1
|
Huang Q, Zhao Z, Liu X, Yuan X, Zhao R, Niu Q, Li C, Liu Y, Wang D, Yu T, Yi H, Yang C, Rong T, Cao M. Maize plastid terminal oxidase (ZmPTOX) regulates the color formation of leaf and kernel by modulating plastid development. J Genet Genomics 2025; 52:441-445. [PMID: 38815650 DOI: 10.1016/j.jgg.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, China
| | - Zhuofan Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu University of Technology, Chengdu, Sichuan 610051, China
| | - Xiaowei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xin Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ruiqing Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qunkai Niu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Agricultural College, Chengdu, Sichuan 611130, China
| | - Chuan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yusheng Liu
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, China
| | - Danfeng Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shanxi 726000, China
| | - Tao Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hongyang Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengming Yang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, China
| | - Tingzhao Rong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Moju Cao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Jung YJ, Go J, Kim JY, Lee HJ, Kim JH, Lee HM, Cho YG, Kang KK. ABA and Pre-Harvest Sprouting Differences in Knockout Lines of OsPHS3 Encoding Carotenoid Isomerase via CRISPR/Cas9 in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:345. [PMID: 39942907 PMCID: PMC11820545 DOI: 10.3390/plants14030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
We generated and characterized knockout mutant lines of the OsPHS3 gene using the CRISPR/Cas9 system. The knockout lines of the OsPHS3 gene showed that 1 bp and 7 bp deletion, early termination codons were used for protein production. Agronomic characteristics of knock-out lines were reduced in plant height, culm diameter, panicle length, seed size and weight, except for the number of tillers. In addition, we analyzed the expression levels of carotenoid biosynthesis genes by qRT-PCR. Among the genes encoding carotenoid metabolic pathway enzymes, the level of transcripts of PSY1, PSY2, PSY3, PDS and ZDS were higher in the KO lines than in the WT line. In contrast, transcription of the ε-LCY, β-LCY and ZEP1 genes were downregulated in the KO lines compared to the WT line. Also, the KO lines decreased carotenoid content and ABA amount compared to WT, while preharvest sprouts increased. These results suggested that they would certainly help explain the molecular mechanisms of PHS in other crops, such as wheat and barley, which are susceptible to PHS.
Collapse
Affiliation(s)
- Yu-Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (Y.-J.J.); (J.-Y.K.); (H.-J.L.); (J.-H.K.); (H.-M.L.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jiyun Go
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Jin-Young Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (Y.-J.J.); (J.-Y.K.); (H.-J.L.); (J.-H.K.); (H.-M.L.)
| | - Hyo-Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (Y.-J.J.); (J.-Y.K.); (H.-J.L.); (J.-H.K.); (H.-M.L.)
| | - Jong-Hee Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (Y.-J.J.); (J.-Y.K.); (H.-J.L.); (J.-H.K.); (H.-M.L.)
| | - Hye-Mi Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (Y.-J.J.); (J.-Y.K.); (H.-J.L.); (J.-H.K.); (H.-M.L.)
| | - Yong-Gu Cho
- Department of Crop Science, College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (Y.-J.J.); (J.-Y.K.); (H.-J.L.); (J.-H.K.); (H.-M.L.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
3
|
Peng Y, Liang Z, Qing X, Wen M, Yuan Z, Chen Q, Du X, Gu R, Wang J, Li L. Transcriptome Analysis Revealed ZmPTOX1 Is Required for Seedling Development and Stress Tolerance in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2346. [PMID: 39273830 PMCID: PMC11397459 DOI: 10.3390/plants13172346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Plant seedling morphogenesis is considerably related to photosynthesis, pigment synthesis, and circadian periodicity during seedling development. We identified and cloned a maize zebra or crossbanding leaves mutant wk3735, which produces pale white kernels and was identified and plays a role in the equilibrium of the Redox state the in/out of ETC by active oxygen scavenging. Interestingly, it produces the zebra leaves during the production of the first seven leaves, which is apparently different from the mutation of homologs AtPTOX in Arabidopsis. It is intriguing to investigate how and why yellow crossbands (zebra leaf phenotype) emerge on leaves. As expected, chlorophyll concentration and photosynthetic efficiency both significantly declined in the yellow sector of wk3735 leaves. Meanwhile, we observed the circadian expression pattern of ZmPTOX1, which was further validated by protein interaction assays of the circadian clock protein TIM1 and ZmPTOX1. The transcriptome data of yellow (muW) and green (muG) sectors of knock-out lines and normal leaves of overexpression lines (OE) at the 5th-leaf seedling stage were analyzed. Zebra leaf etiolated sections exhibit a marked defect in the expression of genes involved in the circadian rhythm and rhythmic stress (light and cold stress) responses than green sections. According to the analysis of co-DEGs of muW vs. OE and muG vs. OE, terms linked to cell repair function were upregulated while those linked to environmental adaptability and stress response were downregulated due to the mutation of ZmPTOX1. Further gene expression level analyses of reactive oxygen species (ROS) scavenging enzymes and detection of ROS deposition indicated that ZmPTOX1 played an essential role in plant stress resistance and ROS homeostasis. The pleiotropic roles of ZmPTOX1 in plant ROS homeostasis maintenance, stress response, and circadian rhythm character may collectively explain the phenotype of zebra leaves during wk3735 seedling development.
Collapse
Affiliation(s)
- Yixuan Peng
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Cultivation and Utilization of Oil Tea Resources of Jiangxi Province, Jiangxi Academy Forestry, Nanchang 330013, China
| | - Zhi Liang
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xindong Qing
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Motong Wen
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Zhipeng Yuan
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Quanquan Chen
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Riliang Gu
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Jianhua Wang
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Yan Q, Lu Y, Pang Y, Zhao H, Liu J, Liu M, Zhu H, Zhang Z, Li G, Wu Y, Liu S. TaCRTISO dosage modulates plant height and spike number per plant in wheat. PLANT PHYSIOLOGY 2024; 194:2208-2212. [PMID: 38036298 DOI: 10.1093/plphys/kiad632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
An allelic variation of TaCRTISO is valuable in adjusting spike number per plant and plant height in wheat breeding.
Collapse
Affiliation(s)
- Qiang Yan
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Lu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yunlong Pang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hailiang Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Jingxian Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Mingyu Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Huaqiang Zhu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Ziliang Zhang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Genying Li
- Shandong Academy of Agricultural Sciences, Crop Research Institute, Jinan 250100, China
| | - Yuye Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Shubing Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
5
|
Guo P, Huang Z, Zhao W, Lin N, Wang Y, Shang F. Mechanisms for leaf color changes in Osmanthus fragrans 'Ziyan Gongzhu' using physiology, transcriptomics and metabolomics. BMC PLANT BIOLOGY 2023; 23:453. [PMID: 37752431 PMCID: PMC10523669 DOI: 10.1186/s12870-023-04457-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Color-leaved O. fragrans is a variety of Osmanthus fragrans, which has both the fragrance of Osmanthus and the color of color-leaved plants. However, the molecular mechanism of color change of color-leaved O. fragrans is not clear. In this study, we analyzed the regulatory mechanism of four different color leaves of 'Ziyan Gongzhu' through physiological, transcriptome and metabolome levels. RESULTS Firstly, we measured the leaf pigments content and leaf chromatic parameters for correlation analysis, indicating a significant correlation between them. Overall, the content of chlorophyll a + b is low and the content of anthocyanin is high in T1 and T2 leaves, along with low expression of chlorophyll synthesis genes (HEMA, CHLG, and CAO, etc.) and high expression of anthocyanin synthesis genes (F3H, F3'H, DFR and ANS, etc.), resulting purple red and light purple in T1 and T2 leaves, respectively. It was also found that the pigment closely related to the color leaves of 'Ziyan Gongzhu' was cyanidin. The content anthocyanins, may be regulated by two putative MYB activators (OfMYB3 and OfMYB4) and two putative MYB repressors (OfMYB1 and OfMYB2). In contrast, the content of chlorophyll a + b is high and the content of anthocyanin is low in T3 and T4 leaves, along with high expression of chlorophyll synthesis genes and low expression of anthocyanin synthesis genes, resulting yellow green and dark green in T3 and T4 leaves, respectively. And abnormal chloroplast development affects chlorophyll content in T1, T2, and T3 leaves. Although the content of carotenoids first dropped in T2 leaves, it then rapidly accumulated in T4 leaves, in sync with the increase in the expression of genes related to carotenoid biosynthesis (ZDS, LHYB, and ZEP, for example). Analysis of photosynthetic, carbohydrate and hormone-related differentially abundant metabolites (DAMs) and DEGs found that they may participate in the regulation of leaf color change of 'Ziyan Gongzhu' by affecting pigment synthesis. CONCLUSION Our results pave the way for a comprehensive knowledge of the regulatory processes governing leaf color in 'Ziyan Gongzhu' and identify possible genes for application regarding molecular colored-leaf cultivar breeding.
Collapse
Affiliation(s)
- Peng Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Ziqi Huang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Wei Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Nan Lin
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Yihan Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China.
| | - Fude Shang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
6
|
Niaz M, Zhang L, Lv G, Hu H, Yang X, Cheng Y, Zheng Y, Zhang B, Yan X, Htun A, Zhao L, Sun C, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:979-989. [PMID: 36650924 PMCID: PMC10106860 DOI: 10.1111/pbi.14009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023]
Abstract
Grain length is one of the most important factors in determining wheat yield. Here, a stable QTL for grain length was mapped on chromosome 1B in a F10 recombinant inbred lines (RIL) population, and the gene TaGL1-B1 encoding carotenoid isomerase was identified in a secondary large population through multiple strategies. The genome-wide association study (GWAS) in 243 wheat accessions revealed that the marker for TaGL1-B1 was the most significant among all chromosomes. EMS mutants of TaGL1 possessed significantly reduced grain length, whereas TaGL1-B1-overexpressed lines possessed significantly increased grain length. Moreover, TaGL1-B1 strongly interacted with TaPAP6. TaPAP6-overexpressed lines had significantly increased grain length. Transcriptome analysis suggested that TaPAP6 was possibly involved in the accumulation of JA (jasmonic acid). Consistently, JA content was significantly increased in the TaGL1-B1 and TaPAP6 overexpression lines. Additionally, the role of TaGL1-B1 in regulating carotenoids was verified through QTL mapping, GWAS, EMS mutants and overexpression lines. Notably, overexpression of TaGL1-B1 significantly increased wheat yield in multiple locations. Taken together, overexpression of TaGL1-B1 enhanced grain length, probably through interaction with TaPAP6 to cause the accumulation of JA that improved carotenoid content and photosynthesis, thereby resulted in increased wheat yield. This study provided valuable genes controlling grain length to improve yield and a potential insight into the molecular mechanism of modulating JA-mediated grain size in wheat.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Huiting Hu
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xi Yang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yongzhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yueting Zheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Aye Htun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
7
|
Sun Y, Xin Y, Zhang L, Wang Y, Liu R, Li X, Zhou C, Zhang L, Han J. Enhancement of violaxanthin accumulation in Nannochloropsis oceanica by overexpressing a carotenoid isomerase gene from Phaeodactylum tricornutum. Front Microbiol 2022; 13:942883. [PMID: 36118188 PMCID: PMC9471142 DOI: 10.3389/fmicb.2022.942883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Nannochloropsis has been considered as a promising feedstock for the industrial production of violaxanthin. However, a rational breeding strategy for the enhancement of violaxanthin content in this microalga is still vacant, thereby limiting its industrial application. All-trans-lycopene locates in the first branch point of carotenogenesis. The carotenoid isomerase (CRTISO), catalyzing the lycopene formation, is thus regarded as a key enzyme for carotenogenesis. Phaeodactylum tricornutum can accumulate high-level carotenoids under optimal conditions. Therefore, it is feasible to improve violaxanthin level in Nannochloropsis by overexpression of PtCRTISO. Protein targeting analysis of seven PtCRTISO candidates (PtCRTISO1–6 and PtCRTISO-like) demonstrated that PtCRTISO4 was most likely the carotenoid isomerase of P. tricornutum. Moreover, the transcriptional pattern of PtCRTISO4 at different cultivation periods was quite similar to other known carotenogenesis genes. Thus, PtCRTISO4 was transformed into N. oceanica. Compared to the wild type (WT), all three transgenic lines (T1–T3) of N. oceanica exhibited higher levels of total carotenoid and violaxanthin. Notably, T3 exhibited the peak violaxanthin content of 4.48 mg g–1 dry cell weight (DCW), which was 1.68-folds higher than WT. Interestingly, qRT-polymerase chain reaction (PCR) results demonstrated that phytoene synthase (NoPSY) rather than ζ-carotene desaturase (NoZDS) and lycopene β-cyclase (NoLCYB) exhibited the highest upregulation, suggesting that PtCRTISO4 played an additional regulatory role in terms of carotenoid accumulation. Moreover, PtCRTISO4 overexpression increased C18:1n-9 but decreased C16:1n-7, implying that C18:1 may serve as a main feedstock for xanthophyll esterification in Nannochloropsis. Our results will provide valuable information for the violaxanthin production from Nannochloropsis.
Collapse
Affiliation(s)
- Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yi Xin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Luyao Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ying Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ruolan Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education of China, School of Marine Science, Ningbo University, Ningbo, China
- *Correspondence: Lin Zhang,
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Jichang Han,
| |
Collapse
|
8
|
Nayak JJ, Anwar S, Krishna P, Chen ZH, Plett JM, Foo E, Cazzonelli CI. Tangerine tomato roots show increased accumulation of acyclic carotenoids, less abscisic acid, drought sensitivity, and impaired endomycorrhizal colonization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111308. [PMID: 35696908 DOI: 10.1016/j.plantsci.2022.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The Heirloom Golden tangerine tomato fruit variety is highly nutritious due to accumulation of tetra-cis-lycopene, that has a higher bioavailability and recognised health benefits in treating anti-inflammatory diseases compared to all-trans-lycopene isomers found in red tomatoes. We investigated if photoisomerization of tetra-cis-lycopene occurs in roots of the MicroTom tangerine (tangmic) tomato and how this affects root to shoot biomass, mycorrhizal colonization, abscisic acid accumulation, and responses to drought. tangmic plants grown in soil under glasshouse conditions displayed a reduction in height, number of flowers, fruit yield, and root length compared to wild-type (WT). Soil inoculation with Rhizophagus irregularis revealed fewer arbuscules and other fungal structures in the endodermal cells of roots in tangmic relative to WT. The roots of tangmic hyperaccumulated acyclic cis-carotenes, while only trace levels of xanthophylls and abscisic acid were detected. In response to a water deficit, leaves from the tangmic plants displayed a rapid decline in maximum quantum yield of photosystem II compared to WT, indicating a defective root to shoot signalling response to drought. The lack of xanthophylls biosynthesis in tangmic roots reduced abscisic acid levels, thereby likely impairing endomycorrhizal colonisation and drought-induced root to shoot signalling.
Collapse
Affiliation(s)
- Jwalit J Nayak
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Sidra Anwar
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Priti Krishna
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
9
|
Zhang J, Sun H, Guo S, Ren Y, Li M, Wang J, Yu Y, Zhang H, Gong G, He H, Zhang C, Xu Y. ClZISO mutation leads to photosensitive flesh in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1565-1578. [PMID: 35187585 DOI: 10.1007/s00122-022-04054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The mutation of ClZISO identified in EMS-induced watermelon leads to photosensitive flesh in watermelon. Watermelon (Citrullus lanatus) has a colorful flesh that attracts consumers and benefits human health. We developed an ethyl-methanesulfonate mutation library in red-fleshed line '302' to create new flesh color lines and found a yellow-fleshed mutant which accumulated ζ-carotene. The initial yellow color of this mutant can be photobleached within 10 min under intense sunlight. A long-term light-emitting diode (LED) light treatment turned flesh color from yellow to pink. We identified this unique variation as photosensitive flesh mutant ('psf'). Using bulked segregant analysis, we fine-mapped an EMS-induced G-A transversion in 'psf' which leads to a premature stop codon in 15-cis-ζ-carotene isomerase (ClZISO) gene. We detected that wild-type ClZISO is expressed in chromoplasts to catalyze the conversion of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene. The truncated ClZISOmu protein in psf lost this catalytic function. Light treatment can partially compensate ClZISOmu isomerase activity via photoisomerization in vitro and in vivo. Transcriptome analysis showed that most carotenoid biosynthesis genes in psf were downregulated. The dramatic increase of ABA content in flesh with fruit development was blocked in psf. This study explores the molecular mechanism of carotenoid biosynthesis in watermelon and provides a theoretical and technical basis for breeding different flesh color lines in watermelon.
Collapse
Affiliation(s)
- Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Hongju He
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Chao Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
10
|
Zhang P, Sun M, Wang X, Guo R, Sun Y, Gui M, Li J, Wang T, Zhang L. Morphological Characterization and Transcriptional Regulation of Corolla Closure in Ipomoea purpurea. FRONTIERS IN PLANT SCIENCE 2021; 12:697764. [PMID: 34557209 PMCID: PMC8453026 DOI: 10.3389/fpls.2021.697764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Corolla closure protects pollen from high-temperature stress during pollen germination and fertilization in the ornamental plant morning glory (Ipomoea purpurea). However, the morphological nature of this process and the molecular events underpinning it remain largely unclear. Here, we examined the cellular and gene expression changes that occur during corolla closure in the I. purpurea. We divided the corolla closure process into eight stages (S0-S7) based on corolla morphology. During flower opening, bulliform cells appear papillate, with pigments in the adaxial epidermis of the corolla. These cells have distinct morphology from the smaller, flat cells in the abaxial epidermis in the corolla limb and intermediate of the corolla. During corolla closure, the bulliform cells of the adaxial epidermis severely collapse compared to cells on the abaxial side. Analysis of transparent tissue and cross sections revealed that acuminate veins in the corolla are composed of spiral vessels that begin to curve during corolla closure. When the acuminate veins were compromised, the corolla failed to close normally. We performed transcriptome analysis to obtain a time-course profile of gene expression during the process from the open corolla stage (S0) to semi-closure (S3). Genes that were upregulated from S0 to S1 were enriched in the polysaccharide degradation pathway, which positively regulates cell wall reorganization. Senescence-related transcription factor genes were expressed beginning at S1, leading to the activation of downstream autophagy-related genes at S2. Genes associated with peroxisomes and ubiquitin-mediated proteolysis were upregulated at S3 to enhance reactive oxygen species scavenging and protein degradation. Therefore, bulliform cells and acuminate veins play essential roles in corolla closure. Our findings provide a global understanding of the gene regulatory processes that occur during corolla closure in I. purpurea.
Collapse
Affiliation(s)
- Peipei Zhang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Mingyue Sun
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoqiong Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Runjiu Guo
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Yuchu Sun
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Mengyuan Gui
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Jingyuan Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Taixia Wang
- College of Life Science, Henan Normal University, Xinxiang, China
- Engineering Technology Research Center of Nursing and Utilisation of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
11
|
Yu Y, Yu J, Wang Q, Wang J, Zhao G, Wu H, Zhu Y, Chu C, Fang J. Overexpression of the rice ORANGE gene OsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110962. [PMID: 34315587 DOI: 10.1016/j.plantsci.2021.110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The ORANGE (OR) gene has been reported to regulate chromoplast differentiation and enhance carotenoid biosynthesis in many dicotyledonous plants. However, the function of the OR gene in monocotyledons, especially rice, is poorly known. Here, the OR gene from rice, OsOR, was isolated and characterized by generating overexpressing and genome editing mutant lines. The OsOR-overexpressing plants exhibited pleiotropic phenotypes, such as alternating transverse green and white sectors on leaves at the early tillering stage, that were due to changes in thylakoid development and reduced carotenoid content. In addition, the number of tillers significantly increased in OsOR-overexpressing plants but decreased in osor mutant lines, a result similar to that previously reported for the carotenoid isomerase mutant mit3. The expression of the DWARF3 and DWARF53 genes that are involved in the strigolactone signalling pathway were similarly downregulated in OsOR-overexpressing plants but upregulated in osor mutants. Moreover, the OsOR-overexpressing plants exhibited greater sensitivity to salt and cold stress, and had lower total chlorophyll and higher MDA contents. All results suggest that the OsOR gene plays an important role not only in carotenoid accumulation but also in tiller number regulation and in responses to environmental stress in rice.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Jiyang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Qinglong Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Quality and Safety Institute of Agriculture Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangxin Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkai Wu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Chayut N, Yuan H, Saar Y, Zheng Y, Sun T, Zhou X, Hermanns A, Oren E, Faigenboim A, Hui M, Fei Z, Mazourek M, Burger J, Tadmor Y, Li L. Comparative transcriptome analyses shed light on carotenoid production and plastid development in melon fruit. HORTICULTURE RESEARCH 2021; 8:112. [PMID: 33931604 PMCID: PMC8087762 DOI: 10.1038/s41438-021-00547-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Carotenoids, such as β-carotene, accumulate in chromoplasts of various fleshy fruits, awarding them with colors, aromas, and nutrients. The Orange (CmOr) gene controls β-carotene accumulation in melon fruit by posttranslationally enhancing carotenogenesis and repressing β-carotene turnover in chromoplasts. Carotenoid isomerase (CRTISO) isomerizes yellow prolycopene into red lycopene, a prerequisite for further metabolism into β-carotene. We comparatively analyzed the developing fruit transcriptomes of orange-colored melon and its two isogenic EMS-induced mutants, low-β (Cmor) and yofi (Cmcrtiso). The Cmor mutation in low-β caused a major transcriptomic change in the mature fruit. In contrast, the Cmcrtiso mutation in yofi significantly changed the transcriptome only in early fruit developmental stages. These findings indicate that melon fruit transcriptome is primarily altered by changes in carotenoid metabolic flux and plastid conversion, but minimally by carotenoid composition in the ripe fruit. Clustering of the differentially expressed genes into functional groups revealed an association between fruit carotenoid metabolic flux with the maintenance of the photosynthetic apparatus in fruit chloroplasts. Moreover, large numbers of thylakoid localized photosynthetic genes were differentially expressed in low-β. CmOR family proteins were found to physically interact with light-harvesting chlorophyll a-b binding proteins, suggesting a new role of CmOR for chloroplast maintenance in melon fruit. This study brings more insights into the cellular and metabolic processes associated with fruit carotenoid accumulation in melon fruit and reveals a new maintenance mechanism of the photosynthetic apparatus for plastid development.
Collapse
Affiliation(s)
- Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yuval Saar
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anna Hermanns
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Elad Oren
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Adi Faigenboim
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Zhou H, Yang M, Zhao L, Zhu Z, Liu F, Sun H, Sun C, Tan L. HIGH-TILLERING AND DWARF 12 modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1212-1224. [PMID: 33097962 DOI: 10.1093/jxb/eraa497] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/20/2020] [Indexed: 05/27/2023]
Abstract
Photosynthesis and plant architecture are important factors influencing grain yield in rice (Oryza sativa L.). Here, we identified a high-tillering and dwarf 12 (htd12) mutant and analyzed the effects of the HTD12 mutation on these important factors. HTD12 encodes a 15-cis-ζ-carotene isomerase (Z-ISO) belonging to the nitrite and nitric oxide reductase U (NnrU) protein family, as revealed by positional mapping and transformation experiments. Sequence analysis showed that a single nucleotide transition from guanine (G) to adenine (A) in the 3' acceptor site between the first intron and second exon of HTD12 alters its mRNA splicing in htd12 plants, resulting in a 49-amino acid deletion that affects carotenoid biosynthesis and photosynthesis. In addition, compared with the wild type, htd12 had significantly lower concentrations of ent-2'-epi-5-deoxystrigol (epi-5DS), a native strigolactone, in both roots and root exudates, resulting in an obvious increase in tiller number and decrease in plant height. These findings indicate that HTD12, the rice homolog of Z-ISO, regulates chloroplast development and photosynthesis by functioning in carotenoid biosynthesis, and modulates plant architecture by affecting strigolactone concentrations.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Mai Yang
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Lei Zhao
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Zuofeng Zhu
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hongying Sun
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Lubin Tan
- MOE Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Yuan G, Li Y, Chen B, He H, Wang Z, Shi J, Yang Y, Zou C, Pan G. Identification and fine mapping of a recessive gene controlling zebra leaf phenotype in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:9. [PMID: 37309474 PMCID: PMC10236063 DOI: 10.1007/s11032-021-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/07/2021] [Indexed: 06/14/2023]
Abstract
Leaf color mutant is an important resource for studying chlorophyll biosynthesis and chloroplast development in maize. Here, a novel mutant zebra crossband 9 (zb9) with transverse green-/yellow-striped leaves appeared from ten-leaf stage until senescence was identified from mutant population derived from the maize inbred line RP125. The yellow section of the zb9 mutant displays a reduction of chlorophyll and carotenoid contents, as well as impaired chloroplast structure. Genetic analysis showed that the zb9 mutant phenotype was caused by a single recessive gene. Map-based cloning demonstrated that the zb9 locus was delimited into a 648 kb region on chromosome 1 covering thirteen open reading frames (ORFs). Among them, a point mutation (G to A) in exon 2 of the gene Zm00001d029151, named Zmzb9, was identified based on sequencing analysis. The causal gene Zmzb9 encodes UDP-glucose-4-epimerase 4 (UGE4), a key enzyme involved in chloroplast development and was considered as the only candidate gene controlling the mutant phenotype. Expression patterns indicated that the causal gene was abundantly expressed in the leaves and sheaths, as well as significantly downregulated in the mutant compared to that in the wild type. Subcellular localization showed that ZmZB9 was localized in chloroplasts and implied the putative gene involved in chloroplast development. Taken together, we propose that the causal gene Zmzb9 tightly associated with the zebra leaf phenotype, and the obtained gene here will help to uncover the regulatory mechanism of pigment biosynthesis and chloroplast development in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01202-7.
Collapse
Affiliation(s)
- Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yucui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Benfang Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hui He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhiying Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiahao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
15
|
Jiang M, Zhang F, Yuan Q, Lin P, Zheng H, Liang S, Jian Y, Miao H, Li H, Wang Q, Sun B. Characterization of BoaCRTISO Reveals Its Role in Carotenoid Biosynthesis in Chinese Kale. FRONTIERS IN PLANT SCIENCE 2021; 12:662684. [PMID: 34054903 PMCID: PMC8160315 DOI: 10.3389/fpls.2021.662684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/09/2021] [Indexed: 05/06/2023]
Abstract
Carotenoids are organic pigments that play an important role in both plant coloration and human health; they are a critical subject in molecular breeding due to growing demand for natural molecules in both food and medicine. In this study, we focus upon characterizing BoaCRTISO, the carotenoid isomerase gene before the branch of the carotenoid biosynthetic pathway, which is expressed in all organs and developmental stages of Chinese kale, and BoaCRTISO, which is located in the chloroplast. The expression of BoaCRTISO is induced by strong light, red and blue combined light, and gibberellic acid treatment, but it is suppressed by darkness and abscisic acid treatment. We obtained BoaCRTISO-silenced plants via virus-induced gene silencing technology, and the silence efficiencies ranged from 52 to 77%. The expressions of most carotenoid and chlorophyll biosynthetic genes in BoaCRTISO-silenced plants were downregulated, and the contents of carotenoids and chlorophyll were reduced. Meanwhile, BoaCRTISO-silenced plants exhibited phenotypes of yellowing leaves and inhibited growth. This functional characterization of BoaCRTISO provides insight for the biosynthesis and regulation of carotenoid in Chinese kale.
Collapse
Affiliation(s)
- Min Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yuan
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Peixing Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hao Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Sha Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yue Jian
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Huiying Miao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
- *Correspondence: Qiaomei Wang,
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Bo Sun,
| |
Collapse
|
16
|
Moreno JC, Mi J, Alagoz Y, Al‐Babili S. Plant apocarotenoids: from retrograde signaling to interspecific communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:351-375. [PMID: 33258195 PMCID: PMC7898548 DOI: 10.1111/tpj.15102] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 05/08/2023]
Abstract
Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants' rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β-cyclocitral, β-cyclogeranic acid, β-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant-plant and plant-herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.
Collapse
Affiliation(s)
- Juan C. Moreno
- Max Planck Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1Potsdam14476Germany
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Yagiz Alagoz
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Salim Al‐Babili
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
18
|
Sun B, Jiang M, Zheng H, Jian Y, Huang WL, Yuan Q, Zheng AH, Chen Q, Zhang YT, Lin YX, Wang Y, Wang XR, Wang QM, Zhang F, Tang HR. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO. HORTICULTURE RESEARCH 2020; 7:161. [PMID: 33082968 PMCID: PMC7527958 DOI: 10.1038/s41438-020-00379-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/07/2020] [Accepted: 07/10/2020] [Indexed: 05/03/2023]
Abstract
The carotenoid isomerase gene (BoaCRTISO) of Chinese kale was targeted and edited using the CRISPR/Cas9 system in the present study. The results showed a high mutation rate (81.25%), and 13 crtiso mutants were obtained. Only two types of mutations, insertions and replacements, were found. Both the total and individual carotenoid and chlorophyll concentrations of the biallelic and homozygous mutants were reduced, and the total levels declined by 11.89-36.33%. The color of the biallelic and homozygous mutants changed from green to yellow, likely reflecting a reduction in the color-masking effect of chlorophyll on carotenoids. The expression levels of most carotenoid and chlorophyll biosynthesis-related genes, including CRTISO, were notably lower in the mutants than in the WT plants. In addition, the functional differences between members of this gene family were discussed. In summary, these findings indicate that CRISPR/Cas9 is a promising technique for the quality improvement of Chinese kale and other Brassica vegetables.
Collapse
Affiliation(s)
- Bo Sun
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Min Jiang
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Hao Zheng
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Yue Jian
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Wen-Li Huang
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Qiao Yuan
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Ai-Hong Zheng
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Yun-Ting Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Yuan-Xiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Xiao-Rong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Qiao-Mei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, 310058 Hangzhou, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
| | - Hao-Ru Tang
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, 611130 Chengdu, China
| |
Collapse
|
19
|
Cazzonelli CI, Hou X, Alagoz Y, Rivers J, Dhami N, Lee J, Marri S, Pogson BJ. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. eLife 2020; 9:45310. [PMID: 32003746 PMCID: PMC6994220 DOI: 10.7554/elife.45310] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are a core plastid component and yet their regulatory function during plastid biogenesis remains enigmatic. A unique carotenoid biosynthesis mutant, carotenoid chloroplast regulation 2 (ccr2), that has no prolamellar body (PLB) and normal PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR) levels, was used to demonstrate a regulatory function for carotenoids and their derivatives under varied dark-light regimes. A forward genetics approach revealed how an epistatic interaction between a ζ-carotene isomerase mutant (ziso-155) and ccr2 blocked the biosynthesis of specific cis-carotenes and restored PLB formation in etioplasts. We attributed this to a novel apocarotenoid retrograde signal, as chemical inhibition of carotenoid cleavage dioxygenase activity restored PLB formation in ccr2 etioplasts during skotomorphogenesis. The apocarotenoid acted in parallel to the repressor of photomorphogenesis, DEETIOLATED1 (DET1), to transcriptionally regulate PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR), PHYTOCHROME INTERACTING FACTOR3 (PIF3) and ELONGATED HYPOCOTYL5 (HY5). The unknown apocarotenoid signal restored POR protein levels and PLB formation in det1, thereby controlling plastid development.
Collapse
Affiliation(s)
| | - Xin Hou
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yagiz Alagoz
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - John Rivers
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australia
| | - Shashikanth Marri
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Barry J Pogson
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
20
|
Feng P, Shi J, Zhang T, Zhong Y, Zhang L, Yu G, Zhang T, Zhu X, Xing Y, Yin W, Sang X, Ling Y, Zhang C, Yang Z, He G, Wang N. Zebra leaf 15, a receptor-like protein kinase involved in moderate low temperature signaling pathway in rice. RICE (NEW YORK, N.Y.) 2019; 12:83. [PMID: 31732821 PMCID: PMC6858429 DOI: 10.1186/s12284-019-0339-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/17/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Zebra leaf mutants are an important resource for studying leaf colour in rice. In most such mutants, the zebra leaf phenotype results from defective chloroplast biogenesis. The molecular mechanism by which zebra leaves develop remains unclear, so additional zebra-leaf mutants need to be identified. RESULTS We isolated a novel rice zebra-leaf mutant, named zebra leaf 15 (z15), which showed transversely striped leaves with yellow-green or white-green sectors, in which chloroplast structure was disturbed. Transmission electron microscopy revealed that the structure of various organelles was impaired in yellow/white sectors. Z15, a single-copy gene in the rice genome, encodes a receptor-like protein kinase. Subcellular localization analysis indicates that Z15 and z15 are localized on the plasma membrane. The expression of Z15 is induced by moderate low temperature (18 °C). The mutation of Z15 influenced the expression of two downstream genes, OsWRKY71 and OsMYB4, that were responsive to moderate low temperature. The results show that Z15 plays a crucial role in the early stages of the response to moderate low temperature in rice. CONCLUSIONS We identified a novel zebra-leaf mutant (z15) that impaired chloroplast structure in rice, LOC_Os05g12680, encoding a receptor-like protein kinase. Further study indiceted that Z15 plays a crucial role in the early stages of the response to moderate low temperature in rice.
Collapse
Affiliation(s)
- Ping Feng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Junqiong Shi
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ting Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqin Zhong
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Lisha Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoling Yu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Tianquan Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoyan Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yadi Xing
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Wuzhong Yin
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xianchun Sang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Changwei Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenglin Yang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| | - Nan Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson SA, Chu C, Tian Z. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 2018; 50:1435-1441. [PMID: 30250128 DOI: 10.1038/s41588-018-0229-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/07/2018] [Indexed: 12/27/2022]
Abstract
Domesticated species often exhibit convergent phenotypic evolution, termed the domestication syndrome, of which loss of seed dormancy is a component. To date, dormancy genes that contribute to parallel domestication across different families have not been reported. Here, we cloned the classical stay-green G gene from soybean and found that it controls seed dormancy and showed evidence of selection during soybean domestication. Moreover, orthologs in rice and tomato also showed evidence of selection during domestication. Analysis of transgenic plants confirmed that orthologs of G had conserved functions in controlling seed dormancy in soybean, rice, and Arabidopsis. Functional investigation demonstrated that G affected seed dormancy through interactions with NCED3 and PSY and in turn modulated abscisic acid synthesis. Therefore, we identified a gene responsible for seed dormancy that has been subject to parallel selection in multiple crop families. This may help facilitate the domestication of new crops.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhen Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Xu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Lu
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Tao Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingsheng Chen
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA.
| | - Chengcai Chu
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
cis-carotene biosynthesis, evolution and regulation in plants: The emergence of novel signaling metabolites. Arch Biochem Biophys 2018; 654:172-184. [PMID: 30030998 DOI: 10.1016/j.abb.2018.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023]
Abstract
Carotenoids are isoprenoid pigments synthesised by plants, algae, photosynthetic bacteria as well as some non-photosynthetic bacteria, fungi and insects. Abundant carotenoids found in nature are synthesised via a linear route from phytoene to lycopene after which the pathway bifurcates into cyclised α- and β-carotenes. Plants evolved additional steps to generate a diversity of cis-carotene intermediates, which can accumulate in fruits or tissues exposed to an extended period of darkness. Enzymatic or oxidative cleavage, light-mediated photoisomerization and histone modifications can affect cis-carotene accumulation. cis-carotene accumulation has been linked to the production of signaling metabolites that feedback and forward to regulate nuclear gene expression. When cis-carotenes accumulate, plastid biogenesis and operational control can become impaired. Carotenoid derived metabolites and phytohormones such as abscisic acid and strigolactones can fine-tune cellular homeostasis. There is a hunt to identify a novel cis-carotene derived apocarotenoid signal and to elucidate the molecular mechanism by which it facilitates communication between the plastid and nucleus. In this review, we describe the biosynthesis and evolution of cis-carotenes and their links to regulatory switches, as well as highlight how cis-carotene derived apocarotenoid signals might control organelle communication, physiological and developmental processes in response to environmental change.
Collapse
|
23
|
Liu L, Xie T, Peng P, Qiu H, Zhao J, Fang J, Patil SB, Wang Y, Fang S, Chu J, Yuan S, Zhang W, Li X. Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:1-10. [PMID: 29362087 DOI: 10.1016/j.plantsci.2017.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/18/2017] [Accepted: 11/01/2017] [Indexed: 05/27/2023]
Abstract
Carotenoids not only play important roles in light harvesting and photoprotection against excess light, but also serve as precursors for apocaroteniod hormones such as abscisic acid (ABA) and strigolactones (SLs). Although light- and ABA-associated phenotypes of the carotenoid biosynthesis mutants such as albino, leaf variegation and preharvest sprouting have been studied extensively, the SLs-related branching phenotype is rarely explored. Here we characterized four allelic rice mutants named mit3, which exhibited moderately increased tiller number, semi-dwarfism and leaf variegation. Map-based cloning revealed that MIT3 encodes a carotenoid isomerase (CRTISO), the key enzyme catalyzing the conversion from prolycopene to all-trans-lycopene in carotenoid biosynthesis. Prolycopene was accumulated while all-trans-lycopene was barely detectable in the dark-grown mit3 seedlings. Accordingly, content of lutein and β-carotene, the two most abundant carotenoids, was significantly reduced. Furthermore, content of epi-5DS, a native SL, was significantly reduced in mit3. Exogenously applied GR24, a synthetic SL, could rescue the tillering phenotype of mit3. Double mutant analysis of mit3 with the SLs biosynthesis mutant d17 revealed that MIT3 controls tiller development upstream of the SLs biosynthesis pathway. Our results reveal that the tillering phenotype of mit3 is due to SL deficiency and directly link carotenoid deficiency with SL-regulated rice tillering.
Collapse
Affiliation(s)
- Lihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tingting Xie
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Peng Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suyash Bhimgonda Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yiqin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Wenhui Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China,.
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
24
|
Liu Z, Wang Z, Gu H, You J, Hu M, Zhang Y, Zhu Z, Wang Y, Liu S, Chen L, Liu X, Tian Y, Zhou S, Jiang L, Liu L, Wan J. Identification and Phenotypic Characterization of ZEBRA LEAF16 Encoding a β-Hydroxyacyl-ACP Dehydratase in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:782. [PMID: 29946330 PMCID: PMC6005893 DOI: 10.3389/fpls.2018.00782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/23/2018] [Indexed: 05/06/2023]
Abstract
The chloroplast is a self-independent organelle and contains its own transcription and translation systems. The establishment of genetic systems is vital for normal plant growth and development. We isolated a rice zebra leaf 16 (zl16) mutant derived from rice cultivar 9311. The zl16 mutant showed chlorotic abnormalities in the transverse sectors of the young leaves of seedlings. The use of transmission electron microscopy (TEM) demonstrated that dramatic defects occurred in variegated zl16 leaves during the early development of a chloroplast. Map-based cloning revealed that ZL16 encodes a β-hydroxyacyl-ACP dehydratase (HAD) involved in de novo fatty acid synthesis. Compared with the wild type, a missense mutation (Arg164Trp) in the zl16 mutant was identified, which significantly reduced enzymatic activity and altered the three-dimensional modeling structure of the putative protein. ZL16 was ubiquitously expressed in various plant organs, with a pronounced level in the young leaf. A subcellular localization experiment indicated that ZL16 was targeted in the chloroplast. Furthermore, we analyzed the expression of some nuclear genes involved in chloroplast development, and found they were altered in the zl16 mutant. RNA-Seq analysis indicated that some genes related to cell membrane constituents were downregulated in the mutant. An in vivo metabolic assay revealed that the total fatty acid content in the mutant was significantly decreased relative to the wild type. Our results indicate that HAD is essential for the development of chloroplasts by regulating the synthesis of fatty acids in rice.
Collapse
Affiliation(s)
- Ziwen Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Zhiyuan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Han Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jia You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Manman Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yujun Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Ze Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Linglong Liu,
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Jiang Y, Xiao P, Shao Q, Qin H, Hu Z, Lei A, Wang J. Metabolic responses to ethanol and butanol in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:239. [PMID: 29075323 PMCID: PMC5646117 DOI: 10.1186/s13068-017-0931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Microalgae have been demonstrated to be among the most promising phototrophic species for producing renewable biofuels and chemicals. Ethanol and butanol are clean energy sources with good chemical and physical properties as alternatives to gasoline. However, biosynthesis of these two biofuels has not been achieved due to low tolerance of algal cells to ethanol or butanol. RESULTS With an eye to circumventing these problems in the future and engineering the robust alcohol-producing microalgal hosts, we investigated the metabolic responses of the model green alga Chlamydomonas reinhardtii to ethanol and butanol. Using a quantitative proteomics approach with iTRAQ-LC-MS/MS technologies, we detected the levels of 3077 proteins; 827 and 730 of which were differentially regulated by ethanol and butanol, respectively, at three time points. In particular, 41 and 59 proteins were consistently regulated during at least two sampling times. Multiple metabolic processes were affected by ethanol or butanol, and various stress-related proteins, transporters, cytoskeletal proteins, and regulators were induced as the major protection mechanisms against toxicity of the organic solvents. The most highly upregulated butanol response protein was Cre.770 peroxidase. CONCLUSIONS The study is the first comprehensive view of the metabolic mechanisms employed by C. reinhardtii to defend against ethanol or butanol toxicity. Moreover, the proteomic analysis provides a resource for investigating potential gene targets for engineering microalgae to achieve efficient biofuel production.
Collapse
Affiliation(s)
- Yongguang Jiang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Peng Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Qing Shao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen, 518060 People’s Republic of China
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
26
|
Abstract
Carotenoids are the most important biocolor isoprenoids responsible for yellow, orange and red colors found in nature. In plants, they are synthesized in plastids of photosynthetic and sink organs and are essential molecules for photosynthesis, photo-oxidative damage protection and phytohormone synthesis. Carotenoids also play important roles in human health and nutrition acting as vitamin A precursors and antioxidants. Biochemical and biophysical approaches in different plants models have provided significant advances in understanding the structural and functional roles of carotenoids in plants as well as the key points of regulation in their biosynthesis. To date, different plant models have been used to characterize the key genes and their regulation, which has increased the knowledge of the carotenoid metabolic pathway in plants. In this chapter a description of each step in the carotenoid synthesis pathway is presented and discussed.
Collapse
Affiliation(s)
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| |
Collapse
|
27
|
Murchie EH, Ali A, Herman T. Photoprotection as a Trait for Rice Yield Improvement: Status and Prospects. RICE (NEW YORK, N.Y.) 2015; 8:31. [PMID: 26424004 PMCID: PMC4589542 DOI: 10.1186/s12284-015-0065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/19/2015] [Indexed: 05/25/2023]
Abstract
Solar radiation is essential for photosynthesis and global crop productivity but it is also variable in space and time, frequently being limiting or in excess of plant requirements depending on season, environment and microclimate. Photoprotective mechanisms at the chloroplast level help to avoid oxidative stress and photoinhibition, which is a light-induced reduction in photosynthetic quantum efficiency often caused by damage to photosystem II. There is convincing evidence that photoinhibition has a large impact on biomass production in crops and this may be especially high in rice, which is typically exposed to high tropical light levels. Thus far there has been little attention to photoinhibition as a target for improvement of crop yield. However, we now have sufficient evidence to examine avenues for alleviation of this particular stress and the physiological and genetic basis for improvement in rice and other crops. Here we examine this evidence and identify new areas for attention. In particular we discuss how photoprotective mechanisms must be optimised at both the molecular and the canopy level in order to coordinate with efficient photosynthetic regulation and realise an increased biomass and yield in rice.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| | - Asgar Ali
- School of Biosciences, University of Nottingham Malaysia Campus, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Tiara Herman
- School of Biosciences, University of Nottingham Malaysia Campus, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
28
|
Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, Zhong P, Xiao F, Sun C, Xu Z, Deng X, Wang P. Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:127-34. [PMID: 26259181 DOI: 10.1016/j.plantsci.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 05/07/2023]
Abstract
Ferredoxins (Fds) are small iron-sulfur proteins that mediate electron transfer in a wide range of metabolic reactions. Besides Fds, there is a type of Fd-like proteins designated as FdC, which have conserved elements of Fds, but contain a significant C-terminal extension. So far, only two FdC genes of Arabidopsis (Arabidopsis thaliana) have been identified in higher plants and thus the functions of FdC proteins remain largely unknown. In this study, we isolated a yellow-green leaf mutant, 501ys, in rice (Oryza sativa). The mutant exhibited yellow-green leaf phenotype and reduced chlorophyll level. The phenotype of 501ys was caused by mutation of a gene on rice chromosome 3. Map-based cloning of this mutant resulted in identification of OsFdC2 gene (LOC_Os03g48040) showing high identity with Arabidopsis FdC2 gene (AT1G32550). OsFdC2 was expressed most abundantly in leaves and its encoded protein was targeted to the chloroplast. In 501ys mutant, a missense mutation was detected in DNA sequence of the gene, resulting in an amino acid change in the encoded protein. The mutant phenotype was rescued by introduction of the wild-type gene. Therefore, we successfully identified FdC2 gene via map-based cloning approach, and demonstrated that mutation of this gene caused yellow-green leaf phenotype in rice.
Collapse
Affiliation(s)
- Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Hu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Huang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaozhi Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Liao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fuliang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
29
|
Vijayalakshmi K, Jha A, Dasgupta J. Ultrafast Triplet Generation and its Sensitization Drives Efficient Photoisomerization of Tetra-cis-lycopene to All-trans-lycopene. J Phys Chem B 2015; 119:8669-78. [DOI: 10.1021/acs.jpcb.5b02086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ajay Jha
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|
30
|
Yin CC, Ma B, Collinge DP, Pogson BJ, He SJ, Xiong Q, Duan KX, Chen H, Yang C, Lu X, Wang YQ, Zhang WK, Chu CC, Sun XH, Fang S, Chu JF, Lu TG, Chen SY, Zhang JS. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. THE PLANT CELL 2015; 27:1061-81. [PMID: 25841037 PMCID: PMC4558702 DOI: 10.1105/tpc.15.00080] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/17/2015] [Indexed: 05/05/2023]
Abstract
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.
Collapse
Affiliation(s)
- Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Derek Phillip Collinge
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Barry James Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Si-Jie He
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Xiong
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai-Xuan Duan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Qin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Cai Chu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Hong Sun
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Gang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
Liu J, Wang J, Yao X, Zhang Y, Li J, Wang X, Xu Z, Chen W. Characterization and fine mapping of thermo-sensitive chlorophyll deficit mutant1 in rice (Oryza sativa L.). BREEDING SCIENCE 2015; 65:161-9. [PMID: 26069446 PMCID: PMC4430508 DOI: 10.1270/jsbbs.65.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/06/2015] [Indexed: 05/20/2023]
Abstract
Chlorophyll content is one of the most important traits controlling crop biomass and economic yield in rice. Here, we isolated a spontaneous rice mutant named thermo-sensitive chlorophyll deficit 1 (tscd1) derived from a backcross recombinant inbred line population. tscd1 plants grown normally from the seedling to tiller stages showed yellow leaves with reduced chlorophyll content, but showed no significant differences after the booting stage. At temperatures below 22°C, the tscd1 mutant showed the most obvious yellowish phenotype. With increasing temperature, the yellowish leaves gradually turned green and approached a normal wild type color. Wild type and tscd1 mutant plants had obviously different chloroplast structures and photosynthetic pigment precursor contents, which resulted in underdevelopment of chloroplasts and a yellowish phenotype in tscd1. Genetic analysis indicated that the mutant character was controlled by a recessive nuclear gene. Through map-based cloning, we located the tscd1 gene in a 34.95 kb region on the long arm of chromosome 2, containing two BAC clones and eight predicted candidate genes. Further characterization of the tscd1 gene is underway. Because it has a chlorophyll deficit phenotype before the tiller stage and little influence on growth vigor, it may play a role in ensuring the purity of hybrids.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Jiayu Wang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
- Corresponding author (e-mail: )
| | - Xiaoyun Yao
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Yu Zhang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research,
Kǒln,
Germany
| | - Xiaoxue Wang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Zhengjin Xu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Wenfu Chen
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| |
Collapse
|
32
|
Nisar N, Li L, Lu S, Khin NC, Pogson BJ. Carotenoid metabolism in plants. MOLECULAR PLANT 2015; 8:68-82. [PMID: 25578273 DOI: 10.1016/j.molp.2014.12.007] [Citation(s) in RCA: 664] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/30/2014] [Accepted: 12/11/2014] [Indexed: 05/19/2023]
Abstract
Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. They are colorants and critical components of the human diet as antioxidants and provitamin A. In this review, we summarize current knowledge of the genes and enzymes involved in carotenoid metabolism and describe recent progress in understanding the regulatory mechanisms underlying carotenoid accumulation. The importance of the specific location of carotenoid enzyme metabolons and plastid types as well as of carotenoid-derived signals is discussed.
Collapse
Affiliation(s)
- Nazia Nisar
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Li Li
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Centre for Agriculture and Health, Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 2100923, China
| | - Nay Chi Khin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
33
|
Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, Shu ZF, Li W, Wang GH, Wang GL. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 2014; 9:e99564. [PMID: 24932524 PMCID: PMC4059691 DOI: 10.1371/journal.pone.0099564] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/15/2014] [Indexed: 01/06/2023] Open
Abstract
Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.
Collapse
Affiliation(s)
- Xiao-juan Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Hai-qing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Hybrid Rice, Hunan, China
- * E-mail:
| | - Yue Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Feng He
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-feng Shu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- College of Plant Preservation, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-huai Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-liang Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
34
|
Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X, Guo X, Wang J, Lei C, Wu F, Lin Q, Liu Y, Liu L, Jiang L. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. PLANT CELL REPORTS 2013; 32:1855-67. [PMID: 24043333 DOI: 10.1007/s00299-013-1498-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/09/2013] [Accepted: 08/26/2013] [Indexed: 05/19/2023]
Abstract
An insert mutation of YELLOW-GREEN LEAF2 , encoding Heme Oxygenase 1 , results in significant reduction of its transcript levels, and therefore impairs chlorophyll biosynthesis in rice. Heme oxygenase (HO) in higher plants catalyzes the degradation of heme to synthesize phytochrome precursor and its roles conferring the photoperiodic control of flowering in rice have been revealed. However, its involvement in regulating rice chlorophyll (Chl) synthesis is not fully explored. In this study, we isolated a rice mutant named yellow-green leaf 2 (ygl2) from a (60)Co-irradiated population. Normal grown ygl2 seedlings showed yellow-green leaves with reduced contents of Chl and tetrapyrrole intermediates whereas an increase of Chl a/b ratio. Ultrastructural analyses demonstrated grana were poorly stacked in ygl2 mutant, resulting in underdevelopment of chloroplasts. The ygl2 locus was mapped to chromosome 6 and isolated via map-based cloning. Sequence analysis indicated that it encodes the rice HO1 and its identity was verified by transgenic complementation test and RNA interference. A 7-Kb insertion was found in the first exon of YGL2/HO1, resulting in significant reduction of YGL2 expressions in the ygl2 mutant. YGL2 was constitutively expressed in a variety of rice tissues with the highest levels in leaves and regulated by temperature. In addition, we found expression levels of some genes associated with Chl biosynthesis and photosynthesis were concurrently altered in ygl2 mutant. These results provide direct evidence that YGL2 has a vital function in rice Chl biosynthesis.
Collapse
Affiliation(s)
- Hong Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Soufflet-Freslon V, Jourdan M, Clotault J, Huet S, Briard M, Peltier D, Geoffriau E. Functional gene polymorphism to reveal species history: the case of the CRTISO gene in cultivated carrots. PLoS One 2013; 8:e70801. [PMID: 23940644 PMCID: PMC3733727 DOI: 10.1371/journal.pone.0070801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/24/2013] [Indexed: 01/01/2023] Open
Abstract
Background Carrot is a vegetable cultivated worldwide for the consumption of its root. Historical data indicate that root colour has been differentially selected over time and according to geographical areas. Root pigmentation depends on the relative proportion of different carotenoids for the white, yellow, orange and red types but only internally for the purple one. The genetic control for root carotenoid content might be partially associated with carotenoid biosynthetic genes. Carotenoid isomerase (CRTISO) has emerged as a regulatory step in the carotenoid biosynthesis pathway and could be a good candidate to show how a metabolic pathway gene reflects a species genetic history. Methodology/Principal Findings In this study, the nucleotide polymorphism and the linkage disequilibrium among the complete CRTISO sequence, and the deviation from neutral expectation were analysed by considering population subdivision revealed with 17 microsatellite markers. A sample of 39 accessions, which represented different geographical origins and root colours, was used. Cultivated carrot was divided into two genetic groups: one from Middle East and Asia (Eastern group), and another one mainly from Europe (Western group). The Western and Eastern genetic groups were suggested to be differentially affected by selection: a signature of balancing selection was detected within the first group whereas the second one showed no selection. A focus on orange-rooted carrots revealed that cultivars cultivated in Asia were mainly assigned to the Western group but showed CRTISO haplotypes common to Eastern carrots. Conclusion The carotenoid pathway CRTISO gene data proved to be complementary to neutral markers in order to bring critical insight in the cultivated carrot history. We confirmed the occurrence of two migration events since domestication. Our results showed a European background in material from Japan and Central Asia. While confirming the introduction of European carrots in Japanese resources, the history of Central Asia material remains unclear.
Collapse
Affiliation(s)
- Vanessa Soufflet-Freslon
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Matthieu Jourdan
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Jérémy Clotault
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Sébastien Huet
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Mathilde Briard
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Didier Peltier
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Emmanuel Geoffriau
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- Université d’Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Angers, France
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
- * E-mail:
| |
Collapse
|
36
|
Identification and characterization of BGL11(t), a novel gene regulating leaf-color mutation in rice (Oryza sativa L.). Genes Genomics 2013. [DOI: 10.1007/s13258-013-0094-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Zhang F, Luo X, Hu B, Wan Y, Xie J. YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. RICE (NEW YORK, N.Y.) 2013; 6:7. [PMID: 24280537 PMCID: PMC4883693 DOI: 10.1186/1939-8433-6-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/20/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Normal development of chloroplast is vitally important to plants, but its biological mechanism is still far from fully being understood, especially in rice. RESULTS In this study, a novel yellow-green leaf mutant, ygl138, derived from Nipponbare (Oryza sativa L. ssp. japonica) treated by ethyl methanesulfonate (EMS), was isolated. The mutant exhibited a distinct yellow-green leaf phenotype throughout development, reduced chlorophyll level, and arrested chloroplast development. The phenotype of the ygl138 mutant was caused by a single nuclear gene, which was tentatively designed as YGL138(t). The YGL138(t) locus was mapped to chromosome 11 and isolated into a confined region of 91.8 kb by map-based cloning. Sequencing analysis revealed that, Os11g05552, which was predicted to encode a signal recognition particle 54 kDa (SRP54) protein and act as a chloroplast precursor, had 18 bp nucleotides deletion in the coding region of ygl138 and led to a frameshift. Furthermore, the identity of Os11g05552 was verified by transgenic complementation. CONCLUSIONS These results are very valuable for further study on YGL138(t) gene and illuminating the mechanism of SRP54 protein involving in chloroplast development of rice.
Collapse
Affiliation(s)
- Fantao Zhang
- />College of Life Sciences, Jiangxi Normal University, Nanchang, 330022 China
| | - Xiangdong Luo
- />College of Life Sciences, Jiangxi Normal University, Nanchang, 330022 China
| | - Biaolin Hu
- />Biotechnology Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Yong Wan
- />Biotechnology Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Jiankun Xie
- />College of Life Sciences, Jiangxi Normal University, Nanchang, 330022 China
| |
Collapse
|
38
|
Lu XM, Hu XJ, Zhao YZ, Song WB, Zhang M, Chen ZL, Chen W, Dong YB, Wang ZH, Lai JS. Map-based cloning of zb7 encoding an IPP and DMAPP synthase in the MEP pathway of maize. MOLECULAR PLANT 2012; 5:1100-12. [PMID: 22498772 DOI: 10.1093/mp/sss038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
IspH is a key enzyme in the last step of the methyl-D-erythritol-4-phosphate (MEP) pathway. Loss of function of IspH can often result in complete yellow or albino phenotype in many plants. Here, we report the characterization of a recessive mutant of maize, zebra7 (zb7), showing transverse green/yellow striped leaves in young plants. The yellow bands of the mutant have decreased levels of chlorophylls and carotenoids with delayed chloroplast development. Low temperature suppressed mutant phenotype, while alternate light/dark cycle or high temperature enlarged the yellow section. Map-based cloning demonstrated that zb7 encodes the IspH protein with a mis-sense mutation in a conserved region. Transgenic silencing of Zb7 in maize resulted in complete albino plantlets that are aborted in a few weeks, confirming that Zb7 is important in the early stages of maize chloroplast development. Zb7 is constitutively expressed and its expression subject to a 16-h light/8-h dark cycle regulation. Our results suggest that the less effective or unstable IspH in zb7 mutant, together with its diurnal expression, are mechanistically accounted for the zebra phenotype. The increased IspH mRNA in the leaves of zb7 at the late development stage may explain the restoration of mutant phenotype in mature stages.
Collapse
Affiliation(s)
- Xiao-Min Lu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Han SH, Sakuraba Y, Koh HJ, Paek NC. Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-cis-lycopene and singlet oxygen. Mol Cells 2012; 33:87-97. [PMID: 22134723 PMCID: PMC3887748 DOI: 10.1007/s10059-012-2218-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022] Open
Abstract
In field conditions, the zebra2 (z2) mutant in rice (Oryza sativa) produces leaves with transverse pale-green/yellow stripes. It was recently reported that ZEBRA2 encodes carotenoid isomerase (CRTISO) and that low levels of lutein, an essential carotenoid for non-photochemical quenching, cause leaf variegation in z2 mutants. However, we found that the z2 mutant phenotype was completely suppressed by growth under continuous light (CL; permissive) conditions, with concentrations of chlorophyll, carotenoids and chloroplast proteins at normal levels in z2 mutants under CL. In addition, three types of reactive oxygen species (ROS; superoxide [O₂⁻], hydrogen peroxide [H₂O₂], and singlet oxygen [¹O₂]) accumulated to high levels in z2 mutants grown under short-day conditions (SD; alternate 10-h light/14-h dark; restrictive), but do not accumulate under CL conditions. However, the levels of lutein and zeaxanthin in z2 leaves were much lower than normal in both permissive CL and restrictive SD growth conditions, indicating that deficiency of these two carotenoids is not responsible for the leaf variegation phenotype. We found that the CRTISO substrate tetra-Cis-lycopene accumulated during the dark periods under SD, but not under CL conditions. Its accumulation was also positively correlated with ¹O₂ levels generated during the light period, which consequently altered the expression of ¹O₂-responsive and cell death-related genes in the variegated z2 leaves. Taking these results together, we propose that the z2 leaf variegation can be largely attributed to photoperiodic accumulation of tetra-cis-lycopene and generation of excessive ¹O₂ under natural day-night conditions.
Collapse
Affiliation(s)
- Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| |
Collapse
|
40
|
Kishimoto S, Ohmiya A. Carotenoid isomerase is key determinant of petal color of Calendula officinalis. J Biol Chem 2011; 287:276-285. [PMID: 22069331 DOI: 10.1074/jbc.m111.300301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Orange petals of calendula (Calendula officinalis) accumulate red carotenoids with the cis-configuration at the C-5 or C-5' position (5-cis-carotenoids). We speculated that the orange-flowered calendula is a carotenoid isomerase (crtiso) loss-of-function mutant that impairs the cis-to-trans conversion of 5-cis-carotenoids. We compared the sequences and enzyme activities of CRTISO from orange- and yellow-flowered calendulas. Four types of CRTISO were expressed in calendula petals. The deduced amino acid sequence of one of these genes (CoCRTISO1) was different between orange- and yellow-flowered calendulas, whereas the sequences of the other three CRTISOs were identical between these plants. Analysis of the enzymatic activities of the CoCRTISO homologs showed that CoCRTISO1-Y, which was expressed in yellow petals, converted carotenoids from the cis-to-trans-configuration, whereas both CoCRTISO1-ORa and 1-ORb, which were expressed in orange petals, showed no activity with any of the cis-carotenoids we tested. Moreover, the CoCRTISO1 genotypes of the F2 progeny obtained by crossing orange and yellow lines linked closely to petal color. These data indicate that CoCRTISO1 is a key regulator of the accumulation of 5-cis-carotenoids in calendula petals. Site-directed mutagenesis showed that the deletion of Cys-His-His at positions 462-464 in CoCRTISO1-ORa and a Gly-to-Glu amino acid substitution at position 450 in CoCRTISO1-ORb abolished enzyme activity completely, indicating that these amino acid residues are important for the enzymatic activity of CRTISO.
Collapse
Affiliation(s)
- Sanae Kishimoto
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan
| | - Akemi Ohmiya
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan.
| |
Collapse
|
41
|
Cazzonelli CI. Carotenoids in nature: insights from plants and beyond. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:833-847. [PMID: 32480941 DOI: 10.1071/fp11192] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 08/30/2011] [Indexed: 05/22/2023]
Abstract
Carotenoids are natural isoprenoid pigments that provide leaves, fruits, vegetables and flowers with distinctive yellow, orange and some reddish colours as well as several aromas in plants. Their bright colours serve as attractants for pollination and seed dispersal. Carotenoids comprise a large family of C40 polyenes and are synthesised by all photosynthetic organisms, aphids, some bacteria and fungi alike. In animals carotenoid derivatives promote health, improve sexual behaviour and are essential for reproduction. As such, carotenoids are commercially important in agriculture, food, health and the cosmetic industries. In plants, carotenoids are essential components required for photosynthesis, photoprotection and the production of carotenoid-derived phytohormones, including ABA and strigolactone. The carotenoid biosynthetic pathway has been extensively studied in a range of organisms providing an almost complete pathway for carotenogenesis. A new wave in carotenoid biology has revealed implications for epigenetic and metabolic feedback control of carotenogenesis. Developmental and environmental signals can regulate carotenoid gene expression thereby affecting carotenoid accumulation. This review highlights mechanisms controlling (1) the first committed step in phytoene biosynthesis, (2) flux through the branch to synthesis of α- and β-carotenes and (3) metabolic feedback signalling within and between the carotenoid, MEP and ABA pathways.
Collapse
Affiliation(s)
- Christopher I Cazzonelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, College of Medicine, Biology and Environment, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT 0200, Australia. Email
| |
Collapse
|