, Zhang M, Shan S, Liu MY, Cheng D, Lu W, Sun Y. Proteomic analysis in different development stages on SP0 generation of rice seeds after space flight. LIFE SCIENCES IN SPACE RESEARCH 2020; 26:34-45. [PMID: 32718685 DOI: 10.1016/j.lssr.2020.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 06/11/2023]
Abstract
The space biological effects of plants will drive the development of aerospace science and breeding science. The aim of this study is to reveal changes in the proteome of contemporary plants at different growth and development stages after space flight of rice seeds. We carried the rice seeds (DN416) through the SJ-10 returning satellite and returned to the ground for planting to the three-leaf stage (TLP) and tillering stage (TS) after a 12.5-day orbital flight. We found that the space flight caused the rice germination rate, the TLP plant height, and the number of tillers in the TS decreased by 11.64%, 9.75%, and 9.80%, respectively. In addition, the treatment group ROS and MDA level increased in the TLP and TS. The abundance patterns of proteins in these leaves identified 214 proteins in the TLP and 286 in the TS leaves that were markedly changed. Moreover, our study identified D14 proteins that control plant height and tiller. Our results show that the space environment may affect the downstream signaling mechanism by regulating the level of ROS in the body to achieve a response to the space environment. Meanwhile, the space environment may affect the plant height and tiller of rice by altering the expression of D14 protein and hormone-regulated proteins. Our results reveal changes in the proteome of different growth stages of rice plants, and also reveal the molecular mechanism of space environment regulation of rice plant height and tiller, which provides a new direction for further understanding of space biological effects and space mutation breeding.
Collapse
Affiliation(s)
- Deyong Zeng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Jie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Yishu Yin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Meng Zhang
- Environment System Biological Institute, Dalian Maritime University, Dalian 116026, China.
| | - Shan Shan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Meng Yao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| | - Yeqing Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China; Environment System Biological Institute, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
22
|
Xu L, Yuan K, Yuan M, Meng X, Chen M, Wu J, Li J, Qi Y. Regulation of Rice Tillering by RNA-Directed DNA Methylation at Miniature Inverted-Repeat Transposable Elements. MOLECULAR PLANT 2020; 13:851-863. [PMID: 32087371 DOI: 10.1016/j.molp.2020.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 05/24/2023]
Abstract
Tillering is a major determinant of rice plant architecture and grain yield. Here, we report that depletion of rice OsNRPD1a and OsNRPD1b, two orthologs of the largest subunit of RNA polymerase IV, leads to a high-tillering phenotype, in addition to dwarfism and smaller panicles. OsNRPD1a and OsNRPD1b are required for the production of 24-nt small interfering RNAs that direct DNA methylation at transposable elements (TEs) including miniature inverted-repeat TEs (MITEs). Interestingly, many genes are regulated either positively or negatively by TE methylation. Among them, OsMIR156d and OsMIR156j, which promote rice tillering, are repressed by CHH methylation at two MITEs in the promoters. By contrast, D14, which suppresses rice tillering, is activated by CHH methylation at an MITE in its downstream. Our findings reveal regulation of rice tillering by RNA-directed DNA methylation at MITEs and provide potential targets for agronomic trait enhancement through epigenome editing.
Collapse
Affiliation(s)
- Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kun Yuan
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiangbing Meng
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayang Li
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
23
|
Gouda G, Gupta MK, Donde R, Mohapatra T, Vadde R, Behera L. Marker-assisted selection for grain number and yield-related traits of rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:885-898. [PMID: 32377039 PMCID: PMC7196572 DOI: 10.1007/s12298-020-00773-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 05/11/2023]
Abstract
Continuous rise in the human population has resulted in an upsurge in food demand, which in turn demand grain yield enhancement of cereal crops, including rice. Rice yield is estimated via the number of tillers, grain number per panicles, and the number of spikes present per panicle. Marker-assisted selection (MAS) serve as one of the best ways to introduce QTLs/gene associated with yield in the rice plant. MAS has also been employed effectively in dissecting several other complex agricultural traits, for instance, drought, cold tolerance, salinity, etc. in rice plants. Thus, in this review, authors attempted to collect information about various genes/QTLs associated with high yield, including grain number, in rice and how different scheme of MAS can be employed to introduce them in rice (Oryza sativa L.) plant, which in turn will enhance rice yield. Information obtained to date suggest that, numerous QTLs, e.g., Gn1a, Dep1, associated with grain number and yield-related traits, have been identified either via mapping or cloning approaches. These QTLs have been successfully introduced into rice plants using various schemes of MAS for grain yield enhancement in rice. However, sometimes, MAS does not perform well in breeding, which might be due to lack of resources, skilled labors, reliable markers, and high costs associated with MAS. Thus, by overcoming these problems, we can enhance the application of MAS in plant breeding, which, in turn, may help us in increasing yield, which subsequently may help in bridging the gap between demand and supply of food for the continuously growing population.
Collapse
Affiliation(s)
- Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| | - Manoj Kumar Gupta
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005 India
| | - Ravindra Donde
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| | - Trilochan Mohapatra
- Secretary (DARE) and Director General (ICAR), Government of India, New Delhi, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005 India
| | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| |
Collapse
|
24
|
Fang Z, Ji Y, Hu J, Guo R, Sun S, Wang X. Strigolactones and Brassinosteroids Antagonistically Regulate the Stability of the D53-OsBZR1 Complex to Determine FC1 Expression in Rice Tillering. MOLECULAR PLANT 2020; 13:586-597. [PMID: 31837469 DOI: 10.1016/j.molp.2019.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 05/21/2023]
Abstract
Rice tillering, a key architecture trait determining grain yield, is highly regulated by a class of newly identified phytohormones, strigolactones (SLs). However, the whole SL signaling pathway from the receptor to downstream transcription factors to finally inhibit tillering remains unrevealed. In this study, we first found that brassinosteroids (BRs) strongly enhance tillering by promoting bud outgrowth in rice, which is largely different from the function of BRs in Arabidopsis. Genetic and biochemical analyses indicated that both the SL and BR signaling pathways control rice tillering by regulating the stability of D53 and/or the OsBZR1-RLA1-DLT module, a transcriptional complex in the rice BR signaling pathway. We further found that D53 interacts with OsBZR1 to inhibit the expression of FC1, a local inhibitor of tillering, and that this inhibition depends on direct DNA binding by OsBZR1, which recruits D53 to the FC1 promoter in rice buds. Taken together, these findings uncover a mechanism illustrating how SLs and BRs coordinately regulate rice tillering via the early responsive gene FC1.
Collapse
Affiliation(s)
- Zhongming Fang
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China; College of Agricultural Sciences, Guizhou University, Guiyang 550025 China
| | - Yuanyuan Ji
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China; Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438 China
| | - Jie Hu
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China
| | - Renkang Guo
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China
| | - Shiyong Sun
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China.
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China.
| |
Collapse
|
25
|
Zhang X, Zhou J, Huang N, Mo L, Lv M, Gao Y, Chen C, Yin S, Ju J, Dong G, Zhou Y, Yang Z, Li A, Wang Y, Huang J, Yao Y. Transcriptomic and Co-Expression Network Profiling of Shoot Apical Meristem Reveal Contrasting Response to Nitrogen Rate between Indica and Japonica Rice Subspecies. Int J Mol Sci 2019; 20:E5922. [PMID: 31775351 PMCID: PMC6928681 DOI: 10.3390/ijms20235922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
Reducing nitrogen (N) input is a key measure to achieve a sustainable rice production in China, especially in Jiangsu Province. Tiller is the basis for achieving panicle number that plays as a major factor in the yield determination. In actual production, excessive N is often applied in order to produce enough tillers in the early stages. Understanding how N regulates tillering in rice plants is critical to generate an integrative management to reduce N use and reaching tiller number target. Aiming at this objective, we utilized RNA sequencing and weighted gene co-expression network analysis (WGCNA) to compare the transcriptomes surrounding the shoot apical meristem of indica (Yangdao6, YD6) and japonica (Nipponbare, NPB) rice subspecies. Our results showed that N rate influenced tiller number in a different pattern between the two varieties, with NPB being more sensitive to N enrichment, and YD6 being more tolerant to high N rate. Tiller number was positively related to N content in leaf, culm and root tissue, but negatively related to the soluble carbohydrate content, regardless of variety. Transcriptomic comparisons revealed that for YD6 when N rate enrichment from low (LN) to medium (MN), it caused 115 DEGs (LN vs. MN), from MN to high level (HN) triggered 162 DEGs (MN vs. HN), but direct comparison of low with high N rate showed a 511 DEGs (LN vs. HN). These numbers of DEG in NPB were 87 (LN vs. MN), 40 (MN vs. HN), and 148 (LN vs. HN). These differences indicate that continual N enrichment led to a bumpy change at the transcription level. For the reported sixty-five genes which affect tillering, thirty-six showed decent expression in SAM at tiller starting phase, among them only nineteen being significantly influenced by N level, and two genes showed significant interaction between N rate and variety. Gene ontology analysis revealed that the majority of the common DEGs are involved in general stress responses, stimulus responses, and hormonal signaling process. WGCNA network identified twenty-two co-expressing gene modules and ten candidate hubgenes for each module. Several genes associated with tillering and N rate fall on the related modules. These indicate that there are more genes participating in tillering regulation in response to N enrichment.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; (N.H.); (A.L.)
| | - Juan Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Niansheng Huang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; (N.H.); (A.L.)
| | - Lanjing Mo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Minjia Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Yingbo Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Chen Chen
- Zhenjiang Agricultural Research Institute of Jiangsu Province, Jurong 212400, China;
| | - Shuangyi Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Jing Ju
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China;
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; (N.H.); (A.L.)
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Jianye Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; (X.Z.); (J.Z.); (L.M.); (M.L.); (Y.G.); (S.Y.); (G.D.); (Y.Z.); (Z.Y.); (Y.W.)
| |
Collapse
|
26
|
Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J. Strigolactones and their crosstalk with other phytohormones. ANNALS OF BOTANY 2019; 124:749-767. [PMID: 31190074 PMCID: PMC6868373 DOI: 10.1093/aob/mcz100] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Strigolactones (SLs) are a diverse class of butenolide-bearing phytohormones derived from the catabolism of carotenoids. They are associated with an increasing number of emerging regulatory roles in plant growth and development, including seed germination, root and shoot architecture patterning, nutrient acquisition, symbiotic and parasitic interactions, as well as mediation of plant responses to abiotic and biotic cues. SCOPE Here, we provide a concise overview of SL biosynthesis, signal transduction pathways and SL-mediated plant responses with a detailed discourse on the crosstalk(s) that exist between SLs/components of SL signalling and other phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates and salicylic acid. CONCLUSION SLs elicit their control on physiological and morphological processes via a direct or indirect influence on the activities of other hormones and/or integrants of signalling cascades of other growth regulators. These, among many others, include modulation of hormone content, transport and distribution within plant tissues, interference with or complete dependence on downstream signal components of other phytohormones, as well as acting synergistically or antagonistically with other hormones to elicit plant responses. Although much has been done to evince the effects of SL interactions with other hormones at the cell and whole plant levels, research attention must be channelled towards elucidating the precise molecular events that underlie these processes. More especially in the case of abscisic acid, cytokinins, gibberellin, jasmonates and salicylic acid for which very little has been reported about their hormonal crosstalk with SLs.
Collapse
Affiliation(s)
- L O Omoarelojie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - M G Kulkarni
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - J F Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Scottsville, South Africa
- For correspondence. E-mail:
| |
Collapse
|
27
|
Ferrero-Serrano Á, Cantos C, Assmann SM. The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice. Cold Spring Harb Perspect Biol 2019; 11:a034645. [PMID: 31358515 PMCID: PMC6824242 DOI: 10.1101/cshperspect.a034645] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Semidwarf stature is a valuable agronomic trait in grain crops that reduces lodging and increases harvest index. A fundamental advance during the 1960s Green Revolution was the introduction of semidwarf cultivars of rice and wheat. Essentially, all semidwarf varieties of rice under cultivation today owe their diminished stature to a specific null mutation in the gibberellic acid (GA) biosynthesis gene, SD1 However, it is now well-established that, in addition to GAs, brassinosteroids and strigolactones also control plant height. In this review, we describe the synthesis and signaling pathways of these three hormones as understood in rice and discuss the mutants and transgenics in these pathways that confer semidwarfism and other valuable architectural traits. We propose that such genes offer underexploited opportunities for broadening the genetic basis and germplasm in semidwarf rice breeding.
Collapse
Affiliation(s)
| | - Christian Cantos
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
28
|
Gao XQ, Wang N, Wang XL, Zhang XS. Architecture of Wheat Inflorescence: Insights from Rice. TRENDS IN PLANT SCIENCE 2019; 24:802-809. [PMID: 31257155 DOI: 10.1016/j.tplants.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 05/24/2023]
Abstract
The inflorescence architecture of grass crops affects the number of kernels and final grain yield. Great progress has been made in genetic analysis of rice inflorescence development in the past decades. However, the advances in wheat largely lag behind those in rice due to the repetitive and polyploid genomes of wheat. In view of the similar branching patterns and developmental characteristics between rice and wheat, the studies on inflorescence architecture in rice will facilitate related studies in wheat in the future. Here, we review the developmental regulation of inflorescences in rice and wheat and highlight several pathways that potentially regulate the inflorescence architecture of wheat.
Collapse
Affiliation(s)
- Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Ning Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xian Sheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
29
|
Zhou Q, Fu H, Yang D, Ye C, Zhu S, Lin J, Ye W, Ji G, Ye X, Wu X, Li QQ. Differential alternative polyadenylation contributes to the developmental divergence between two rice subspecies, japonica and indica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:260-276. [PMID: 30570805 DOI: 10.1111/tpj.14209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 05/25/2023]
Abstract
Alternative polyadenylation (APA) is a widespread post-transcriptional mechanism that regulates gene expression through mRNA metabolism, playing a pivotal role in modulating phenotypic traits in rice (Oryza sativa L.). However, little is known about the APA-mediated regulation underlying the distinct characteristics between two major rice subspecies, indica and japonica. Using a poly(A)-tag sequencing approach, polyadenylation (poly(A)) site profiles were investigated and compared pairwise from germination to the mature stage between indica and japonica, and extensive differentiation in APA profiles was detected genome-wide. Genes with subspecies-specific poly(A) sites were found to contribute to subspecies characteristics, particularly in disease resistance of indica and cold-stress tolerance of japonica. In most tissues, differential usage of APA sites exhibited an apparent impact on the gene expression profiles between subspecies, and genes with those APA sites were significantly enriched in quantitative trait loci (QTL) related to yield traits, such as spikelet number and 1000-seed weight. In leaves of the booting stage, APA site-switching genes displayed global shortening of 3' untranslated regions with increased expression in indica compared with japonica, and they were overrepresented in the porphyrin and chlorophyll metabolism pathways. This phenomenon may lead to a higher chlorophyll content and photosynthesis in indica than in japonica, being associated with their differential growth rates and yield potentials. We further constructed an online resource for querying and visualizing the poly(A) atlas in these two rice subspecies. Our results suggest that APA may be largely involved in developmental differentiations between two rice subspecies, especially in leaf characteristics and the stress response, broadening our knowledge of the post-transcriptional genetic basis underlying the divergence of rice traits.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Haihui Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dewei Yang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Sheng Zhu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenbin Ye
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xinfu Ye
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, China
| |
Collapse
|
30
|
Luo L, Takahashi M, Kameoka H, Qin R, Shiga T, Kanno Y, Seo M, Ito M, Xu G, Kyozuka J. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1006-1021. [PMID: 30740793 PMCID: PMC6850044 DOI: 10.1111/tpj.14266] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/15/2023]
Abstract
By contrast with rapid progress in understanding the mechanisms of biosynthesis and signaling of strigolactone (SL), mechanisms by which SL inhibits axillary bud outgrowth are less well understood. We established a rice (Oryza sativa L.) hydroponic culture system to observe axillary buds at the critical point when the buds enter the dormant state. In situ hybridization analysis indicated that cell division stops in the leaf primordia of the buds entering dormancy. We compared transcriptomes in the axillary buds isolated by laser capture microdissection before and after entering the dormant state and identified genes that are specifically upregulated or downregulated in dormant buds respectively, in SL-mediated axillary bud dormancy. Typically, cell cycle genes and ribosomal genes are included among the active genes while abscisic acid (ABA)-inducible genes are among the dormant genes. Application of ABA to the hydroponic culture suppressed the growth of axillary buds of SL mutants to the same level as wild-type (WT) buds. Tiller number was decreased in the transgenic lines overexpressing OsNCED1, the gene that encodes ABA biosynthesis enzyme. These results indicated that the main site of SL function is the leaf primordia in the axillary bud and that ABA is involved in SL-mediated axillary bud dormancy.
Collapse
Affiliation(s)
- Le Luo
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- Graduate School of Agriculture and Life SciencesUniversity of TokyoYayoi, BunkyoTokyo113‐8657Japan
| | - Megumu Takahashi
- Graduate School of Agriculture and Life SciencesUniversity of TokyoYayoi, BunkyoTokyo113‐8657Japan
- Present address:
Institute of Vegetable and Floriculture ScienceNAROTsukuba305‐8519Japan
| | - Hiromu Kameoka
- Graduate School of Agriculture and Life SciencesUniversity of TokyoYayoi, BunkyoTokyo113‐8657Japan
- Present address:
Division of Symbiotic SystemsNational Institute for Basic Biology38 Nishigonaka, MyodaijiOkazakiAichi444‐8585Japan
| | - Ruyi Qin
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Toshihide Shiga
- Graduate School of Life SciencesTohoku UniversityKatahira 2‐1‐1, Aoba‐kuSendai980‐8577Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Masaki Ito
- Division of Biological ScienceGraduate School of Bioagricultural SciencesNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Junko Kyozuka
- Graduate School of Agriculture and Life SciencesUniversity of TokyoYayoi, BunkyoTokyo113‐8657Japan
- Graduate School of Life SciencesTohoku UniversityKatahira 2‐1‐1, Aoba‐kuSendai980‐8577Japan
| |
Collapse
|
31
|
Li P, Chang T, Chang S, Ouyang X, Qu M, Song Q, Xiao L, Xia S, Deng Q, Zhu XG. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1154-1180. [PMID: 30415497 DOI: 10.1111/jipb.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A large number of genes related to source, sink, and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow; then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level, and the non-linear complex interaction between source, sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Tiangen Chang
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Langtao Xiao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Shitou Xia
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| |
Collapse
|
32
|
Alamin M, Zeng DD, Sultana MH, Qin R, Jin XL, Shi CH. Rice SDSFL1 plays a critical role in the regulation of plant structure through the control of different phytohormones and altered cell structure. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:110-123. [PMID: 30253267 DOI: 10.1016/j.jplph.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Semi-dwarfism is one of the most important agronomic traits for many cereal crops. In the present study, a mutant with semi-dwarf and short flag leaf 1, sdsfl1, was identified and characterized. The sdsfl1 mutant demonstrated some distinguished structural alterations, including shorter plant height and flag leaf length, increased tiller numbers and flag leaf width, and decreased panicle length compared with those of wild type (WT). Genetic analysis suggested that the mutant traits were completely controlled by a single recessive gene. The SDSFL1 gene was mapped to the long arm of chromosome 3 within a region of 44.6 kb between InDel markers A3P8.3 and A3P8.4. The DNA sequence analysis revealed that there was only a T to C substitution in the coding region of LOC_Os03g63970, resulting in the substitution of Tryptophan (Try) to Arginine (Arg) and encoding a GA 20 oxidase 1 protein of 372 amino acid residues. Photosynthesis analysis showed that the photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) were significantly increased in sdsfl1. Chlorophyll a (Chl a), total Chl, and carotenoid contents were significantly increased in sdsfl1 compared with those in WT. sdsfl1 carried a reduced level of GA3 but reacted to exogenously applied gibberellins (GA). Moreover, the levels of abscisic acid (ABA), indole 3-acetic acid (IAA), and salicylic acid (SA) were notably improved in sdsfl1, whereas there was no noteworthy change in jasmonic acid (JA). The results thus offer a visible foundation for the molecular and physiological analysis of the SDSFL1 gene, which might participate in various functional pathways for controlling plant height and leaf length in rice breeding.
Collapse
Affiliation(s)
- Md Alamin
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Dong-Dong Zeng
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | | | - Ran Qin
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Li Jin
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Chun-Hai Shi
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
33
|
Yao R, Chen L, Xie D. Irreversible strigolactone recognition: a non-canonical mechanism for hormone perception. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:155-161. [PMID: 30014890 DOI: 10.1016/j.pbi.2018.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 05/24/2023]
Abstract
Unveiling of hormone perception is central to comprehending hormone action. It is generally recognized that an active hormone molecule binds its receptor to initiate hormone signaling, subsequently dissociates from its receptor without being changed, and then initiates the next round of hormone perception. However, recent studies discovered that the α/β hydrolase DWARF14 serves as a non-canonical receptor for the plant hormone strigolactone (SL) to generate the active form of SL which remains covalently bound in an irreversible manner, triggering SL signal transduction. In this short review, we will discuss the recent advances in uncovering this unprecedented non-canonical mechanism for hormone perception.
Collapse
Affiliation(s)
- Ruifeng Yao
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Chen
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Okada S, Sasaki M, Yamasaki M. A novel Rice QTL qOPW11 Associated with Panicle Weight Affects Panicle and Plant Architecture. RICE (NEW YORK, N.Y.) 2018; 11:53. [PMID: 30225538 PMCID: PMC6141410 DOI: 10.1186/s12284-018-0246-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND The improvement of rice yield is a crucial global issue, but evaluating yield requires substantial efforts. Rice yield comprises the following indices: panicle number (PN), grain number per panicle (GN), 1000-grain weight, and percentage of ripened grain. To simplify measurements, we analyzed one panicle weight (OPW) as a simplified yield index that integrates GN, grain weight, and percentage of ripened grain, and verified its suitability as a proxy for GN and grain weight in particular. RESULTS Quantitative trait locus (QTL) analysis using 190 recombinant inbred lines derived from Koshihikari (large panicle and small grain) and Yamadanishiki (small panicle and large grain), japonica cultivars detected three QTLs on chromosomes 5 (qOPW5), 7 (qOPW7) and 11 (qOPW11). Of these, qOPW5 and qOPW11 were detected over two years. qOPW5 and qOPW7 increased OPW, and qOPW11 decreased it at Yamadanishiki alleles. A chromosome segment substitution line (CSSL) with a genomic segment from Yamadanishiki substituted in the Koshihikari genetic background harboring qOPW5 increased grain weight. qOPW11 had the largest genetic effect of QTLs, which was validated using a CSSL. Substitution mapping using four CSSLs revealed that qOPW11 was located in the range of 1.46 Mb on chromosome 11. The CSSL harboring qOPW11 decreased primary and secondary branch numbers, culm length, and panicle length, and increased PN. CONCLUSIONS In this study, three QTLs associated with OPW were detected. The CSSL with the novel and largest QTL, qOPW11, differed in some traits associated with both panicle and plant architecture, indicating different functions for the meristem in the vegetative versus the reproductive stages. qOPW5 coincided with an identified QTL for grain width and grain weight, suggesting that qOPW5 was affected by rice grain size. OPW can be considered a useful trait for efficient detection of QTLs associated with rice yield.
Collapse
Affiliation(s)
- Satoshi Okada
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Kasai, Hyogo 675-2103 Japan
| | - Megumi Sasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Kasai, Hyogo 675-2103 Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Kasai, Hyogo 675-2103 Japan
| |
Collapse
|
35
|
Ito S, Yamagami D, Asami T. Effects of gibberellin and strigolactone on rice tiller bud growth. JOURNAL OF PESTICIDE SCIENCE 2018; 43:220-223. [PMID: 30363138 PMCID: PMC6140679 DOI: 10.1584/jpestics.d18-013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Strigolactones (SLs) regulate diverse developmental phenomena. Rice SL biosynthesis and signaling mutants have an increased number of tillers and a reduced plant height relative to wild-type (WT) rice plants. In this study, we tested the effectiveness of gibberellin (GA) on restoring more tillering phenotype and dwarfism observed in both SL biosynthesis and signaling mutants. The application of GA to these mutants rescued the tiller bud outgrowth; however, the sensitivity to GA was different between the WT and the SL biosynthesis mutant.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, 1–1–1 Sakuragaoka, Setagaya, Tokyo, 156–8502, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo, Tokyo 113–8657, Japan
| | - Daichi Yamagami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo, Tokyo 113–8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo, Tokyo 113–8657, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Kawaguchi-shi, Saitama 332–0012 Japan
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Luo L, Wang H, Liu X, Hu J, Zhu X, Pan S, Qin R, Wang Y, Zhao P, Fan X, Xu G. Strigolactones affect the translocation of nitrogen in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:190-197. [PMID: 29576072 DOI: 10.1016/j.plantsci.2018.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 05/05/2023]
Abstract
Strigolactones (SLs) are involved in the nutrient-dependent control of plant root and shoot architecture. The total sufficient uptake of nitrogen (N), and also its appropriate distribution, is essential for the normal growth and development of plants; however, the effect of SLs on N translocation in plants remains unknown. Here, the SL-signaling mutant dwarf 3 (d3), the biosynthesis mutant dwarf 10 (d10), and wild-type (WT) rice (Oryza sativa ssp. Japonica cv. Nipponbare) were used to investigate the relationship between N nutrition and the regulatory role of SLs. Relative to WT, the d10 mutant had a higher N concentration in older leaves but a lower N concentration in younger leaves, while the d3 mutant showed a considerably lower N concentration, especially in its younger leaves under normal N levels. By contrast, both d3 and d10 mutants contained higher N in their leaves under N-deficient conditions. The 15N uptake and distribution analysis revealed that the significantly different N concentrations among the d3, d10, and WT plants only occurred in their leaves, not in their roots. Moreover, when provided with an external supply of GR24, the synthetic SLs altered the leaf N distribution of the d10 mutant but not those of the d3 mutant and WT. Together, these results suggested that the effect of SLs on plant growth and development may be linked to N translocation to different shoot tissues.
Collapse
Affiliation(s)
- Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinqi Hu
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueli Zhu
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Shou Pan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyi Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifeng Wang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Pingping Zhao
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Yao R, Wang L, Li Y, Chen L, Li S, Du X, Wang B, Yan J, Li J, Xie D. Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2355-2365. [PMID: 29365172 PMCID: PMC5913607 DOI: 10.1093/jxb/ery014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/09/2018] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) act as an important class of phytohormones to regulate plant shoot branching, and also serve as rhizosphere signals to mediate interactions of host plants with soil microbes and parasitic weeds. SL receptors in dicots, such as DWARF14 in Arabidopsis (AtD14), RMS3 in pea, and ShHTL7 in Striga, serve as unconventional receptors that hydrolyze SLs into a D-ring-derived intermediate CLIM and irreversibly bind CLIM to trigger SL signal transduction. Here, we show that D14 from the monocot rice can complement Arabidopsis d14 mutant and interact with the SL signaling components in Arabidopsis. Our results further reveal that rice D14, similar to SL receptors in dicots, also serves as an unconventional hormone receptor that generates and irreversibly binds the active form of SLs. These findings uncover the conserved functions of D14 proteins in monocots and dicots.
Collapse
Affiliation(s)
- Ruifeng Yao
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuwen Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Chen
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suhua Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoxi Du
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianbin Yan
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- Correspondence: ,
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Correspondence: ,
| |
Collapse
|
39
|
Wang J, Tian Y, Li J, Yang K, Xing S, Han X, Xu D, Wang Y. Transcriptome sequencing of active buds from Populus deltoides CL. and Populus × zhaiguanheibaiyang reveals phytohormones involved in branching. Genomics 2018; 111:700-709. [PMID: 29660475 DOI: 10.1016/j.ygeno.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Branching in woody plants affects their ecological benefits and impacts wood formation. To obtain genome-wide insights into the transcriptome changes and regulatory mechanisms associated with branching, we performed high-throughput RNA sequencing to characterize cDNA libraries generated from active buds of Populus deltoides CL. 'zhonglin2025' (BC) and Populus × zhaiguanheibaiyang (NC). NC has more branches than BC and rapid growth. We obtained a total of 198.2 million high-quality clean reads from the NC and BC libraries. We detected 3543 differentially expressed genes (DEGs) between the NC and BC libraries; 1418 were down-regulated and 2125 were up-regulated. Gene ontology functional classification of the DEGs indicated that they included 89 genes that encoded proteins related to hormone biosynthesis, 364 genes related to hormone signaling transduction, and 104 related to the auxin efflux transmembrane transporter. We validated the expression profiles of 16° by real-time quantitative PCR and found that their expression patterns were similar to those obtained from the high-throughput RNA sequencing data. We also measured the hormone content in young buds of BC and NC by high-pressure liquid chromatography. In this study, we identified global hormone regulatory patterns and differences in gene expression between NC and BC, and constructed a hormone regulatory network to explain branching in Populus buds. In addition, candidate genes that may be useful for molecular breeding of particular plant types were identified. Our results will provide a starting point for future investigations into the molecular mechanisms of branching in Populus.
Collapse
Affiliation(s)
- Jinnan Wang
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yanting Tian
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jihong Li
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Keqiang Yang
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shiyan Xing
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaojiao Han
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| | - Dong Xu
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yiwei Wang
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Silviculture Key Lab of Shandong Province Forestry, College of Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
40
|
Liu F, Wang P, Zhang X, Li X, Yan X, Fu D, Wu G. The genetic and molecular basis of crop height based on a rice model. PLANTA 2018; 247:1-26. [PMID: 29110072 DOI: 10.1007/s00425-017-2798-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/15/2017] [Indexed: 05/04/2023]
Abstract
This review presents genetic and molecular basis of crop height using a rice crop model. Height is controlled by multiple genes with potential to be manipulated through breeding strategies to improve productivity. Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the 'green revolution' benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Pandi Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., Ltd., Wuhan, 430206, China
| | - Xiaofei Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China.
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
41
|
Recent advances in molecular basis for strigolactone action. SCIENCE CHINA-LIFE SCIENCES 2017; 61:277-284. [PMID: 29116554 DOI: 10.1007/s11427-017-9195-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Strigolactones (SLs) are a very special class of plant hormones, which act as endogenous signals to regulate shoot branching in plants, and also serve as rhizosphere signals to regulate interactions of host plants with heterologous organisms such as symbiotic arbuscular mycorrhizal fungi and parasitic weeds. In this short review, we give a brief description of novel discoveries in SL biosynthesis pathway, and mainly summarize the recent advances in SL perception and signal transduction.
Collapse
|
42
|
Wang YP, Tang SQ, Chen HZ, Wu ZF, Zhang H, Duan EC, Shi QH, Wu ZM. Identification and molecular mapping of indica high-tillering dwarf mutant htd4, a mild phenotype allelic mutant of D14 in rice (Oryza sativa L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:851-858. [PMID: 28787541 DOI: 10.1111/plb.12612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/03/2017] [Indexed: 05/20/2023]
Abstract
Metabolism of strigolactones (SLs) can improve the efficiency of nutrient use by regulating the development of roots and shoots in crops, making them an important research focus for molecular breeding. However, as a very important plant hormone, the molecular mechanism of SL signal transduction still remains largely unknown. In this study, we isolated an indica high-tillering dwarf mutant 4 (htd4), a spontaneous mutant of rice, from the restorer line Gui99. Mapping and sequencing analysis showed that htd4 was a novel allelic mutant of D14, in which a single base substitution forms a premature termination codon. Quantitative RT-PCR analyses revealed that expression levels of the genes D10, D17, D27, D3 and D14 increased significantly, while expression of D53 decreased in htd4, compared with the wild type. A subcellular localisation assay showed that the mutant of D14 in htd4 did not disturb the normal localisation of D14 proteins. However, a BiFC assay suggested that the mutant-type D14 could not interact with D3. Additionally, compared with other D14 allelic mutants, htd4 was the first mutant of D14 discovered in indica, and the differences in many yield traits such as plant height, seed-setting rate and grain sizes between htd4 and the wild type were less than those between other D14 allelic mutants and the wild type. Therefore, htd4 is considered a mild phenotype allelic mutant of D14. We conclude that the absence of functional D14 caused the high-tillering dwarf phenotype of htd4. Our results may provide vital information for research on D14 function and the application of htd4 in molecular breeding.
Collapse
Affiliation(s)
- Y-P Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - S-Q Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - H-Z Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
- Pingxiang Municipal Institute of Agricultural Science, Pingxiang, China
| | - Z-F Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - H Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - E-C Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q-H Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Z-M Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
43
|
Marzec M. Strigolactones and Gibberellins: A New Couple in the Phytohormone World? TRENDS IN PLANT SCIENCE 2017; 22:813-815. [PMID: 28844847 DOI: 10.1016/j.tplants.2017.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 05/11/2023]
Abstract
Strigolactones (SLs) and gibberellins (GAs) are plant hormones that share some unique aspects of their perception and signalling pathways. Recent discoveries indicate that these two phytohormones may act together in processes of plant development and that SL biosynthesis is regulated by GAs.
Collapse
Affiliation(s)
- Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice 40-032, Poland; Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben D-06466, Germany.
| |
Collapse
|
44
|
Song X, Lu Z, Yu H, Shao G, Xiong J, Meng X, Jing Y, Liu G, Xiong G, Duan J, Yao XF, Liu CM, Li H, Wang Y, Li J. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 2017; 27:1128-1141. [PMID: 28809396 PMCID: PMC5587847 DOI: 10.1038/cr.2017.102] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/11/2022] Open
Abstract
Strigolactones (SLs), a group of carotenoid derived terpenoid lactones, are root-to-shoot phytohormones suppressing shoot branching by inhibiting the outgrowth of axillary buds. DWARF 53 (D53), the key repressor of the SL signaling pathway, is speculated to regulate the downstream transcriptional network of the SL response. However, no downstream transcription factor targeted by D53 has yet been reported. Here we report that Ideal Plant Architecture 1 (IPA1), a key regulator of the plant architecture in rice, functions as a direct downstream component of D53 in regulating tiller number and SL-induced gene expression. We showed that D53 interacts with IPA1 in vivo and in vitro and suppresses the transcriptional activation activity of IPA1. We further showed that IPA1 could directly bind to the D53 promoter and plays a critical role in the feedback regulation of SL-induced D53 expression. These findings reveal that IPA1 is likely one of the long-speculated transcription factors that act with D53 to mediate the SL-regulated tiller development in rice.
Collapse
Affiliation(s)
- Xiaoguang Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefu Lu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Present address: Department of Genetics, University of Georgia, Athens, Georgia 30605, USA
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gaoneng Shao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Present address: College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Present address: Agricultural Genome Institute at Shenzhen, China Academy of Agricultural Science, Shenzhen, Guangdong 518120, China
| | - Jingbo Duan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Feng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongqing Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Abstract
Strigolactones are a structurally diverse class of plant hormones that control many aspects of shoot and root growth. Strigolactones are also exuded by plants into the rhizosphere, where they promote symbiotic interactions with arbuscular mycorrhizal fungi and germination of root parasitic plants in the Orobanchaceae family. Therefore, understanding how strigolactones are made, transported, and perceived may lead to agricultural innovations as well as a deeper knowledge of how plants function. Substantial progress has been made in these areas over the past decade. In this review, we focus on the molecular mechanisms, core developmental roles, and evolutionary history of strigolactone signaling. We also propose potential translational applications of strigolactone research to agriculture.
Collapse
Affiliation(s)
- Mark T Waters
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth 6009, Australia;
| | - Caroline Gutjahr
- Genetics, Faculty of Biology, LMU Munich, 82152 Martinsried, Germany;
| | - Tom Bennett
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| |
Collapse
|
46
|
Basile A, Fambrini M, Pugliesi C. The vascular plants: open system of growth. Dev Genes Evol 2017; 227:129-157. [PMID: 28214944 DOI: 10.1007/s00427-016-0572-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs function as new SAMs: form axillary buds with a few leaves and then the buds can either stay dormant or develop into shoot branches to define a plant architecture, which in turn affects assimilate production and reproductive efficiency. Therefore, the radiation of angiosperms was accompanied by a huge diversification in growth forms that determine an enormous morphological plasticity helping plants to environmental changes. In this review, we focused on the developmental processes of AM initiation and outgrowth. In particular, we summarized the primary growth of SAM, the key role of positional signals for AM initiation, and the dissection of molecular players involved in AM initiation and outgrowth. Finally, the interaction between phytohormone signals and gene regulatory network controlling AM development was discussed.
Collapse
Affiliation(s)
- Alice Basile
- Institute of Biology, RWTH Aachen University, Aachen, Germany
| | - Marco Fambrini
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università degli Studi di Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università degli Studi di Pisa, Pisa, Italy.
| |
Collapse
|
47
|
Hu Q, He Y, Wang L, Liu S, Meng X, Liu G, Jing Y, Chen M, Song X, Jiang L, Yu H, Wang B, Li J. DWARF14, A Receptor Covalently Linked with the Active Form of Strigolactones, Undergoes Strigolactone-Dependent Degradation in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1935. [PMID: 29170677 PMCID: PMC5684176 DOI: 10.3389/fpls.2017.01935] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/26/2017] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are the latest confirmed phytohormones that regulate shoot branching by inhibiting bud outgrowth in higher plants. Perception of SLs depends on a novel mechanism employing an enzyme-receptor DWARF14 (D14) that hydrolyzes SLs and becomes covalently modified. This stimulates the interaction between D14 and D3, leading to the ubiquitination and degradation of the transcriptional repressor protein D53. However, the regulation of SL perception in rice remains elusive. In this study, we provide evidences that D14 is ubiquitinated after SL treatment and degraded through the 26S proteasome system. The Lys280 site of the D14 amino acid sequence was important for SL-induced D14 degradation, but did not change the subcellular localization of D14 nor disturbed the interaction between D14 and D3, nor D53 degradation. Biochemical and genetic analysis indicated that the key amino acids in the catalytic center of D14 were essential for D14 degradation. We further showed that D14 degradation is dependent on D3 and is tightly correlated with protein levels of D53. These findings revealed that D14 degradation takes place following D53 degradation and functions as an important feedback regulation mechanism of SL perception in rice.
Collapse
Affiliation(s)
- Qingliang Hu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajun He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoguang Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Liang Jiang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jiayang Li, Bing Wang,
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jiayang Li, Bing Wang,
| |
Collapse
|
48
|
MULTI-TILLERING DWARF1, a new allele of BRITTLE CULM 12, affects plant height and tiller in rice. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0981-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Fan S, Yao X, Liu J, Dong X, Mao T, Wang J. Characterization and fine mapping of osh15(t), a novel dwarf mutant gene in rice (Oryza sativa L.). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0430-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Ren D, Rao Y, Wu L, Xu Q, Li Z, Yu H, Zhang Y, Leng Y, Hu J, Zhu L, Gao Z, Dong G, Zhang G, Guo L, Zeng D, Qian Q. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:529-39. [PMID: 26486996 PMCID: PMC5064741 DOI: 10.1111/jipb.12441] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 05/04/2023]
Abstract
Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.
Collapse
Affiliation(s)
- Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuchun Rao
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liwen Wu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiankun Xu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zizhuang Li
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, China
| | - Haiping Yu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yu Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yujia Leng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|