1
|
Panda S, Chappell-Maor L, Alejandro de Haro L, Jozwiak A, Gharat SA, Kazachkova Y, Cai J, Vainer A, Toppino L, Sehrawat U, Wizler G, Pliner M, Meir S, Rotino GL, Yasuor H, Rogachev I, Aharoni A. Molecular mechanisms driving the unusual pigmentation shift during eggplant fruit development. PLANT COMMUNICATIONS 2025:101321. [PMID: 40143551 DOI: 10.1016/j.xplc.2025.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 03/22/2025] [Indexed: 03/28/2025]
Abstract
Fruit pigmentation is a major signal that attracts frugivores to enable seed dispersal. In most fleshy fruit, green chlorophyll typically accumulates early in development and is replaced by a range of pigments during ripening. In species such as grape and strawberry, chlorophyll is replaced by red anthocyanins produced by the flavonoid biosynthetic pathway. Eggplant (Solanum melongena) is unique, as its fruit accumulates anthocyanins beginning from fruit set, and these are later replaced by the yellow flavonoid-pathway intermediate naringenin chalcone. To decipher the genetic regulation of this extraordinary pigmentation shift, we integrated mRNA and microRNA (miRNA) profiling data obtained from developing eggplant fruit. We discovered that SQUAMOSA PROMOTER BINDING-LIKE (i.e., SPL6a, SPL10, and SPL15), MYB1, and MYB2 transcription factors (TFs) regulate anthocyanin biosynthesis in early fruit development, whereas the MYB12 TF controls later accumulation of naringenin chalcone. We further show that miRNA157 and miRNA858 negatively regulate the expression of SPLs and MYB12, respectively. Taken together, our findings suggest that opposing and complementary expression of miRNAs and TFs controls the pigmentation switch in eggplant fruit skin. Intriguingly, despite the distinctive pigmentation pattern in eggplant, fruit development in other species makes use of homologous regulatory factors to control the temporal and spatial production of different pigment classes.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel; Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Louise Chappell-Maor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Luis Alejandro de Haro
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andrii Vainer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel
| | - Laura Toppino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, LO, Italy
| | - Urmila Sehrawat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guy Wizler
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Margarita Pliner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giuseppe Leonardo Rotino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, LO, Italy
| | - Hagai Yasuor
- Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
2
|
Barrera-Rojas CH, Nogueira FTS, van den Berg C. Painting the plant body: pigment biosynthetic pathways regulated by small RNAs. THE NEW PHYTOLOGIST 2025; 245:1411-1420. [PMID: 39562700 DOI: 10.1111/nph.20287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024]
Abstract
Plant pigments are diverse natural molecules involved in numerous biological functions such as development, growth, and metabolism. As plants age, not only new organs will be formed, but also, they will acquire the necessary pigments in response to the environment and endogenous programming in order to achieve reproductive success. Among the endogenous cues, the small RNAs (sRNAs), an endogenous group of ubiquitous regulatory molecules, may regulate the pigments-associated biosynthetic pathways at posttranscriptional level. Although plant pigments and sRNAs have been comprehensively studied in several processes throughout the entire plant cycle in model and nonmodel species, connections among these central players must be revised. Studying these complex networks allow us not only to know the progress that has been made in this area, but also generate research questions to be explored in order to unravel novel mechanisms for improving plant yield; therefore, in this review we have summarized the emerging roles of sRNAs-regulated nodes in mediating plant pigmentation-associated biosynthetic pathways, focused on chlorophylls, flavonoids, carotenoids, and betalains. In addition, we discuss perspectives related to the manipulation of those genes associated with plant pigments for obtaining genetically improved plants.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Plant Molecular Systematics Laboratory (LAMOL), Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, CEP: 44036-900, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo, CEP: 13.418-900, Brazil
| | - Cássio van den Berg
- Plant Molecular Systematics Laboratory (LAMOL), Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, CEP: 44036-900, Brazil
| |
Collapse
|
3
|
Wong AA, Carrero G, Hillen T. How the tulip breaking virus creates striped tulips. Commun Biol 2025; 8:129. [PMID: 39870833 PMCID: PMC11772565 DOI: 10.1038/s42003-025-07507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025] Open
Abstract
The beauty of tulips has enchanted mankind for centuries. The striped variety has attracted particular attention for its intricate and unpredictable patterns. A good understanding of the mechanism driving the striped pattern formation of broken tulips has been missing since the 17th century. It has been known since 1928 that these patterned tulips suffer from a viral infection by the tulip breaking virus. Here, we present a mathematical model to understand how a virus infection of the petals can lead to stripes, thereby providing a possible explanation of a 350 year-old mystery. The model, which describes the viral inhibition of pigment expression (anthocyanins) and their interaction with viral reproduction, incorporates a pattern formation mechanism identified as an activator-substrate mechanism, similar to the well-known Turing instability, working together with Wolpert's positional information mechanism. The model is solved on a growing tulip petal-shaped domain, whereby we introduce a new method to describe the tulip petal growth explicitly. This work shows how a viral infection that inhibits pigment production can lead to beautiful tulip patterns.
Collapse
Affiliation(s)
- Aidan A Wong
- Department Physics, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Gustavo Carrero
- Centre for Science, Faculty of Science and Technology, Athabasca University, Athabasca, AB, Canada
| | - Thomas Hillen
- Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Dawar P, Adhikari I, Mandal SN, Jayee B. RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism. Noncoding RNA 2024; 11:1. [PMID: 39846679 PMCID: PMC11755482 DOI: 10.3390/ncrna11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis. In eukaryotes, sRNAs, typically 20-31 nucleotides in length, are a class of ncRNAs found to function as nodes in various gene regulatory networks. sRNAs are known to play significant roles in regulating RNA population at the transcriptional, post-transcriptional, and translational levels. Along with sRNAs, such as miRNAs, siRNAs, and piRNAs, new categories of ncRNAs, i.e., lncRNAs and circRNAs, also contribute to RNA metabolism regulation in eukaryotes. In plants, various genetic screens have demonstrated that sRNA biogenesis mutants, as well as RNA metabolism pathway mutants, exhibit similar growth and development defects, misregulated primary and secondary metabolism, as well as impaired stress response. In addition, sRNAs are both the "products" and the "regulators" in broad RNA metabolism networks; gene regulatory networks involving sRNAs form autoregulatory loops that affect the expression of both sRNA and the respective target. This review examines the interconnected aspects of RNA metabolism with sRNA regulatory pathways in plants. It also explores the potential conservation of these pathways across different kingdoms, particularly in plants and animals. Additionally, the review highlights how cellular RNA homeostasis directly impacts adaptive responses to environmental changes as well as different developmental aspects in plants.
Collapse
Affiliation(s)
- Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Indra Adhikari
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Bhumika Jayee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Ouyang W, Sun H, Wang Y. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement. J Genet Genomics 2024:S1673-8527(24)00364-3. [PMID: 39716571 DOI: 10.1016/j.jgg.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include previously novel structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication-an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of action of sRNAs, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.
Collapse
Affiliation(s)
- Wenqi Ouyang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China
| | - Hongda Sun
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
6
|
Tan C, Zhang Q, Shen W, Liu Y, Zhang D, Chen L, Chen D. Expression profiles of microRNA-mRNA and their potential impact on anthocyanin accumulation in purple petals of Brassica napus. BMC PLANT BIOLOGY 2024; 24:1223. [PMID: 39707179 DOI: 10.1186/s12870-024-05922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Rapeseed (Brassica napus L.) possesses substantial economic value as an oil, vegetable, and forage crop, while also exhibiting notable ornamental characteristics. Recent advances in flower colour breeding have significantly enhanced the visual appeal of rapeseed, with anthocyanins identified as the primary contributor to the development of red, purple, and pink flowers. However, the mechanisms underlying the synthesis and regulation of anthocyanins during petal coloration in rapeseed are still poorly understood. This research combined miRNA and mRNA expression data from four different color phases, along with degradome analysis, to discover important miRNA-mRNA modules responsible for controlling the accumulation of anthocyanin in purple-flowered rapeseed. In the process of petal development, a grand sum of 247 miRNAs (including 223 known and 24 novel miRNAs) were effectively detected, with 64 of them displaying differential expression patterns. Degradome sequencing was used to conduct a comprehensive analysis of 152 targets for the differential expression miRNAs. Out of these, 108 miRNA-mRNA modules exhibit contrasting expression patterns. Some miRNAs and their corresponding targets have additionally been discovered, potentially playing a role in governing the buildup of anthocyanin in purple-flowered rapeseed. The regulatory modules miR156-SPL9 and miR828-PAP2 composed of miR156b and miR828 and their targets may play a key role in this process. The results offer a thorough analysis of miRNAs linked to the regulation of anthocyanin in B. napus, offering valuable understanding into the regulatory processes that govern miRNA-mediated anthocyanin production in Brassica crops.
Collapse
Affiliation(s)
- Chen Tan
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Qi Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Dawei Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411100, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Daozong Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
7
|
Xing M, Xin P, Wang Y, Han C, Lei C, Huang W, Zhang Y, Zhang X, Cheng K, Zhang X. A negative feedback regulatory module comprising R3-MYB repressor MYBL2 and R2R3-MYB activator PAP1 fine-tunes high light-induced anthocyanin biosynthesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7381-7400. [PMID: 39303008 DOI: 10.1093/jxb/erae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Anthocyanins, a group of flavonoids, play diverse roles in plant growth and environmental adaptation. The biosynthesis and accumulation of anthocyanin are regulated by environmental cues, such as high light. However, the precise mechanism underlying anthocyanin biosynthesis under high light conditions remains largely unclear. Here, we report that the R3-MYB repressor MYB-LIKE 2 (MYBL2) negatively regulates high light-induced anthocyanin biosynthesis in Arabidopsis by repressing two R2R3-MYB activators, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and PAP2, which are core components of the MYB-bHLH-WD40 (MBW) complex. We found that MYBL2 interacts with PAP1/2 and reduces their transcriptional activation activities, thus disrupting the expression of key genes involved in anthocyanin biosynthesis, such as DIHYDROFLAVONOL 4-REDUCTASE (DFR) and TRANSPARENT TESTA 19 (TT19). Additionally, MYBL2 attenuates the transcriptional activation of PAP1 and its own expression, but not that of PAP2. Conversely, PAP1 collaborates with TRANSPARENT TESTA 8 (TT8), a bHLH member of the MBW complex, to activate MYBL2 transcription when excessive anthocyanins are accumulated. Taken together, our findings reveal a negative feedback regulatory module composed of MYBL2 and PAP1 that fine-tunes high light-induced anthocyanin biosynthesis through modulating MBW complex assembly.
Collapse
Affiliation(s)
- Minghui Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Puman Xin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yuetian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chunyan Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Cangbao Lei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Weiyi Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Youpeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiangyu Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
8
|
Yao X, Zhang Q, Chen H, Ge X, Guo Y, Chen D. Study on the changes of miRNAs and their target genes in regulating anthocyanin synthesis during purple discoloration of cauliflower curd under low temperature stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1460914. [PMID: 39691485 PMCID: PMC11649399 DOI: 10.3389/fpls.2024.1460914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Introduction Cauliflower is widely cultivated all over the world is attributed to its palatable flavor, high levels of anti-cancer compounds, and diverse array of nutrients. Exposure to extremely cold stress during production can result in a more frequent occurrence of purple discoloration in cauliflower curds. In response to cold stress, plants naturally produce anthocyanins to eliminate reactive oxygen species (ROS) generated as a defense mechanism. Methods This research involved conducting mRNA sequencing analysis on cauliflower curds both before and after exposure to cold stress treatment. Results It was determined that the up-regulation of anthocyanin biosynthesis-related genes CHS, CHI, DFR, ANS, UGFT, PAP1/2, and MYBL2 occurred significantly in response to cold stress, resulting in a significant increase in total anthocyanin content. Subsequently, miRNA sequencing was employed to identify miRNAs in cauliflower curds, followed by differential expression analysis. The results showed that Bna-miR289 and Ath-miR157a may play a key role in regulating the accumulation of anthocyanin in cauliflower curds. Furthermore, we utilized degradome sequencing data to predict the target genes of the identified miRNAs, resulting in the identification of BolK_3g48940.1, BolK_9g11680.1, BolK_7g41780.1, BolK_3g68050.1, and BolK_3g729700.1 as targets. Subsequently, the expression patterns of the miRNAs and their target genes were validated using qRT-PCR, the results showed that Ath-miR157a and its target genes BolK_3g68050.1 and BolK_3g72970.1 may be the key to the purple of cauliflower curds under cold stress. Discussion Our preliminary findings identified key miRNAs and their target genes that may be involved in regulating anthocyanin synthesis, thereby enhancing the cold tolerance of cauliflower through mRNA, miRNA, and degradome sequencing. Overall, our study sheds light on the activation of anthocyanin synthesis in flower curds under cold stress conditions as a mechanism to enhance resilience to adverse environmental conditions.
Collapse
Affiliation(s)
- Xingwei Yao
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qi Zhang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangdong Guo
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| |
Collapse
|
9
|
Lu Z, Wang X, Lin X, Mostafa S, Zou H, Wang L, Jin B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109268. [PMID: 39520908 DOI: 10.1016/j.plaphy.2024.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Anthocyanins are naturally water-soluble pigments of plants, which can be pink, orange, red, purple, or blue. Anthocyanins belong to a subcategory of flavonoids known as polyphenols and are consumed in plant-based foods. The antioxidant properties of anthocyanins benefit human health. However, there has been no comprehensive review of the classification, distribution, and biosynthesis of anthocyanins and their regulation in plants, along with their potential health benefits. In this review, we provide a systematic synthesis of recent progress in anthocyanin research, specifically focusing on the classification, biosynthetic pathways, regulatory mechanisms, bioactivity, and health benefits. We bridge the gaps in understanding anthocyanin biological significance and potential applications. Furthermore, we discuss future directions for anthocyanin research, such as biotechnology, bioavailability, and the integration of artificial intelligence. We highlight pivotal research questions that warrant further exploration in the field of anthocyanin research.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinwen Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinyi Lin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Salma Mostafa
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Helin Zou
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Pescador-Dionisio S, Robles-Fort A, Parisi B, García-Robles I, Bassolino L, Mandolino G, Real MD, Rausell C. Contribution of the regulatory miR156-SPL9 module to the drought stress response in pigmented potato (Solanum tuberosum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109195. [PMID: 39442420 DOI: 10.1016/j.plaphy.2024.109195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Potato (Solanum tuberosum L.) is nowadays an important component of diversified cropping systems due to its adaptability, yielding capacity, and nutrition contribution. Breeding programs aiming at raising potato's nutritional value have mainly focused on the accumulation in potato tubers of health-promoting phytochemicals such as anthocyanins. In different plant species, increased amounts of anthocyanins in vegetative tissues have been associated with enhanced tolerance to abiotic and biotic stresses that challenge agrifood systems in the current context of global climate change. In the present study, we aimed at gaining insight into the effect of anthocyanin accumulation on the potato plants response to drought stress using three different potato genotypes with differential canopy and tuber pigmentation: the purple fleshed commercial variety Bleuet; the red fleshed breeding clone DAR170; and the non-pigmented commercial variety Monalisa. The varieties Bleuet and DAR170 exhibiting higher anthocyanin content in vegetative tissues than the Monalisa variety showed a remarkable inhibition of stem growth development under drought stress treatment suggestive of an anthocyanin-mediated physiological shift from growth to resilience as a mechanism of stress tolerance. The results of the expression analysis of stu-miR156a and its target StSPL9 gene in the potato plants with different anthocyanin content, as well as their change in response to drought stress support the participation of the conserved miR156-SPL9 regulatory module in coordinating potato plants development and plant responses to drought stress, involving precise fine-tuning of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Sara Pescador-Dionisio
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, (Valencia), Spain
| | - Aida Robles-Fort
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, (Valencia), Spain
| | - Bruno Parisi
- CREA-Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, (Valencia), Spain
| | - Laura Bassolino
- CREA-Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy.
| | - Giuseppe Mandolino
- CREA-Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - M Dolores Real
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, (Valencia), Spain
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Dr. Moliner 50, 46100, Burjassot, (Valencia), Spain.
| |
Collapse
|
11
|
Feng Z, Ma X, Wu X, Wu W, Shen B, Li S, Tang Y, Wang J, Shao C, Meng Y. Genome-wide identification of phasiRNAs in Arabidopsis thaliana, and insights into biogenesis, temperature sensitivity, and organ specificity. PLANT, CELL & ENVIRONMENT 2024; 47:3797-3812. [PMID: 38798197 DOI: 10.1111/pce.14974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The knowledge of biogenesis and target regulation of the phased small interfering RNAs (phasiRNAs) needs continuous update, since the phasiRNA loci are dynamically evolved in plants. Here, hundreds of phasiRNA loci of Arabidopsis thaliana were identified in distinct tissues and under different temperature. In flowers, most of the 24-nt loci are RNA-dependent RNA polymerase 2 (RDR2)-dependent, while the 21-nt loci are RDR6-dependent. Among the RDR-dependent loci, a significant portion is Dicer-like 1-dependent, indicating the involvement of microRNAs in their expression. Besides, two TAS candidates were discovered. Some interesting features of the phasiRNA loci were observed, such as the strong strand bias of phasiRNA generation, and the capacity of one locus for producing phasiRNAs by different increments. Both organ specificity and temperature sensitivity were observed for phasiRNA expression. In leaves, the TAS genes are highly activated under low temperature. Several trans-acting siRNA-target pairs are also temperature-sensitive. In many cases, the phasiRNA expression patterns correlate well with those of the processing signals. Analysis of the rRNA-depleted degradome uncovered several phasiRNA loci to be RNA polymerase II-independent. Our results should advance the understanding on phasiRNA biogenesis and regulation in plants.
Collapse
Affiliation(s)
- Zedi Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoxia Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Xiaomei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenyuan Wu
- School of Information Science and Technology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou Normal University, Hangzhou, China
| | - Bo Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shaolei Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yinju Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - JiaCen Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
12
|
Tan H, Liu Y, Guo H. The biogenesis, regulation and functions of transitive siRNA in plants. Acta Biochim Biophys Sin (Shanghai) 2024; 57:131-147. [PMID: 39376148 PMCID: PMC11802348 DOI: 10.3724/abbs.2024160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a sequence-specific gene silencing mechanism that modulates gene expression in eukaryotes. As core molecules of RNAi, various sRNAs are encoded in the plant genome or derived from invading RNA molecules, and their biogenesis depends on distinct genetic pathways. Transitive small interfering RNAs (siRNAs), which are sRNAs produced from double-strand RNA (dsRNA) in a process that depends on RNA-dependent RNA polymerases (RDRs), can amplify and spread silencing signals to additional transcripts, thereby enabling a phenomenon termed "transitive RNAi". Members of this class of siRNAs function in various biological processes ranging from development to stress adaptation. In Arabidopsis thaliana, two RDRs participate in the generation of transitive siRNAs, acting cooperatively with various siRNA generation-related factors, such as the RNA-induced silencing complex (RISC) and aberrant RNAs. Transitive siRNAs are produced in diverse subcellular locations and structures under the control of various mechanisms, highlighting the intricacies of their biogenesis and functions. In this review, we discuss recent advances in understanding the molecular events of transitive siRNA biogenesis and its regulation, with a particular focus on factors involved in RDR recruitment. We aim to provide a comprehensive description of the generalized mechanism governing the biogenesis of transitive siRNAs. Additionally, we present an overview of the diverse biological functions of these siRNAs and raise some pressing questions in this area for further investigation.
Collapse
Affiliation(s)
- Huijun Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular DesignInstitute of Plant and Food ScienceDepartment of BiologySchool of Life SciencesSouthern University of Science and TechnologyShenzhen518055China
- Department of BiologyHong Kong Baptist UniversityHong Kong SARChina
| | - Yuelin Liu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular DesignInstitute of Plant and Food ScienceDepartment of BiologySchool of Life SciencesSouthern University of Science and TechnologyShenzhen518055China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular DesignInstitute of Plant and Food ScienceDepartment of BiologySchool of Life SciencesSouthern University of Science and TechnologyShenzhen518055China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| |
Collapse
|
13
|
Zhang D, Jue D, Smith N, Zhong C, Finnegan EJ, de Feyter R, Wang MB, Greaves I. Asymmetric bulges within hairpin RNA transgenes influence small RNA size, secondary siRNA production and viral defence. Nucleic Acids Res 2024; 52:9904-9916. [PMID: 38967001 PMCID: PMC11381321 DOI: 10.1093/nar/gkae573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Small RNAs (sRNAs) are essential for normal plant development and range in size classes of 21-24 nucleotides. The 22nt small interfering RNAs (siRNAs) and miRNAs are processed by Dicer-like 2 (DCL2) and DCL1 respectively and can initiate secondary siRNA production from the target transcript. 22nt siRNAs are under-represented due to competition between DCL2 and DCL4, while only a small number of 22nt miRNAs exist. Here we produce abundant 22nt siRNAs and other siRNA size classes using long hairpin RNA (hpRNA) transgenes. By introducing asymmetric bulges into the antisense strand of hpRNA, we shifted the dominant siRNA size class from 21nt of the traditional hpRNA to 22, 23 and 24nt of the asymmetric hpRNAs. The asymmetric hpRNAs effectively silenced a β-glucuronidase (GUS) reporter transgene and the endogenous ethylene insensitive-2 (EIN2) and chalcone synthase (CHS) genes. Furthermore, plants containing the asymmetric hpRNA transgenes showed increased amounts of 21nt siRNAs downstream of the hpRNA target site compared to plants with the traditional hpRNA transgenes. This indicates that these asymmetric hpRNAs are more effective at inducing secondary siRNA production to amplify silencing signals. The 22nt asymmetric hpRNA constructs enhanced virus resistance in plants compared to the traditional hpRNA constructs.
Collapse
Affiliation(s)
- Daai Zhang
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Dengwei Jue
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Neil Smith
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Chengcheng Zhong
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - E Jean Finnegan
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Robert de Feyter
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Ming-Bo Wang
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Ian Greaves
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| |
Collapse
|
14
|
Hung YL, Hong SF, Wei WL, Cheng S, Yu JZ, Tjita V, Yong QY, Nishihama R, Kohchi T, Bowman JL, Chien YC, Chiu YH, Yang HC, Lu MYJ, Pan ZJ, Wang CN, Lin SS. Dual Regulation of Cytochrome P450 Gene Expression by Two Distinct Small RNAs, a Novel tasiRNA and miRNA, in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:1115-1134. [PMID: 38545690 DOI: 10.1093/pcp/pcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 07/31/2024]
Abstract
The miR390-derived TAS3 trans-acting short-interfering RNAs (tasiRNAs) module represents a conserved RNA silencing pathway in the plant kingdom; however, its characterization in the bryophyte Marchantia polymorpha is limited. This study elucidated that MpDCL4 processes MpTAS3 double-stranded RNA (dsRNA) to generate tasiRNAs, primarily from the 5'- and 3'-ends of dsRNA. Notably, we discovered a novel tasiRNA, tasi78A, which can negatively regulate a cytochrome P450 gene, MpCYP78A101. Additionally, tasi78A was abundant in MpAGO1, and transient expression assays underscored the role of tasi78A in repressing MpCYP78A101. A microRNA, miR11700, also regulates MpCYP78A101 expression. This coordinate regulation suggests a role in modulating auxin signaling at apical notches of gemma, influencing the growth and sexual organ development of M. polymorpha and emphasizing the significance of RNA silencing in MpCYP78A101 regulation. However, phylogenetic analysis identified another paralog of the CYP78 family, Mp1g14150, which may have a redundant role with MpCYP78A101, explaining the absence of noticeable morphological changes in loss-of-function plants. Taken together, our findings provide new insights into the combined regulatory roles of miR390/MpTAS3/miR11700 in controlling MpCYP78A101 and expand our knowledge about the biogenesis and regulation of tasiRNAs in M. polymorpha.
Collapse
Affiliation(s)
- Yu-Ling Hung
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Wei-Lun Wei
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Shiuan Cheng
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Jia-Zhen Yu
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Veny Tjita
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Qian-Yuan Yong
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - Yuan-Chi Chien
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Yen-Hsin Chiu
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Seed Improvement and Propagation Station, Council of Agriculture, No.46, Xingzhong St., Xinshe Dist., Taichung City 426015, Taiwan, R.O.C
| | - Ho-Chun Yang
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Zhao-Jun Pan
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan, R.O.C
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan
- Center of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| |
Collapse
|
15
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
16
|
Li C, Jiang R, Wang X, Lv Z, Li W, Chen W. Feedback regulation of plant secondary metabolism: Applications and challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111983. [PMID: 38211735 DOI: 10.1016/j.plantsci.2024.111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Plant secondary metabolites offer resistance to invasion by herbivorous organisms, and are also useful in the chemical, pharmaceutical, cosmetic, and fragrance industries. There are numerous approaches to enhancing secondary metabolite yields. However, a growing number of studies has indicated that feedback regulation may be critical in regulating secondary metabolite biosynthesis. Here, we review examples of feedback regulation in secondary metabolite biosynthesis pathways, phytohormone signal transduction, and complex deposition sites associated with secondary metabolite biosynthesis. We propose a new strategy to enhance secondary metabolite production based on plant feedback regulation. We also discuss challenges in feedback regulation that must be overcome before its application to enhancing secondary metabolite yields. This review discusses recent advances in the field and highlights a strategy to overcome feedback regulation-related obstacles and obtain high secondary metabolite yields.
Collapse
Affiliation(s)
- Chuhan Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xingxing Wang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wankui Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
17
|
Yang J, Yi J, Ma S, Wang Y, Song J, Li S, Feng Y, Sun H, Gao C, Yang R, Li Z, Cao Y, Yang P. Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.). BMC Genomics 2024; 25:174. [PMID: 38350871 PMCID: PMC10865589 DOI: 10.1186/s12864-024-10039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Alfalfa, an essential forage crop known for its high yield, nutritional value, and strong adaptability, has been widely cultivated worldwide. The yield and quality of alfalfa are frequently jeopardized due to environmental degradation. Lignin, a constituent of the cell wall, enhances plant resistance to abiotic stress, which often causes osmotic stress in plant cells. However, how lignin responds to osmotic stress in leaves remains unclear. This study explored the effects of osmotic stress on lignin accumulation and the contents of intermediate metabolites involved in lignin synthesis in alfalfa leaves. Osmotic stress caused an increase in lignin accumulation and the alteration of core enzyme activities and gene expression in the phenylpropanoid pathway. We identified five hub genes (CSE, CCR, CADa, CADb, and POD) and thirty edge genes (including WRKYs, MYBs, and UBPs) by integrating transcriptome and metabolome analyses. In addition, ABA and ethylene signaling induced by osmotic stress regulated lignin biosynthesis in a contradictory way. These findings contribute to a new theoretical foundation for the breeding of high-quality and resistant alfalfa varieties.
Collapse
Affiliation(s)
- Jing Yang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Jiangnan Yi
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Shihai Ma
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Shuo Li
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yueyan Feng
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Haoyang Sun
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Cai Gao
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Zhongxing Li
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China.
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China.
| |
Collapse
|
18
|
Chachar Z, Lai R, Ahmed N, Lingling M, Chachar S, Paker NP, Qi Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. FRONTIERS IN PLANT SCIENCE 2024; 15:1310634. [PMID: 38328707 PMCID: PMC10847539 DOI: 10.3389/fpls.2024.1310634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Anthocyanins are plant-based pigments that are primarily present in berries, grapes, purple yam, purple corn and black rice. The research on fruit corn with a high anthocyanin content is not sufficiently extensive. Considering its crucial role in nutrition and health it is vital to conduct further studies on how anthocyanin accumulates in fruit corn and to explore its potential for edible and medicinal purposes. Anthocyanin biosynthesis plays an important role in maize stems (corn). Several beneficial compounds, particularly cyanidin-3-O-glucoside, perlagonidin-3-O-glucoside, peonidin 3-O-glucoside, and their malonylated derivatives have been identified. C1, C2, Pl1, Pl2, Sh2, ZmCOP1 and ZmHY5 harbored functional alleles that played a role in the biosynthesis of anthocyanins in maize. The Sh2 gene in maize regulates sugar-to-starch conversion, thereby influencing kernel quality and nutritional content. ZmCOP1 and ZmHY5 are key regulatory genes in maize that control light responses and photomorphogenesis. This review concludes the molecular identification of all the genes encoding structural enzymes of the anthocyanin pathway in maize by describing the cloning and characterization of these genes. Our study presents important new understandings of the molecular processes behind the manufacture of anthocyanins in maize, which will contribute to the development of genetically modified variants of the crop with increased color and possible health advantages.
Collapse
Affiliation(s)
- Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - RuiQiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ma Lingling
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | | | - YongWen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
19
|
Azad MF, Dawar P, Esim N, Rock CD. Role of miRNAs in sucrose stress response, reactive oxygen species, and anthocyanin biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1278320. [PMID: 38023835 PMCID: PMC10656695 DOI: 10.3389/fpls.2023.1278320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In plants, sucrose is the main transported disaccharide that is the primary product of photosynthesis and controls a multitude of aspects of the plant life cycle including structure, growth, development, and stress response. Sucrose is a signaling molecule facilitating various stress adaptations by crosstalk with other hormones, but the molecular mechanisms are not well understood. Accumulation of high sucrose concentrations is a hallmark of many abiotic and biotic stresses, resulting in the accumulation of reactive oxygen species and secondary metabolite anthocyanins that have antioxidant properties. Previous studies have shown that several MYeloBlastosis family/MYB transcription factors are positive and negative regulators of sucrose-induced anthocyanin accumulation and subject to microRNA (miRNA)-mediated post-transcriptional silencing, consistent with the notion that miRNAs may be "nodes" in crosstalk signaling by virtue of their sequence-guided targeting of different homologous family members. In this study, we endeavored to uncover by deep sequencing small RNA and mRNA transcriptomes the effects of exogenous high sucrose stress on miRNA abundances and their validated target transcripts in Arabidopsis. We focused on genotype-by-treatment effects of high sucrose stress in Production of Anthocyanin Pigment 1-Dominant/pap1-D, an activation-tagged dominant allele of MYB75 transcription factor, a positive effector of secondary metabolite anthocyanin pathway. In the process, we discovered links to reactive oxygen species signaling through miR158/161/173-targeted Pentatrico Peptide Repeat genes and two novel non-canonical targets of high sucrose-induced miR408 and miR398b*(star), relevant to carbon metabolic fluxes: Flavonoid 3'-Hydroxlase (F3'H), an important enzyme in determining the B-ring hydroxylation pattern of flavonoids, and ORANGE a post-translational regulator of Phytoene Synthase expression, respectively. Taken together, our results contribute to understanding the molecular mechanisms of carbon flux shifts from primary to secondary metabolites in response to high sugar stress.
Collapse
Affiliation(s)
- Md. Fakhrul Azad
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Bіngöl University, Bingöl, Türkiye
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
20
|
Khan A, Cheng J, Kitashova A, Fürtauer L, Nägele T, Picco C, Scholz-Starke J, Keller I, Neuhaus HE, Pommerrenig B. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. PLANT PHYSIOLOGY 2023; 193:2141-2163. [PMID: 37427783 DOI: 10.1093/plphys/kiad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.
Collapse
Affiliation(s)
- Azkia Khan
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China
| | - Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Isabel Keller
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| |
Collapse
|
21
|
Ahad A, Gul A, Batool TS, Huda NU, Naseeer F, Abdul Salam U, Abdul Salam M, Ilyas M, Turkyilmaz Unal B, Ozturk M. Molecular and genetic perspectives of cold tolerance in wheat. Mol Biol Rep 2023; 50:6997-7015. [PMID: 37378744 DOI: 10.1007/s11033-023-08584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Environmental variation is the most crucial problem as it is causing food insecurity and negatively impacts food availability, utilization, assessment, and stability. Wheat is the largest and extensively cultivated staple food crop for fulfilling global food requirements. Abiotic stresses including salinity, heavy metal toxicity, drought, extreme temperatures, and oxidative stresses being the primary cause of productivity loss are a serious threat to agronomy. Cold stress is a foremost ecological constraint that is extremely influencing plant development, and yield. It is extremely hampering the propagative development of plant life. The structure and function of plant cells depend on the cell's immune system. The stresses due to cold, affect fluid in the plasma membrane and change it into crystals or a solid gel phase. Plants being sessile in nature have evolved progressive systems that permit them to acclimatize the cold stress at the physiological as well as molecular levels. The phenomenon of acclimatisation of plants to cold stress has been investigated for the last 10 years. Studying cold tolerance is critical for extending the adaptability zones of perennial grasses. In the present review, we have elaborated the current improvement of cold tolerance in plants from molecular and physiological viewpoints, such as hormones, the role of the posttranscriptional gene, micro RNAs, ICE-CBF-COR signaling route in cold acclimatization and how they are stimulating the expression of underlying genes encoding osmoregulatory elements and strategies to improve cold tolerance in wheat.
Collapse
Affiliation(s)
- Arzoo Ahad
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Tuba Sharf Batool
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Noor-Ul Huda
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faiza Naseeer
- Department of Industrial Biotechnology, ASAB, NUST, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, SCPS, STMU, Islamabad, Pakistan
| | - Uzma Abdul Salam
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maria Abdul Salam
- Department of Microbiology, Quaid-I-Azam University (QAU), Islamabad, Pakistan
| | - Mahnoor Ilyas
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Arts & Sciences, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| |
Collapse
|
22
|
Meng J, Wang H, Chi R, Qiao Y, Wei J, Zhang Y, Han M, Wang Y, Li H. The eTM-miR858-MYB62-like module regulates anthocyanin biosynthesis under low-nitrogen conditions in Malus spectabilis. THE NEW PHYTOLOGIST 2023; 238:2524-2544. [PMID: 36942952 DOI: 10.1111/nph.18894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 05/19/2023]
Abstract
The anthocyanin content increases in Malus spectabilis leaves under low-nitrogen conditions. Noncoding RNAs are indicated to play key regulatory roles in anthocyanin biosynthesis. However, the functional roles of noncoding RNAs in anthocyanin biosynthesis under low-nitrogen conditions remain elusive. In this study, miR858 was screened as a key regulator of anthocyanin biosynthesis under low-nitrogen conditions through whole-transcriptome sequencing. Then, we used miR858 as an entry point to explore the regulatory network of lncRNA-miRNA-mRNA by dual-luciferase reporter assays and GUS histochemical staining assays, as well as to identify the mechanism of this regulatory network in anthocyanin biosynthesis by both transient and stable transformation experiments in Malus. MiR858 overexpression increased total anthocyanin content. MiR858 acted by negatively regulating its target gene, MsMYB62-like, under the low-nitrogen condition. MsMYB62-like inhibited the expression of MsF3'H, thereby negatively regulating anthocyanin biosynthesis. In addition, eTM858-1 and eTM858-2 were identified as endogenous target mimics of miR858 that bind to miR858 to prevent cleavage of MsMYB62-like and thereby negatively regulate anthocyanin biosynthesis. The results clarify the mechanism through which the eTM-miR858-MYB62-like module regulates anthocyanin biosynthesis in Malus under low-nitrogen conditions.
Collapse
Affiliation(s)
- Jiaxin Meng
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Han Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rufei Chi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuhang Qiao
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Wei
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqin Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meiling Han
- Colloge of Urban and Rural Construction, Shanxi Agricultural University, Taigu, Shaanxi, 030801, China
| | - Yu Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
23
|
Su H, Tan C, Liu Y, Chen X, Li X, Jones A, Zhu Y, Song Y. Physiology and Molecular Breeding in Sustaining Wheat Grain Setting and Quality under Spring Cold Stress. Int J Mol Sci 2022; 23:ijms232214099. [PMID: 36430598 PMCID: PMC9693015 DOI: 10.3390/ijms232214099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Spring cold stress (SCS) compromises the reproductive growth of wheat, being a major constraint in achieving high grain yield and quality in winter wheat. To sustain wheat productivity in SCS conditions, breeding cultivars conferring cold tolerance is key. In this review, we examine how grain setting and quality traits are affected by SCS, which may occur at the pre-anthesis stage. We have investigated the physiological and molecular mechanisms involved in floret and spikelet SCS tolerance. It includes the protective enzymes scavenging reactive oxygen species (ROS), hormonal adjustment, and carbohydrate metabolism. Lastly, we explored quantitative trait loci (QTLs) that regulate SCS for identifying candidate genes for breeding. The existing cultivars for SCS tolerance were primarily bred on agronomic and morphophysiological traits and lacked in molecular investigations. Therefore, breeding novel wheat cultivars based on QTLs and associated genes underlying the fundamental resistance mechanism is urgently needed to sustain grain setting and quality under SCS.
Collapse
Affiliation(s)
- Hui Su
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yonghua Liu
- School of Horticulture, Hainan University, Haikou 570228, China
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xinrui Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Yulei Zhu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.Z.); (Y.S.)
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence: (Y.Z.); (Y.S.)
| |
Collapse
|
24
|
Ullah I, Kamel EAR, Shah ST, Basit A, Mohamed HI, Sajid M. Application of RNAi technology: a novel approach to navigate abiotic stresses. Mol Biol Rep 2022; 49:10975-10993. [PMID: 36057876 DOI: 10.1007/s11033-022-07871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Due to the rising population globally, and the demand for food, it is critical to significantly increase crop production by 2050. However, climate change estimates show that droughts and heatwaves will become more prevalent in many parts of the world, posing a severe danger to food output. METHODS Selective breeding based on genetic diversity is falling short of meeting the expanding need for food and feed. However, the advent of modern plant genetic engineering, genome editing, and synthetic biology provides precise techniques for producing crops capable of sustaining yield under stress situations. RESULTS As a result, crop varieties with built-in genetic tolerance to environmental challenges are desperately needed. In the recent years, small RNA (sRNA) data has progressed to become one of the most effective approaches for the improvement of crops. So many sRNAs (18-30nt) have been found with the use of hi-tech bioinformatics and sequencing techniques which are involved in the regulation of sequence specific gene noncoding RNAs (short ncRNAs) i.e., microRNA (miRNA) and small interfering RNA (siRNA). Such research outcomes may advance our understanding of the genetic basis of adaptability of plants to various environmental challenges and the genetic variation of plant's tolerance to a number of abiotic stresses. CONCLUSION The review article highlights current trends and advances in sRNAs' critical role in responses of plants to drought, heat, cold, and salinity, and also the potential technology that identifies the abiotic stress-regulated sRNAs, and techniques for analyzing and validating the target genes.
Collapse
Affiliation(s)
- Izhar Ullah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Ehab A R Kamel
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Muhammad Sajid
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| |
Collapse
|
25
|
Wang X, Yao S, Htet WPPM, Yue Y, Zhang Z, Sun K, Chen S, Luo K, Fan D. MicroRNA828 negatively regulates lignin biosynthesis in stem of Populus tomentosa through MYB targets. TREE PHYSIOLOGY 2022; 42:1646-1661. [PMID: 35220431 DOI: 10.1093/treephys/tpac023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Lignin biosynthesis in the sclerenchyma cells is strictly controlled by a complex network of genetic and environmental signals. In the last decades, the transcriptional regulation of lignin synthesis in woody species has been established. However, the role of microRNA-mediated post-transcriptional modulation in secondary cell wall biosynthesis remains poorly understood. Here, we identified a microRNA, miR828, involved in the regulation specific to lignin biosynthesis during stem development in Populus tomentosa Carr. miR828 is preferentially expressed in the secondary vascular tissues during stem development. Two MYB genes (MYB171 and MYB011) were validated as direct targets of miR828 by degradome analysis and green fluorescent protein signal detection. Overexpression of miR828 in poplar downregulated genes for lignin biosynthesis, resulting in reduced lignin content in cell walls. Conversely, suppression of miR828 in plants by the short tandem target mimics elevated the expression of lignin biosynthetic genes and increased lignin deposition. We further revealed that poplar MYB171, as the most abundant miR828 target in the stem, is a positive regulator for lignin biosynthesis. Transient expression assays showed that both MYB171 and MYB011 activated PAL1 and CCR2 transcription, whereas the introduction of miR828 significantly suppressed their expression that was induced by MYB171 or MYB011. Collectively, our results demonstrate that the miR828-MYBs module precisely regulates lignin biosynthesis during the stem development in P. tomentosa through transcriptional and post-transcriptional manners.
Collapse
Affiliation(s)
- Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Shu Yao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Win Pa Pa Myo Htet
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yuchen Yue
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Zhuanzhuan Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Kuan Sun
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Sijie Chen
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
26
|
Jeena GS, Singh N, Shukla RK. An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. PLANT CELL REPORTS 2022; 41:1651-1671. [PMID: 35579713 DOI: 10.1007/s00299-022-02877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The present review highlights the regulatory roles of microRNAs in plant secondary metabolism and focuses on different bioengineering strategies to modulate secondary metabolite content in plants. MicroRNAs (miRNAs) are the class of small endogenous, essential, non-coding RNAs that riboregulate the gene expression involved in various biological processes in most eukaryotes. MiRNAs has emerged as important regulators in plants that function by silencing target genes through cleavage or translational inhibition. These miRNAs plays an important role in a wide range of plant biological and metabolic processes, including plant development and various environmental response controls. Several important plant secondary metabolites like alkaloids, terpenoids, and phenolics are well studied for their function in plant defense against different types of pests and herbivores. Due to the presence of a wide range of biological and pharmaceutical properties of plant secondary metabolites, it is important to study the regulation of their biosynthetic pathways. The contribution of miRNAs in regulating plant secondary metabolism is not well explored. Recent advancements in molecular techniques have improved our knowledge in understanding the molecular function of genes, proteins, enzymes, and small RNAs involved in different steps of secondary metabolic pathways. In the present review, we have discussed the recent progress made on miRNA biogenesis, its regulation, and highlighted the current research developed in the field of identification, analysis, and characterizations of various miRNAs that regulate plant secondary metabolism. We have also discussed how different bioengineering strategies such as artificial miRNA (amiRNA), endogenous target mimicry, and CRISPR/Cas9 could be utilized to enhance the secondary metabolite production in plants.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Neeti Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
27
|
Wang WQ, Moss SMA, Zeng L, Espley RV, Wang T, Lin-Wang K, Fu BL, Schwinn KE, Allan AC, Yin XR. The red flesh of kiwifruit is differentially controlled by specific activation-repression systems. THE NEW PHYTOLOGIST 2022; 235:630-645. [PMID: 35348217 DOI: 10.1111/nph.18122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Anthocyanins are visual cues for pollination and seed dispersal. Fruit containing anthocyanins also appeals to consumers due to its appearance and health benefits. In kiwifruit (Actinidia spp.) studies have identified at least two MYB activators of anthocyanin, but their functions in fruit and the mechanisms by which they act are not fully understood. Here, transcriptome and small RNA high-throughput sequencing were used to comprehensively identify contributors to anthocyanin accumulation in kiwifruit. Stable overexpression in vines showed that both 35S::MYB10 and MYB110 can upregulate anthocyanin biosynthesis in Actinidia chinensis fruit, and that MYB10 overexpression resulted in anthocyanin accumulation which was limited to the inner pericarp, suggesting that repressive mechanisms underlie anthocyanin biosynthesis in this species. Furthermore, motifs in the C-terminal region of MYB10/110 were shown to be responsible for the strength of activation of the anthocyanic response. Transient assays showed that both MYB10 and MYB110 were not directly cleaved by miRNAs, but that miR828 and its phased small RNA AcTAS4-D4(-) efficiently targeted MYB110. Other miRNAs were identified, which were differentially expressed between the inner and outer pericarp, and cleavage of SPL13, ARF16, SCL6 and F-box1, all of which are repressors of MYB10, was observed. We conclude that it is the differential expression and subsequent repression of MYB activators that is responsible for variation in anthocyanin accumulation in kiwifruit species.
Collapse
Affiliation(s)
- Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Sarah M A Moss
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Palmerston North, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kathy E Schwinn
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Palmerston North, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
28
|
Tirumalai V, Narjala A, Swetha C, Sundar GVH, Sujith TN, Shivaprasad PV. Cultivar-specific miRNA-mediated RNA silencing in grapes. PLANTA 2022; 256:17. [PMID: 35737180 DOI: 10.1007/s00425-022-03934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In-depth comparative degradome analysis of two domesticated grape cultivars with diverse secondary metabolite accumulation reveals differential miRNA-mediated targeting. Small (s)RNAs such as micro(mi)RNAs and secondary small interfering (si) often work as negative switches of gene expression. In plants, it is well known that miRNAs target and cleave mRNAs that have high sequence complementarity. However, it is not known if there are variations in miRNA-mediated targeting between subspecies and cultivars that have been subjected to vast genetic modifications through breeding and other selections. Here, we have used PAREsnip2 tool for analysis of degradome datasets derived from two contrasting domesticated grape cultivars having varied fruit color, habit and leaf shape. We identified several interesting variations in sRNA targeting using degradome and 5'RACE analysis between two contrasting grape cultivars that was further correlated using RNA-seq analysis. Several of the differences we identified are associated with secondary metabolic pathways. We propose possible means by which sRNAs might contribute to diversity in secondary metabolites and other development pathways between two domesticated cultivars of grapes.
Collapse
Affiliation(s)
- Varsha Tirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - G Vivek Hari Sundar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - T N Sujith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
29
|
Pech R, Volná A, Hunt L, Bartas M, Červeň J, Pečinka P, Špunda V, Nezval J. Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int J Mol Sci 2022; 23:ijms23126533. [PMID: 35742975 PMCID: PMC9223736 DOI: 10.3390/ijms23126533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Photosynthetically active radiation (PAR) is an important environmental cue inducing the production of many secondary metabolites involved in plant oxidative stress avoidance and tolerance. To examine the complex role of PAR irradiance and specific spectral components on the accumulation of phenolic compounds (PheCs), we acclimated spring barley (Hordeum vulgare) to different spectral qualities (white, blue, green, red) at three irradiances (100, 200, 400 µmol m−2 s−1). We confirmed that blue light irradiance is essential for the accumulation of PheCs in secondary barley leaves (in UV-lacking conditions), which underpins the importance of photoreceptor signals (especially cryptochrome). Increasing blue light irradiance most effectively induced the accumulation of B-dihydroxylated flavonoids, probably due to the significantly enhanced expression of the F3′H gene. These changes in PheC metabolism led to a steeper increase in antioxidant activity than epidermal UV-A shielding in leaf extracts containing PheCs. In addition, we examined the possible role of miRNAs in the complex regulation of gene expression related to PheC biosynthesis.
Collapse
Affiliation(s)
- Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Praha, Czech Republic;
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Correspondence: (V.Š.); (J.N.)
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Correspondence: (V.Š.); (J.N.)
| |
Collapse
|
30
|
Naik J, Misra P, Trivedi PK, Pandey A. Molecular components associated with the regulation of flavonoid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111196. [PMID: 35193745 DOI: 10.1016/j.plantsci.2022.111196] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids exhibit amazing structural diversity and play different roles in plants. Besides, these compounds have been associated with several health benefits in humans. Several exogenous and endogenous cues, for example, light, temperature, nutrient status, and phytohormones have been reported as modulators of biosynthesis and accumulation of flavonoids. Thus, multiple hormones and stress-related signaling pathways are involved in the regulation of gene expression associated with this pathway. The transcriptional regulators belonging to the MYB and bHLH family transcription factors are well documented as the direct regulators of the structural genes associated with flavonoid biosynthesis. Recent studies also suggest that some of these factors are regulated by molecular components involved in stress and hormone signaling pathways. Adapter proteins for transcriptional activation or repression via recruitment of co-activators and co-repressors, respectively, E2 ubiquitin ligases, miRNA processing complex, and DNA methylation/demethylation factors have been recently discovered in various plants to play key roles in fine-tuning flavonoids synthesis. In the present review, we aim to provide comprehensive information about the role of different factors in the regulation of flavonoid biosynthesis. Besides, we describe the potential upstream regulators involved in the regulation of flavonoid biosynthesis within the context of available information. To sum up, the present review furnishes an updated account of signal transduction pathways modulating the biosynthesis of flavonoids.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prashant Misra
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
31
|
Liang Y, Xia J, Jiang Y, Bao Y, Chen H, Wang D, Zhang D, Yu J, Cang J. Genome-Wide Identification and Analysis of bZIP Gene Family and Resistance of TaABI5 ( TabZIP96) under Freezing Stress in Wheat ( Triticum aestivum). Int J Mol Sci 2022; 23:2351. [PMID: 35216467 PMCID: PMC8874521 DOI: 10.3390/ijms23042351] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023] Open
Abstract
The basic leucine zipper (bZIP) regulates plant growth and responds to stress as a key transcription factor of the Abscisic acid (ABA) signaling pathway. In this study, TabZIP genes were identified in wheat and the gene structure, physicochemical properties, cis-acting elements, and gene collinearity were analyzed. RNA-Seq and qRT-PCR analysis showed that ABA and abiotic stress induced most TabZIP genes expression. The ectopic expression of TaABI5 up-regulated the expression of several cold-responsive genes in Arabidopsis. Physiological indexes of seedlings of different lines under freezing stress showed that TaABI5 enhanced the freezing tolerance of plants. Subcellular localization showed that TaABI5 is localized in the nucleus. Furthermore, TaABI5 physically interacted with cold-resistant transcription factor TaICE1 in yeast two-hybrid system. In conclusion, this study identified and analyzed members of the TabZIP gene family in wheat. It proved for the first time that the gene TaABI5 affected the cold tolerance of transgenic plants and was convenient for us to understand the cold resistance molecular mechanism of TaABI5. These results will provide a new inspiration for further study on improving plant abiotic stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (J.X.); (Y.J.); (Y.B.); (H.C.); (D.W.); (D.Z.); (J.Y.)
| |
Collapse
|
32
|
Yang J, Chen Y, Xiao Z, Shen H, Li Y, Wang Y. Multilevel regulation of anthocyanin-promoting R2R3-MYB transcription factors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1008829. [PMID: 36147236 PMCID: PMC9485867 DOI: 10.3389/fpls.2022.1008829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 05/14/2023]
Abstract
Anthocyanins are common secondary metabolites in plants that confer red, blue, and purple colorations in plants and are highly desired by consumers for their visual appearance and nutritional quality. In the last two decades, the anthocyanin biosynthetic pathway and transcriptional regulation of anthocyanin biosynthetic genes (ABGs) have been well characterized in many plants. From numerous studies on model plants and horticultural crops, many signaling regulators have been found to control anthocyanin accumulation via regulation of anthocyanin-promoting R2R3-MYB transcription factors (so-called R2R3-MYB activators). The regulatory mechanism of R2R3-MYB activators is mediated by multiple environmental factors (e.g., light, temperature) and internal signals (e.g., sugar, ethylene, and JA) in complicated interactions at multiple levels. Here, we summarize the transcriptional control of R2R3-MYB activators as a result of natural variations in the promoter of their encoding genes, upstream transcription factors and epigenetics, and posttranslational modifications of R2R3-MYB that determine color variations of horticultural plants. In addition, we focus on progress in elucidating the integrated regulatory network of anthocyanin biosynthesis mediated by R2R3-MYB activators in response to multiple signals. We also highlight a few gene cascade modules involved in the regulation of anthocyanin-related R2R3-MYB to provide insights into anthocyanin production in horticultural plants.
Collapse
Affiliation(s)
- Jianfei Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Yuhua Li,
| | - Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Yu Wang,
| |
Collapse
|
33
|
Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. FRONTIERS IN PLANT SCIENCE 2021; 12:748049. [PMID: 34777426 PMCID: PMC8580863 DOI: 10.3389/fpls.2021.748049] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 05/09/2023]
Abstract
Anthocyanins represent the major red, purple, and blue pigments in many flowers, fruits, vegetables, and cereals. They are also recognized as important health-promoting components in the human diet with protective effects against many chronic diseases, including cardiovascular diseases, obesity, and cancer. Anthocyanin biosynthesis has been studied extensively, and both biosynthetic and key regulatory genes have been isolated in many plant species. Here, we will provide an overview of recent progress in understanding the anthocyanin biosynthetic pathway in plants, focusing on the transcription factors controlling activation or repression of anthocyanin accumulation in cereals and fruits of different plant species, with special emphasis on the differences in molecular mechanisms between monocot and dicot plants. Recently, new insight into the transcriptional regulation of the anthocyanin biosynthesis, including positive and negative feedback control as well as epigenetic and post-translational regulation of MYB-bHLH-WD40 complexes, has been gained. We will consider how knowledge of regulatory mechanisms has helped to produce anthocyanin-enriched foods through conventional breeding and metabolic engineering. Additionally, we will briefly discuss the biological activities of anthocyanins as components of the human diet and recent findings demonstrating the important health benefits of anthocyanin-rich foods against chronic diseases.
Collapse
|
34
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
35
|
Ma H, Yang T, Li Y, Zhang J, Wu T, Song T, Yao Y, Tian J. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. THE PLANT CELL 2021; 33:3309-3330. [PMID: 34270784 PMCID: PMC8505877 DOI: 10.1093/plcell/koab188] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/12/2021] [Indexed: 05/24/2023]
Abstract
Anthocyanin pigments contribute to plant coloration and are valuable sources of antioxidants in the human diet as components of fruits and vegetables. Their production is known to be induced by light in apple fruit (Malus domestica); however, the underlying molecular mechanism responsible for early-stage light-induced anthocyanin biosynthesis remains unclear. Here, we identified an ethylene response factor (ERF) protein, ERF109, involved in light-induced anthocyanin biosynthesis and found that it promotes coloration by directly binding to anthocyanin-related gene promoters. Promoter::β-glucuronidase reporter analysis and Hi-C sequencing showed that a long noncoding RNA, MdLNC499, located nearby MdERF109, induces the expression of MdERF109. A W-box cis-element in the MdLNC499 promoter was found to be regulated by a transcription factor, MdWRKY1. Transient expression in apple fruit and stable transformation of apple calli allowed us to reconstruct a MdWRKY1-MdLNC499-MdERF109 transcriptional cascade in which MdWRKY1 is activated by light to increase the transcription of MdLNC499, which in turn induces MdERF109. The MdERF109 protein induces the expression of anthocyanin-related genes and the accumulation of anthocyanins in the early stages of apple coloration. Our results provide a platform for better understanding the various regulatory mechanisms involved in light-induced apple fruit coloration.
Collapse
Affiliation(s)
- Huaying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 102206, China
| | - Tingting Song
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
36
|
Khusnutdinov E, Sukhareva A, Panfilova M, Mikhaylova E. Anthocyanin Biosynthesis Genes as Model Genes for Genome Editing in Plants. Int J Mol Sci 2021; 22:8752. [PMID: 34445458 PMCID: PMC8395717 DOI: 10.3390/ijms22168752] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas, one of the most rapidly developing technologies in the world, has been applied successfully in plant science. To test new nucleases, gRNA expression systems and other inventions in this field, several plant genes with visible phenotypic effects have been constantly used as targets. Anthocyanin pigmentation is one of the most easily identified traits, that does not require any additional treatment. It is also associated with stress resistance, therefore plants with edited anthocyanin genes might be of interest for agriculture. Phenotypic effect of CRISPR/Cas editing of PAP1 and its homologs, DFR, F3H and F3'H genes have been confirmed in several distinct plant species. DFR appears to be a key structural gene of anthocyanin biosynthesis, controlled by various transcription factors. There are still many promising potential model genes that have not been edited yet. Some of them, such as Delila, MYB60, HAT1, UGT79B2, UGT79B3 and miR156, have been shown to regulate drought tolerance in addition to anthocyanin biosynthesis. Genes, also involved in trichome development, such as TTG1, GLABRA2, MYBL2 and CPC, can provide increased visibility. In this review successful events of CRISPR/Cas editing of anthocyanin genes are summarized, and new model genes are proposed. It can be useful for molecular biologists and genetic engineers, crop scientists, plant genetics and physiologists.
Collapse
Affiliation(s)
| | | | | | - Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center RAS, Prospekt Oktyabrya 71, 450054 Ufa, Russia; (E.K.); (A.S.); (M.P.)
| |
Collapse
|
37
|
Chen Q, Wang J, Danzeng P, Danzeng C, Song S, Wang L, Zhao L, Xu W, Zhang C, Ma C, Wang S. VvMYB114 mediated by miR828 negatively regulates trichome development of Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110936. [PMID: 34134843 DOI: 10.1016/j.plantsci.2021.110936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Trichome is a specialized structure differentiated during the morphogenesis of plant leaf epidermal cells. In recent years, with the continuous researches on trichome development of Arabidopsis and other plants, more and more genes related to trichome morphogenesis have been discovered, including R2R3-type MYB genes. In this study, we cloned a R2R3-type MYB family gene from grape, VvMYB114, a target gene of vvi-miR828. qRT-PCR showed that VvMYB114 mRNA accumulated during grape fruit ripening, and VvMYB114 protein had transcriptional activation activity. Heterologous overexpression of VvMYB114 in Arabidopsis reduced the number of trichome on leaves and stems. Mutating the miR828-binding site in VvMYB114 without altering amino-acid sequence had no effect on trichome development in Arabidopsis. The results showed a different role of the regulation of miR828 to VvMYB114 in Arabidopsis from in grape, which indicated the functional divergence of miRNA targeting homoeologous genes in different species played an important roles in evolution and useful trait selection.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pingcuo Danzeng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ciren Danzeng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Agro-food Science and Technology/Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
38
|
LaFountain AM, Yuan YW. Repressors of anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2021; 231:933-949. [PMID: 33864686 PMCID: PMC8764531 DOI: 10.1111/nph.17397] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
Anthocyanins play a variety of adaptive roles in both vegetative tissues and reproductive organs of plants. The broad functionality of these compounds requires sophisticated regulation of the anthocyanin biosynthesis pathway to allow proper localization, timing, and optimal intensity of pigment deposition. While it is well-established that the committed steps of anthocyanin biosynthesis are activated by a highly conserved MYB-bHLH-WDR (MBW) protein complex in virtually all flowering plants, anthocyanin repression seems to be achieved by a wide variety of protein and small RNA families that function in different tissue types and in response to different developmental, environmental, and hormonal cues. In this review, we survey recent progress in the identification of anthocyanin repressors and the characterization of their molecular mechanisms. We find that these seemingly very different repression modules act through a remarkably similar logic, the so-called 'double-negative logic'. Much of the double-negative regulation of anthocyanin production involves signal-induced degradation or sequestration of the repressors from the MBW protein complex. We discuss the functional and evolutionary advantages of this logic design compared with simple or sequential positive regulation. These advantages provide a plausible explanation as to why plants have evolved so many anthocyanin repressors.
Collapse
Affiliation(s)
- Amy M LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269-3043, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269-3043, USA
| |
Collapse
|
39
|
Li X, Hong Y, Jackson A, Guo F. Dynamic regulation of small RNAs in anthocyanin accumulation during blueberry fruit maturation. Sci Rep 2021; 11:15080. [PMID: 34301985 PMCID: PMC8302573 DOI: 10.1038/s41598-021-93141-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/11/2021] [Indexed: 11/09/2022] Open
Abstract
Blueberry is rich in anthocyanins which accumulate during fruit maturation. Previous studies mostly focus on their translational/transcriptional regulation, but usually underestimate their post-transcriptional regulation, e.g. small RNAs. This study aimed to identify sRNAs and their potential pathways associated with anthocyanin biosynthesis. During three typical phases of fruit maturation (green, pink, and blue), we investigated dynamic changes of sRNA by deep sequencing sRNA and examined the interaction of sRNAs with their target genes by degradome and RLM-PCR. During maturation, up-regulation of VcmiRNA156 and VcmiR393 resulted in down-regulation of VcSPLs and VcTIR1/AFBs, respectively. An important gene of anthocyanin biosynthesis, VcDFR, was substantially down-regulated at both the mRNA and protein levels, and potentially responded to regulation of VcSPLs and VcTIR1/AFBs. Additionally, indole acetic acid (IAA) and abscisic acid (ABA) were involved in the regulation of anthocyanin biosynthesis by interacting with VcmiR393-TIR1/AFBs and VcmiRNA319-VcMYBs respectively. This information provides another insight into blueberry anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yan Hong
- Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | | | - Fangqi Guo
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
40
|
Zhang Y, Yang J, Zhu L, Xue J, Hu H, Cui J, Xu J. Identification of microRNAs and their target genes related to needle discoloration of evergreen tree Chinese cedar (Cryptomeria fortunei) in cold winters. PLANTA 2021; 254:31. [PMID: 34283297 DOI: 10.1007/s00425-021-03685-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Comparative analysis of miRNAs and their gene targets between the evergreen and yellowish-brown Cryptomeria fortunei phenotypes in cold winters suggests a possible role of miRNA-regulated pathways in needle color. Cryptomeria fortunei (Chinese cedar) is a conifer tree of considerable economic, ornamental and ecological importance. Despite the evergreen nature of C. fortunei, most needles turn yellowish- or reddish-brown in winter. The roles of microRNAs (miRNAs) in regulating pigment biosynthesis in color-leafed plants have been widely investigated. However, whether or not an miRNA-mediated staged discoloration mechanism exists in evergreen C. fortunei is currently unknown. In this study, we deciphered the microRNAs landscape in overwintering C. fortunei needles using high-throughput sequencing. A total of 517 known and 212 novel miRNA mature/star sequences, including 233 differentially expressed miRNAs, were identified. Based on integrated transcriptome and miRNA analysis, 2702 target unigenes of the miRNAs were predicted and these targets were significantly enriched in pigment-related biosynthesis pathways. A miRNA-target pigment biosynthesis regulatory network was then constructed, and its module miRNA (ath-miR858b, aly-miR858-3p, cme-miR828 and novel33_mature)-MYBs (v-myb avian myeloblastosis viral oncogene homolog) appeared to be a key factor regulating needle discoloration in C. fortunei. These miRNA-MYBs were further confirmed by degradome sequencing. Overall, these findings provide new insight into the posttranscriptional regulatory mechanism of leaf/needle discoloration in gymnosperms and may contribute to the miRNA-mediated genetic improvement of evergreen C. fortunei needles.
Collapse
Affiliation(s)
- Yingting Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Junjie Yang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Lijuan Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinyu Xue
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hailiang Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiebing Cui
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jin Xu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
41
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
42
|
Lin S, Singh RK, Navarre DA. R2R3-MYB transcription factors, StmiR858 and sucrose mediate potato flavonol biosynthesis. HORTICULTURE RESEARCH 2021; 8:25. [PMID: 33518700 PMCID: PMC7847999 DOI: 10.1038/s41438-021-00463-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/06/2023]
Abstract
Flavonols and other phenylpropanoids protect plants from biotic and abiotic stress and are dietarily desirable because of their health-promoting properties. The ability to develop new potatoes (Solanum tuberosum) with optimal types and amounts of phenylpropanoids is limited by lack of knowledge about the regulatory mechanisms. Exogenous sucrose increased flavonols, whereas overexpression of the MYB StAN1 induced sucrolytic gene expression. Heterologous StAN1 protein bound promoter fragments from sucrolytic genes (SUSY1 and INV1). Two additional MYBs and one microRNA were identified that regulated potato flavonols. Overexpression analysis showed MYB12A and C increased amounts of flavonols and other phenylpropanoids. Endogenous flavonol amounts in light-exposed organs were much higher those in the dark. Expression levels of StMYB12A and C were high in flowers but low in tubers. Transient overexpression of miR858 altered potato flavonol metabolism. Endogenous StmiR858 expression was much lower in flowers than leaves and correlated with flavonol amounts in these organs. Collectively, these findings support the hypothesis that sucrose, MYBs, and miRNA control potato phenylpropanoid metabolism in a finely tuned manner that includes a feedback loop between sucrose and StAN1. These findings will aid in the development of potatoes with phenylpropanoid profiles optimized for crop performance and human health.
Collapse
Affiliation(s)
- Sen Lin
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Rajesh K Singh
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Duroy A Navarre
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA.
- USDA-Agricultural Research Service, Prosser, WA, USA.
| |
Collapse
|
43
|
Degradome sequencing-based identification of phasiRNAs biogenesis pathways in Oryza sativa. BMC Genomics 2021; 22:93. [PMID: 33516199 PMCID: PMC7847607 DOI: 10.1186/s12864-021-07406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The microRNAs(miRNA)-derived secondary phased small interfering RNAs (phasiRNAs) participate in post-transcriptional gene silencing and play important roles in various bio-processes in plants. In rice, two miRNAs, miR2118 and miR2275, were mainly responsible for triggering of 21-nt and 24-nt phasiRNAs biogenesis, respectively. However, relative fewer phasiRNA biogenesis pathways have been discovered in rice compared to other plant species, which limits the comprehensive understanding of phasiRNA biogenesis and the miRNA-derived regulatory network. RESULTS In this study, we performed a systematical searching for phasiRNA biogenesis pathways in rice. As a result, five novel 21-nt phasiRNA biogenesis pathways and five novel 24-nt phasiRNA biogenesis pathways were identified. Further investigation of their regulatory function revealed that eleven novel phasiRNAs in 21-nt length recognized forty-one target genes. Most of these genes were involved in the growth and development of rice. In addition, five novel 24-nt phasiRNAs targeted to the promoter of an OsCKI1 gene and thereafter resulted in higher level of methylation in panicle, which implied their regulatory function in transcription of OsCKI1,which acted as a regulator of rice development. CONCLUSIONS These results substantially extended the information of phasiRNA biogenesis pathways and their regulatory function in rice.
Collapse
|
44
|
CRISPR/Cas9-Mediated Knockout of HOS1 Reveals Its Role in the Regulation of Secondary Metabolism in Arabidopsis thaliana. PLANTS 2021; 10:plants10010104. [PMID: 33419060 PMCID: PMC7825447 DOI: 10.3390/plants10010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
In Arabidopsis, the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a main regulator of the cold signaling. In this study, CRISPR/Cas9-mediated targeted mutagenesis of the HOS1 gene in the first exon was performed. DNA sequencing showed that frameshift indels introduced by genome editing of HOS1 resulted in the appearance of premature stop codons, disrupting the open reading frame. Obtained hos1Cas9 mutant plants were compared with the SALK T-DNA insertion mutant, line hos1-3, in terms of their tolerance to abiotic stresses, accumulation of secondary metabolites and expression levels of genes participating in these processes. Upon exposure to cold stress, enhanced tolerance and expression of cold-responsive genes were observed in both hos1-3 and hos1Cas9 plants. The hos1 mutation caused changes in the synthesis of phytoalexins in transformed cells. The content of glucosinolates (GSLs) was down-regulated by 1.5-times, while flavonol glycosides were up-regulated by 1.2 to 4.2 times in transgenic plants. The transcript abundance of the corresponding MYB and bHLH transcription factors, which are responsible for the regulation of secondary metabolism in Arabidopsis, were also altered. Our data suggest a relationship between HOS1-regulated downstream signaling and phytoalexin biosynthesis.
Collapse
|
45
|
Tiwari B, Habermann K, Arif MA, Top O, Frank W. Identification of Small RNAs During High Light Acclimation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:656657. [PMID: 34211484 PMCID: PMC8239388 DOI: 10.3389/fpls.2021.656657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/21/2021] [Indexed: 05/19/2023]
Abstract
The biological significance of non-coding RNAs (ncRNAs) has been firmly established to be important for the regulation of genes involved in stress acclimation. Light plays an important role for the growth of plants providing the energy for photosynthesis; however, excessive light conditions can also cause substantial defects. Small RNAs (sRNAs) are a class of non-coding RNAs that regulate transcript levels of protein-coding genes and mediate epigenetic silencing. Next generation sequencing facilitates the identification of small non-coding RNA classes such as miRNAs (microRNAs) and small-interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), but changes in the ncRNA transcriptome in response to high light are poorly understood. We subjected Arabidopsis plants to high light conditions and performed a temporal in-depth study of the transcriptome data after 3 h, 6 h, and 2 days of high light treatment. We identified a large number of high light responsive miRNAs and sRNAs derived from NAT gene pairs, lncRNAs and TAS transcripts. We performed target predictions for differentially expressed miRNAs and correlated their expression levels through mRNA sequencing data. GO analysis of the targets revealed an overrepresentation of genes involved in transcriptional regulation. In A. thaliana, sRNA-mediated regulation of gene expression in response to high light treatment is mainly carried out by miRNAs and sRNAs derived from NAT gene pairs, and from lncRNAs. This study provides a deeper understanding of sRNA-dependent regulatory networks in high light acclimation.
Collapse
|
46
|
Dalio RJD, Litholdo CG, Arena G, Magalhães D, Machado MA. Contribution of Omics and Systems Biology to Plant Biotechnology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:171-188. [DOI: 10.1007/978-3-030-80352-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Zhang B, Yang HJ, Yang YZ, Zhu ZZ, Li YN, Qu D, Zhao ZY. mdm-miR828 Participates in the Feedback Loop to Regulate Anthocyanin Accumulation in Apple Peel. FRONTIERS IN PLANT SCIENCE 2020; 11:608109. [PMID: 33391322 PMCID: PMC7774908 DOI: 10.3389/fpls.2020.608109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/10/2020] [Indexed: 05/24/2023]
Abstract
Anthocyanins are responsible for the red pigmentation in the peel of apple (Malus × domestica Borkh.) fruit. Relatively few studies have investigated anthocyanins at the posttranscriptional level. MicroRNAs play an important role in plant growth and development by regulating gene expression at the posttranscriptional level. In this study, mdm-miR828 showed a relatively low expression level during the rapid fruit coloration period. However, the mdm-miR828 expression level increased in the late fruit coloration stage. Overexpression of mdm-miR828 inhibited anthocyanin synthesis in apple and Arabidopsis. Dual-luciferase and yeast one-hybrid assays showed that MdMYB1 is capable of binding to the promoter of mdm-MIR828b to promote its expression. The results indicate that mdm-miR828 is involved in a feedback regulatory mechanism associated with anthocyanin accumulation in apple. In addition, mdm-miR828 is involved in the inhibition of anthocyanin accumulation in response to high temperature.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Hui-Juan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Ya-Zhou Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Zhen-Zhen Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Ya-Nan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Dong Qu
- Shaanxi Key Laboratory Bio-resources, College of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Zheng-Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Waititu JK, Zhang C, Liu J, Wang H. Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress. Int J Mol Sci 2020; 21:E8401. [PMID: 33182372 PMCID: PMC7664903 DOI: 10.3390/ijms21218401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
As sessile species, plants have to deal with the rapidly changing environment. In response to these environmental conditions, plants employ a plethora of response mechanisms that provide broad phenotypic plasticity to allow the fine-tuning of the external cues related reactions. Molecular biology has been transformed by the major breakthroughs in high-throughput transcriptome sequencing and expression analysis using next-generation sequencing (NGS) technologies. These innovations have provided substantial progress in the identification of genomic regions as well as underlying basis influencing transcriptional and post-transcriptional regulation of abiotic stress response. Non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as essential regulators of plants abiotic stress response. However, shared traits in the biogenesis of ncRNAs and the coordinated cross-talk among ncRNAs mechanisms contribute to the complexity of these molecules and might play an essential part in regulating stress responses. Herein, we highlight the current knowledge of plant microRNAs, siRNAs, and lncRNAs, focusing on their origin, biogenesis, modes of action, and fundamental roles in plant response to abiotic stresses.
Collapse
Affiliation(s)
- Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| |
Collapse
|
49
|
Yamagishi M, Sakai M. The MicroRNA828/MYB12 Module Mediates Bicolor Pattern Development in Asiatic Hybrid Lily ( Lilium spp.) Flowers. FRONTIERS IN PLANT SCIENCE 2020; 11:590791. [PMID: 33193545 PMCID: PMC7661471 DOI: 10.3389/fpls.2020.590791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/08/2020] [Indexed: 05/06/2023]
Abstract
Some Asiatic hybrid lily cultivars develop bicolor tepals, which consist of anthocyanin-pigmented upper halves and un-pigmented lower halves. MYB12, a subgroup 6 member of R2R3-MYB that positively regulates anthocyanin biosynthesis, is downregulated in the lower halves. However, MYB12 is usually expressed over entire tepal regions in numerous lily cultivars. Why MYB12 of bicolor cultivars exhibits variable expression spatially in a single tepal remains unclear. Since the lily MYB12 mRNA harbored a binding site for microRNA828 (miR828), the involvement of miR828 in variable spatial accumulation of MYB12 transcripts was evaluated. We analyzed the cleavage of MYB12 mRNA, mature miR828 accumulation, and MYB12 transcript-derived siRNA generation (microRNA-seq). In the bicolor tepals, mature miR828 was more highly accumulated in the lower halves than in the upper halves, and miR828-directed cleavage of MYB12 transcripts was observed predominantly in the lower halves. Moreover, the cleavage triggered the production of secondary siRNA from MYB12 transcripts, and the siRNAs were accumulated predominantly in the lower halves. Consequently, miR828 suppressed MYB12 transcript accumulation in the white region, and the miR828/MYB12 module participated in the development of bicolor patterns in lily flowers. The results present the first example of a microRNA mediating flower color patterns. Finally, we discuss the potential of miR828 creating flower color variations through suppressing the activity of subgroup 6 R2R3-MYB positive regulators in other species.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
50
|
Chen C, Xie F, Hua Q, Tel-Zur N, Zhang L, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. Integrated sRNAome and RNA-Seq analysis reveals miRNA effects on betalain biosynthesis in pitaya. BMC PLANT BIOLOGY 2020; 20:437. [PMID: 32962650 PMCID: PMC7510087 DOI: 10.1186/s12870-020-02622-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/25/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) and their regulatory functions in anthocyanin, carotenoid, and chlorophyll accumulation have been extensively characterized in many plant species. However, the miRNA regulatory mechanism in betalain biosynthesis remains mostly unknown. RESULTS In this study, 126 conserved miRNAs and 41 novel miRNAs were first isolated from Hylocereus monacanthus, among which 95 conserved miRNAs belonged to 53 miRNA families. Thirty-four candidate miRNAs related to betalain biosynthesis were differentially expressed. The expression patterns of those differential expressed miRNAs were analyzed in various pitaya tissues by RT-qPCR. A significantly negative correlation was detected between the expression levels of half those miRNAs and corresponding target genes. Target genes of miRNAs i.e. Hmo-miR157b-HmSPL6-like, Hmo-miR160a-Hpcyt P450-like3, Hmo-miR6020-HmCYP71A8-like, Hmo-novel-2-HmCYP83B1-like, Hmo-novel-15-HmTPST-like, Hmo-miR828a-HmTT2-like, Hmo-miR858-HmMYB12-like, Hmo-miR858-HmMYBC1-like and Hmo-miR858-HmMYB2-like were verified by 5'RACE and transient expression system in tobacco. CONCLUSIONS Hmo-miR157b, Hmo-miR160a, Hmo-miR6020 Hmo-novel-2, Hmo-novel-15, Hmo-miR828a and Hmo-miR858 play important roles in pitaya fruit coloration and betalain accumulation. Our findings provide new insights into the roles of miRNAs and their target genes of regulatory functions involved in betalain biosynthesis of pitaya.
Collapse
Affiliation(s)
- Canbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Qingzhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Noemi Tel-Zur
- French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Beersheba, Israel
| | - Lulu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China.
| |
Collapse
|