1
|
He H, Cheng M, Bao B, Tian Y, Zheng Y, Huo Y, Zhao Z, Xie Z, Yu J, He P. GhCTEF2 encodes a PLS-type PPR protein required for chloroplast development and plastid RNA editing in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112478. [PMID: 40107517 DOI: 10.1016/j.plantsci.2025.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Cotton is a significant cash crop and serves as a crucial raw material for the textile industry. The leaf, which is the site of photosynthesis in cotton plants, directly influences their growth and yield. Pentatricopeptide repeat (PPR) proteins are characterized by tandem 30-40 amino acid motifs. These proteins play a pivotal role in post-transcriptional regulation of organelle gene expression. In this study, we identified GhCTEF2 as a PLS-type PPR protein and determined its subcellular localization within chloroplasts, highlighting its essential involvement in chloroplast development. Virus-induced gene silencing assays revealed that knockdown of the GhCTEF2 gene resulted in macular phenotypes on cotton leaves and significantly reduced photosynthetic efficiency. Additionally, GhCTEF2-silenced plants exhibited incomplete chloroplasts with reduced thylakoids and grana structures. Furthermore, our findings showed that the downregulation of GhCTEF2 reduced the transcription levels of PEP-dependent genes and significantly decreased the content of the chloroplast LHCⅡ-T complex protein. Further studies showed that GhCTEF2 may interact with other editing factors to regulate the RNA editing process of ndhB, accD, and rps18. These findings offer valuable insights into future breeding strategies aimed at enhancing photosynthesis in cotton.
Collapse
Affiliation(s)
- Huan He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengxue Cheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Bao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yanan Tian
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yating Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuzhu Huo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zengqiang Zhao
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Zongming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Wu J, Wang Y, Chen H, Xu T, Yang W, Fang X. Solid-like condensation of MORF8 inhibits RNA editing under heat stress in Arabidopsis. Nat Commun 2025; 16:2789. [PMID: 40118828 PMCID: PMC11928522 DOI: 10.1038/s41467-025-58146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
Heat stress inhibits photosynthesis efficiency, thereby suppressing plant growth and crop yield. However, the mechanism underlying this inhibition is not fully understood. Here, we report that the multiple organellar RNA-editing factor 8 (MORF8) forms condensates with solid-like properties in chloroplasts upon heat stress. In vitro data show that the MORF8 condensation is intrinsically heat-dependent and primarily determined by its IDR (intrinsically disordered region). Purification and characterization of MORF8 condensates show that numerous editing factors including PPR proteins and MORFs are partitioned. We provide both genetic and biochemical evidence that MORF8 condensation inhibits chloroplast RNA editing. In agreement, we find that both heat stress and MORF8 condensation lead to reduced editing of RNAs encoding NADH dehydrogenase-like (NDH) complex and impaired NDH activity and photosynthesis efficiency. These findings uncover MORF8 as a putative chloroplastic thermosensor that mediates photosynthesis inhibition by heat and highlight the functional significance of solid material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Jie Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yue Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
4
|
Xie Y, Yu J, Tian F, Li X, Chen X, Li Y, Wu B, Miao Y. MORF9-dependent specific plastid RNA editing inhibits root growth under sugar starvation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:1921-1940. [PMID: 38357785 DOI: 10.1111/pce.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Multiple organellar RNA editing factor (MORF) complex was shown to be highly associated with C-to-U RNA editing of vascular plant editosome. However, mechanisms by which MORF9-dependent plastid RNA editing controls plant development and responses to environmental alteration remain obscure. In this study, we found that loss of MORF9 function impaired PSII efficiency, NDH activity, and carbohydrate production, rapidly promoted nuclear gene expression including sucrose transporter and sugar/energy responsive genes, and attenuated root growth under sugar starvation conditions. Sugar repletion increased MORF9 and MORF2 expression in wild-type seedlings and reduced RNA editing of matK-706, accD-794, ndhD-383 and ndhF-290 in the morf9 mutant. RNA editing efficiency of ndhD-383 and ndhF-290 sites was diminished in the gin2/morf9 double mutants, and that of matK-706, accD-794, ndhD-383 and ndhF-290 sites were significantly diminished in the snrk1/morf9 double mutants. In contrast, overexpressing HXK1 or SnRK1 promoted RNA editing rate of matK-706, accD-794, ndhD-383 and ndhF-290 in leaves of morf9 mutants, suggesting that HXK1 partially impacts MORF9 mediated ndhD-383 and ndhF-290 editing, while SnRK1 may only affect MORF9-mediated ndhF-290 site editing. Collectively, these findings suggest that sugar and/or its intermediary metabolites impair MORF9-dependent plastid RNA editing resulting in derangements of plant root development.
Collapse
Affiliation(s)
- Yakun Xie
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinfa Yu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Faan Tian
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xue Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyan Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and may have a role in C-to-U editing of some chloroplast RNA transcripts. PLANT MOLECULAR BIOLOGY 2024; 114:28. [PMID: 38485794 PMCID: PMC10940495 DOI: 10.1007/s11103-024-01424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria- and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 orthologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. In this study we examined the function of IPI1 in chloroplast RNA processing in N. benthamiana to gain insight into the importance of the DYW domain to the function of the EMB175/PPR103/ IPI1 proteins. Structural predictions suggest that evolutionary loss of residues identified as critical for catalyzing C-to-U editing in other members of this class of proteins, were likely to lead to reduced or absent editing activity in the Nicotiana and Arabidopsis IPI1 orthologs. Virus-induced gene silencing of NbIPI1 led to defects in chloroplast ribosomal RNA processing and changes to stability of rpl16 transcripts, revealing conserved function with its maize ortholog. NbIPI1-silenced plants also had defective C-to-U RNA editing in several chloroplast transcripts, a contrast from the finding that maize PPR103 had no role in editing. The results indicate that in addition to its role in transcript stability, NbIPI1 may contribute to C-to-U editing in N. benthamiana chloroplasts.
Collapse
Affiliation(s)
- Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Tessa M Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
6
|
Chung YH, Chen TC, Yang WJ, Chen SZ, Chang JM, Hsieh WY, Hsieh MH. Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1330-1343. [PMID: 37996996 DOI: 10.1111/tpj.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.
Collapse
Affiliation(s)
- Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ting-Chieh Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Ju Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Ming Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
7
|
Li ZA, Li Y, Liu D, Molloy DP, Luo ZF, Li HO, Zhao J, Zhou J, Su Y, Wang RZ, Huang C, Xiao LT. YUCCA2 (YUC2)-Mediated 3-Indoleacetic Acid (IAA) Biosynthesis Regulates Chloroplast RNA Editing by Relieving the Auxin Response Factor 1 (ARF1)-Dependent Inhibition of Editing Factors in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16988. [PMID: 38069311 PMCID: PMC10706925 DOI: 10.3390/ijms242316988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Although recent research progress on the abundant C-to-U RNA editing events in plant chloroplasts and mitochondria has uncovered many recognition factors and their molecular mechanisms, the intrinsic regulation of RNA editing within plants remains largely unknown. This study aimed to establish a regulatory relationship in Arabidopsis between the plant hormone auxin and chloroplast RNA editing. We first analyzed auxin response elements (AuxREs) present within promoters of chloroplast editing factors reported to date. We found that each has more than one AuxRE, suggesting a potential regulatory role of auxin in their expression. Further investigation unveiled that the depletion of auxin synthesis gene YUC2 reduces the expression of several editing factors. However, in yuc2 mutants, only the expression of CRR4, DYW1, ISE2, and ECD1 editing factors and the editing efficiency of their corresponding editing sites, ndhD-2 and rps14-149, were simultaneously suppressed. In addition, exogenous IAA and the overexpression of YUC2 enhanced the expression of these editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These results suggested a direct effect of auxin upon the editing of the ndhD-2 and rps14-149 sites through the modulation of the expression of the editing factors. We further demonstrated that ARF1, a downstream transcription factor in the auxin-signaling pathway, could directly bind to and inactivate the promoters of CRR4, DYW1, and ISE2 in a dual-luciferase reporter system, thereby inhibiting their expression. Moreover, the overexpression of ARF1 in Arabidopsis significantly reduced the expression of the three editing factors and the editing efficiency at the ndhD-2 and rps14-149 sites. These data suggest that YUC2-mediated auxin biosynthesis governs the RNA-editing process through the ARF1-dependent signal transduction pathway.
Collapse
Affiliation(s)
- Zi-Ang Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Yi Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Dan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - David P. Molloy
- Department of Basic Medicine, Chongqing Medical University, Chongqing 400016, China;
| | - Zhou-Fei Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Hai-Ou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Jing Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Jing Zhou
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Ruo-Zhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| | - Lang-Tao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (Z.-A.L.); (Y.L.); (D.L.); (Z.-F.L.); (H.-O.L.); (J.Z.); (J.Z.); (Y.S.); (R.-Z.W.)
| |
Collapse
|
8
|
Ramadan AM, Al-Ghamdi KM, Alghamdi AJ, Amer M, Ibrahim MI, Atef A. Withania somnifera mitochondrial atp4 gene editing alters the ATP synthase b subunit, independent of salt stress. Saudi J Biol Sci 2023; 30:103817. [PMID: 37841665 PMCID: PMC10570708 DOI: 10.1016/j.sjbs.2023.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Numerous studies have shown that stress in plant cells and organelles with transport electron chains is related to RNA editing. The ATP synthase complex present in mitochondria plays a crucial role in cellular respiration and consists of several subunits. Among them is the b subunit, which is encoded by the mitochondrial atp4 gene. Computing-based analysis of the effects of RNA editing of the Withania somnifera atp4 gene in mitochondria leading to alterations in the b subunit of ATP synthase. Using the CLC Genomic Workbench 3, RNA editing analysis between the control and salt stress conditions was not significantly different. Depending on RNA editing, the tertiary structure model revealed a change in the states of the b subunit, reflecting differences in the central stalk and F1-catalytic domain. The study found that polar edits in the N-terminus of the b subunit allow for efficient H + ion selectivity and introduce a new coiled-coil alpha-helical structure that may help stabilize the complex. The most noteworthy finding of this study was the strong impact of these editing events on the tertiary structure of the b subunit, which has the potential to affect the ATPase activity and indicate that the editing in this subunit aimed to restore the original active protein and not as a response to salt stress.
Collapse
Affiliation(s)
- Ahmed M. Ramadan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid M. Al-Ghamdi
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah J. Alghamdi
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marwa Amer
- Bioinformatics and Functional Genomics Department, College of Biotechnology, Misr University for Science and Technology (MUST), Egypt
| | - Mona I.M. Ibrahim
- Agricultural Biotechnology Department, College of Biotechnology, Misr University for Science and Technology (MUST), Egypt
| | - Ahmed Atef
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Liao HS, Chen YJ, Hsieh WY, Li YC, Hsieh MH. Arabidopsis ACT DOMAIN REPEAT9 represses glucose signaling pathways. PLANT PHYSIOLOGY 2023; 192:1532-1547. [PMID: 36843191 PMCID: PMC10231364 DOI: 10.1093/plphys/kiad127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
Nutrient sensing and signaling are critical for plants to coordinate growth and development in response to nutrient availability. Plant ACT DOMAIN REPEAT (ACR) proteins have been proposed to serve as nutrient sensors, but their functions remain largely unknown. Here, we showed that Arabidopsis (Arabidopsis thaliana) ACR9 might function as a repressor in glucose (Glc) signaling pathways. ACR9 was highly expressed in the leaves, and its expression was downregulated by sugars. Interestingly, the acr9-1 and acr9-2 T-DNA insertion mutants were hypersensitive to Glc during seedling growth, development, and anthocyanin accumulation. Nitrogen deficiency increased the mutants' sensitivity to Glc. The expression of sugar-responsive genes was also significantly enhanced in the acr9 mutants. By contrast, the 35S:ACR9 and 35S:ACR9-GFP overexpression (OE) lines were insensitive to Glc during early seedling development. The Glc signaling pathway is known to interact with the plant hormone abscisic acid (ABA). Notably, the acr9 mutants were also hypersensitive to ABA during early seedling development. The Glc sensor HEXOKINASE1 (HXK1) and the energy sensor SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE1 (SnRK1) are key components of the Glc signaling pathways. The acr9-1/hxk1-3 and acr9-1/snrk1 double mutants were no longer hypersensitive to Glc, indicating that functional HXK1 and SnRK1 were required for the acr9-1 mutant to be hypersensitive to Glc. Together, these results suggest that ACR9 is a repressor of the Glc signaling pathway, which may act independently or upstream of the HXK1-SnRK1 signaling module.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Jhu Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chiou Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
10
|
Peng C, Guo XL, Zhou SD, He XJ. Backbone phylogeny and adaptive evolution of Pleurospermum s. l.: New insights from phylogenomic analyses of complete plastome data. FRONTIERS IN PLANT SCIENCE 2023; 14:1148303. [PMID: 37063181 PMCID: PMC10101341 DOI: 10.3389/fpls.2023.1148303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Pleurospermum is a taxonomically challenging taxon of Apiaceae, as its circumscription and composition remain controversial for morphological similarities with several related genera, leading to a dispute between Pleurospermum in the broad sense and strict sense. While evidence from previous molecular studies recognized plural branching lineages within the Pleurospermum s. l., it did not support the latest delimitation of Pleurospermum s. str. by only two closely related northern species. So far, no proper delimitation for Pleurospermum has come up, and many of the plural taxa in Pleurospermum s. l. remain unresolved, which may be due to poor phylogenetic resolution yielded barely from ITS sequences. Herein, we newly assembled 40 complete plastomes from 36 species of Pleurospermum s. l. and related genera, 34 of which were first reported and generated a well-resolved backbone phylogeny in a framework of the subfamily Apioideae. From the phylogeny with greatly improved resolution, a total of six well-supported monophyletic lineages within Pleurospermum s. l. were recognized falling in different major clades of Apioideae. Combining morphological characteristics with phylogenetic inference, we suggested to re-delimit the Pleurospermum s. str. by introducing nine species mainly from the Himalayan regions and proposed its boundary features; the remaining species were suggested to be excluded from Pleurospermum to incorporate into their more related taxa being revealed. On this basis, the plastome comparison revealed not only the high conservatism but also the mild differences among lineages in plastome structure and gene evolution. Overall, our study provided a backbone phylogeny essential for further studies of the taxonomically difficult taxa within Pleurospermum s. l.
Collapse
Affiliation(s)
| | | | | | - Xing-Jin He
- *Correspondence: Xing-Jin He, ; Song-Dong Zhou,
| |
Collapse
|
11
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and is required for C-to-U editing of chloroplast RNA transcripts. RESEARCH SQUARE 2023:rs.3.rs-2574001. [PMID: 36865278 PMCID: PMC9980218 DOI: 10.21203/rs.3.rs-2574001/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 homologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. We examined the function of ISE2 and IPI1 in chloroplast RNA processing in N. benthamiana. A combination of deep sequencing and Sanger sequencing revealed C-to-U editing at 41 sites in 18 transcripts, with 34 sites conserved in the closely related N. tabacum. Virus induced gene silencing of NbISE2 or NbIPI1 led to defective C-to-U revealed that they have overlapping roles at editing a site in the rpoB transcript but have distinct roles in editing other transcripts. This finding contrasts with maize ppr103 mutants that showed no defects in editing. The results indicate that NbISE2 and NbIPI1 are important for C-to-U editing in N. benthamiana chloroplasts, and they may function in a complex to edit specific sites while having antagonistic effects on editing others. That NbIPI1, carrying a DYW domain, is involved in organelle C-to-U RNA editing supports previous work showing that this domain catalyzes RNA editing.
Collapse
Affiliation(s)
- Tyra N. McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mohammad F. Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Tessa M. Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| |
Collapse
|
12
|
Ramadan A, Alnufaei AA, Fiaz S, Khan TK, Hassan SM. Effect of salinity on ccmfn gene RNA editing of mitochondria in wild barley and uncommon types of RNA editing. Funct Integr Genomics 2023; 23:50. [PMID: 36707470 DOI: 10.1007/s10142-023-00978-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
The primary function of mitochondria is cellular respiration and energy production. Cytochrome C complex is an essential complex that transports electrons in the respiratory chain between complex III and complex IV. One of this complex's main subunits is CcmFN, which is believed to be crucial for holocytochrome assembly. In wild-type plant Hordeum vulgare subsp. spontaneum, four ccmfn cDNAs are subjected to high salt stress (500 mM salinity), 0 h (or control) (GenBank accession no. ON764850), after 2 h (GenBank accession no. ON7648515), after 12 h (GenBank accession no. ON764852), and after 24 h (GenBank accession no. ON764853) and mtDNA of ccmfn gene (GenBank accession no. ON764854). Using raw data from RNA-seq, 47 sites with nucleotide and amino acid modifications were detected. There were ten different RNA editing types, with most of them are C to U. Unusual editing types in plants have also been found, such as A to C, C to A, A to G, A to U, T to A, T to C, C to G, G to C, and T to G. High levels of editing were observed in control as well as treatments of salinity stress. Amino acid changes were found in 43 sites; nearly all showed hydrophilic to hydrophilic alterations. Only C749 showed regulation under salinity stress.
Collapse
Affiliation(s)
- Ahmed Ramadan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
- Plant Molecular Biology Department, Agriculture Research Center (ARC), Agricultural Genetic Engineering Research Institute (AGERI), Giza, Egypt.
| | - Afnan A Alnufaei
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
| | - Thana K Khan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabah M Hassan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Hsieh WY, Wang HM, Chung YH, Lee KT, Liao HS, Hsieh MH. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1383-1396. [PMID: 35791282 DOI: 10.1111/tpj.15895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Mei Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
14
|
Liao HS, Yang CC, Hsieh MH. Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3726-3742. [PMID: 35182426 DOI: 10.1093/jxb/erac067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Anthocyanin accumulation is a hallmark response to nitrogen (N) deficiency in Arabidopsis. Although the regulation of anthocyanin biosynthesis has been extensively studied, the roles of chromatin modification in this process are largely unknown. In this study we show that anthocyanin accumulation induced by N deficiency is modulated by HISTONE DEACETYLASE15 (HDA15) in Arabidopsis seedlings. The hda15-1 T-DNA insertion mutant accumulated more anthocyanins than the wild-type when the N supply was limited, and this was caused by up-regulation of anthocyanin biosynthetic and regulatory genes in the mutant. The up-regulated genes also had increased levels of histone acetylation in the mutant. The accumulation of anthocyanins induced by sucrose and methyl jasmonate, but not that induced by H2O2 and phosphate starvation, was also greater in the hda15-1 mutant. While sucrose increased histone acetylation in the hda15-1 mutant in genes in a similar manner to that caused by N deficiency, methyl jasmonate only enhanced histone acetylation in the genes involved in anthocyanin biosynthesis. Our results suggest that different stresses act through distinct regulatory modules to activate anthocyanin biosynthesis, and that HDA15-mediated histone modification modulates the expression of anthocyanin biosynthetic and regulatory genes to avoid overaccumulation in response to N deficiency and other stresses.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chien-Chih Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
15
|
OTP970 Is Required for RNA Editing of Chloroplast ndhB Transcripts in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13010139. [PMID: 35052479 PMCID: PMC8774829 DOI: 10.3390/genes13010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
RNA editing is essential for compensating for defects or mutations in haploid organelle genomes and is regulated by numerous trans-factors. Pentatricopeptide repeat (PPR) proteins are the prime factors that are involved in RNA editing; however, many have not yet been identified. Here, we screened the plastid-targeted PLS-DYW subfamily of PPR proteins belonging to Arabidopsis thaliana and identified ORGANELLE TRANSCRIPT PROCESSING 970 (OTP970) as a key player in RNA editing in plastids. A loss-of-function otp970 mutant was impaired in RNA editing of ndhB transcripts at site 149 (ndhB-C149). RNA-immunoprecipitation analysis indicated that OTP970 was associated with the ndhB-C149 site. The complementation of the otp970 mutant with OTP970 lacking the DYW domain (OTP970∆DYW) failed to restore the RNA editing of ndhB-C149. ndhB gene encodes the B subunit of the NADH dehydrogenase-like (NDH) complex; however, neither NDH activity and stability nor NDH-PSI supercomplex formation were affected in otp970 mutant compared to the wild type, indicating that alteration in amino acid sequence is not necessary for NdhB function. Together, these results suggest that OTP970 is involved in the RNA editing of ndhB-C149 and that the DYW domain is essential for its function.
Collapse
|
16
|
The first report of RNA U to C or G editing in the mitochondrial NADH dehydrogenase subunit 5 (Nad5) transcript of wild barley. Mol Biol Rep 2021; 48:6057-6064. [PMID: 34374896 DOI: 10.1007/s11033-021-06609-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nad dehydrogenase complex in mtDNA has a significant role in cellular respiration. One of the largest subunits in the complex is subunit 5 (Nad5). METHODS AND RESULTS Four cDNAs of the Hordeum vulgare subsp. spontaneum nad5 gene have been characterized and subjected to four phases of 0.5 M salinity, at 0 h (control, accession no. MT235236), after 2 h (acc. no. MT235237), after 12 h (acc. no. MT235238) and after 24 h (acc. no. MT235239). Utilizing raw data from RNA-seq, ten RNA editing sites were reported. Seven sites have common editing from C to U in positions (C1490, C1859, C1895, C1900, C1901, C1916, C1918). A rare editing event U to C was detected in two positions (U1650 and U1652) and a novel editing event U to G was for the first time in positions nad5-U231. The highest editing level was shown in 2 and 12 h after salinity exposure. After 24 h, these edits were disrupted, possibly due to the launch of the programed cell death mechanism. However, the RNA editing in positions U1650, U1652 and U231 was fixed at all exposure times. CONCLUSIONS Although study clarified the role of salinity stress in nad5 RNA editing sites, the main achievements are first report of U to G RNA editing in plants at position U231 and first report of U to C editing in the nad5 gene at U1650 and U1652.
Collapse
|
17
|
Wang Y, Wang Y, Ren Y, Duan E, Zhu X, Hao Y, Zhu J, Chen R, Lei J, Teng X, Zhang Y, Wang D, Zhang X, Guo X, Jiang L, Liu S, Tian Y, Liu X, Chen L, Wang H, Wan J. white panicle2 encoding thioredoxin z, regulates plastid RNA editing by interacting with multiple organellar RNA editing factors in rice. THE NEW PHYTOLOGIST 2021; 229:2693-2706. [PMID: 33119889 PMCID: PMC8027827 DOI: 10.1111/nph.17047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
Thioredoxins (TRXs) occur in plant chloroplasts as complex disulphide oxidoreductases. Although many biological processes are regulated by thioredoxins, the regulatory mechanism of chloroplast TRXs are largely unknown. Here we report a rice white panicle2 mutant caused by a mutation in the thioredoxin z gene, an orthologue of AtTRX z in Arabidopsis. white panicle2 (wp2) seedlings exhibited a high-temperature-sensitive albinic phenotype. We found that plastid multiple organellar RNA editing factors (MORFs) were the regulatory targets of thioredoxin z. We showed that OsTRX z protein physically interacts with OsMORFs in a redox-dependent manner and that the redox state of a conserved cysteine in the MORF box is essential for MORF-MORF interactions. wp2 and OsTRX z knockout lines show reduced editing efficiencies in many plastidial-encoded genes especially under high-temperature conditions. An Arabidopsis trx z mutant also exhibited significantly reduced chloroplast RNA editing. Our combined results suggest that thioredoxin z regulates chloroplast RNA editing in plants by controlling the redox state of MORFs.
Collapse
Affiliation(s)
- Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Rongbo Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Jie Lei
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Yuanyan Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
18
|
Sun Y, Xie M, Xu Z, Chan KC, Zhong JY, Fan K, Wong-Bajracharya J, Lam HM, Lim BL. Differential RNA Editing and Intron Splicing in Soybean Mitochondria during Nodulation. Int J Mol Sci 2020; 21:E9378. [PMID: 33317061 PMCID: PMC7764374 DOI: 10.3390/ijms21249378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Nitrogen fixation in soybean consumes a tremendous amount of energy, leading to substantial differences in energy metabolism and mitochondrial activities between nodules and uninoculated roots. While C-to-U RNA editing and intron splicing of mitochondrial transcripts are common in plant species, their roles in relation to nodule functions are still elusive. In this study, we performed RNA-seq to compare transcript profiles and RNA editing of mitochondrial genes in soybean nodules and roots. A total of 631 RNA editing sites were identified on mitochondrial transcripts, with 12% or 74 sites differentially edited among the transcripts isolated from nodules, stripped roots, and uninoculated roots. Eight out of these 74 differentially edited sites are located on the matR transcript, of which the degrees of RNA editing were the highest in the nodule sample. The degree of mitochondrial intron splicing was also examined. The splicing efficiencies of several introns in nodules and stripped roots were higher than in uninoculated roots. These include nad1 introns 2/3/4, nad4 intron 3, nad5 introns 2/3, cox2 intron 1, and ccmFc intron 1. A greater splicing efficiency of nad4 intron 1, a higher NAD4 protein abundance, and a reduction in supercomplex I + III2 were also observed in nodules, although the causal relationship between these observations requires further investigation.
Collapse
Affiliation(s)
- Yuzhe Sun
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
| | - Min Xie
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhou Xu
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
| | - Koon Chuen Chan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
| | - Jia Yi Zhong
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
| | - Kejing Fan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Johanna Wong-Bajracharya
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
| |
Collapse
|
19
|
Zheng P, Wang D, Huang Y, Chen H, Du H, Tu J. Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs. PLANTS 2020; 9:plants9101277. [PMID: 32998293 PMCID: PMC7600565 DOI: 10.3390/plants9101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/30/2020] [Accepted: 09/27/2020] [Indexed: 01/05/2023]
Abstract
Cytidine to uridine (C-to-U) RNA editing is an important type of substitutional RNA modification and is almost omnipresent in plant chloroplasts and mitochondria. In rice mitochondria, 491 C-to-U editing sites have been identified previously, and case studies have elucidated the function of several C-to-U editing sites in rice, but the functional consequence of most C-to-U alterations needs to be investigated further. Here, by means of Sanger sequencing and publicly available RNA-seq data, we identified a total of 569 C-to-U editing sites in rice mitochondria-encoded open reading frames (ORFs), 85.41% of these editing sites were observed on the first or the second base of a codon, resulting in the alteration of encoded amino acid. Moreover, we found some novel editing sites and several inaccurately annotated sites which may be functionally important, based on the highly conserved amino acids encoded by these edited codons. Finally, we annotated all 569 C-to-U RNA editing sites in their biological context. More precise information about C-to-U editing sites in rice mitochondria-encoded ORFs will facilitate our investigation on the function of C-to-U editing events in rice and also provide a valid benchmark from rice for the analysis of mitochondria C-to-U editing in other plant species.
Collapse
Affiliation(s)
- Peng Zheng
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
| | - Dongxin Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Yuqing Huang
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
| | - Hao Chen
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
| | - Hao Du
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
- Correspondence: (H.D.); (J.T.)
| | - Jumin Tu
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
- Correspondence: (H.D.); (J.T.)
| |
Collapse
|
20
|
Nawae W, Yundaeng C, Naktang C, Kongkachana W, Yoocha T, Sonthirod C, Narong N, Somta P, Laosatit K, Tangphatsornruang S, Pootakham W. The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091247. [PMID: 32967378 PMCID: PMC7570002 DOI: 10.3390/plants9091247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 05/20/2023]
Abstract
Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chutintorn Yundaeng
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Nattapol Narong
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (P.S.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (P.S.); (K.L.)
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
- Correspondence: or
| |
Collapse
|
21
|
Ramadan AM. Light/heat effects on RNA editing in chloroplast NADH-plastoquinone oxidoreductase subunit 2 (ndhB) gene of Calotropis (Calotropis procera). J Genet Eng Biotechnol 2020; 18:49. [PMID: 32915330 PMCID: PMC7486354 DOI: 10.1186/s43141-020-00064-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Background RNA editing is common in terrestrial plants, especially in mitochondria and chloroplast. In the photosynthesis process, NAD dehydrogenase plays a very important role. Subunit 2 of NADH-dehydrogenase is one of the major subunits in NAD dehydrogenase complex. Using desert plant Calotropis (Calotropis procera), this study focuses on the RNA editing activity of ndhB based on light time. Results NdhB (NADH-dehydrogenase subunit 2) gene accession no. MK144329 was isolated from Calotropis procera genomic data (PRJNA292713). Additionally, using RNA-seq data, the cDNA of the ndhB gene of C. procera was isolated at three daylight periods, i.e., dawn (accession no. MK165161), at midday (accession no. MK165160), and pre-dusk (accession no. MK165159). Seven RNA editing sites have been found in several different positions (nucleotide no. C467, C586, C611, C737, C746, C830, and C1481) within the ndhB coding region. The rate of these alterations was deferentially edited across the three daylight periods. RNA editing rate of ndhB gene was highest at dawn, (87.5, 79.6, 78.5, 76, 68.6, 39.3, and 96.9%, respectively), less in midday (74.8, 54.1, 62.6, 47.4, 45.5, 47.4, and 93.4%, respectively), and less at pre-dusk (67, 52.6, 56.9, 40.1, 40.7, 33.2, and 90%, respectively), also all these sites were validated by qRT-PCR. Conclusion The differential editing of chloroplast ndhB gene across light periods may be led to a somehow relations between the RNA editing and control of photosynthesis.
Collapse
Affiliation(s)
- Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, Jeddah, 21589, Saudi Arabia. .,Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| |
Collapse
|
22
|
Rodrigues NF, Nogueira FCS, Domont GB, Margis R. Identification of soybean trans-factors associated with plastid RNA editing sites. Genet Mol Biol 2020; 43:e20190067. [PMID: 32459826 PMCID: PMC7231544 DOI: 10.1590/1678-4685-gmb-2019-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/05/2022] Open
Abstract
RNA editing is a posttranscriptional process that changes nucleotide sequences, among which cytosine-to-uracil by a deamination reaction can revert non-neutral codon mutations. Pentatricopeptide repeat (PPR) proteins comprise a family of RNA-binding proteins, with members acting as editing trans-factors that recognize specific RNA cis-elements and perform the deamination reaction. PPR proteins are classified into P and PLS subfamilies. In this work, we have designed RNA biotinylated probes based in soybean plastid RNA editing sites to perform trans-factor specific protein isolation. Soybean cis-elements from these three different RNA probes show differences in respect to other species. Pulldown samples were submitted to mass spectrometry for protein identification. Among detected proteins, five corresponded to PPR proteins. More than one PPR protein, with distinct functional domains, was pulled down with each one of the RNA probes. Comparison of the soybean PPR proteins to Arabidopsis allowed identification of the closest homologous. Differential gene expression analysis demonstrated that the PPR locus Glyma.02G174500 doubled its expression under salt stress, which correlates with the increase of its potential rps14 editing. The present study represents the first identification of RNA editing trans-factors in soybean. Data also indicated that potential multiple trans-factors should interact with RNA cis-elements to perform the RNA editing.
Collapse
Affiliation(s)
- Nureyev F. Rodrigues
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre,
RS, Brazil
| | - Fábio C. S. Nogueira
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Química,
Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica (PPGBq), Unidade
Proteômica, Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Química,
Laboratório de Apoio ao Desenvolvimento Tecnológico (LADETEC), Rio de Janeiro, RJ,
Brazil
| | - Gilberto B. Domont
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Química,
Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica (PPGBq), Unidade
Proteômica, Rio de Janeiro, RJ, Brazil
| | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre,
RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de
Biofísica, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190399. [PMID: 32362266 DOI: 10.1098/rstb.2019.0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes (rpoA, rpoB, rpoC1 and rpoC2), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes (PhANGs) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1, in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| |
Collapse
|
24
|
Sun J, Tian Y, Lian Q, Liu JX. Mutation of DELAYED GREENING1 impairs chloroplast RNA editing at elevated ambient temperature in Arabidopsis. J Genet Genomics 2020; 47:201-212. [PMID: 32505546 DOI: 10.1016/j.jgg.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 11/18/2022]
Abstract
Chloroplasts are important for plant growth and development. RNA editing in chloroplast converts cytidines (Cs) to uridines (Us) at specific transcript positions and provides a correction mechanism to restore conserved codons or creates start or stop codons. However, the underlined molecular mechanism is not yet fully understood. In the present study, we identified a thermo-sensitive mutant in leaf color 1 (tsl1) and found that TSL1 is allelic to DELAYED GREENING 1 (DG1). The missense mutation of DG1 in tsl1 mutant confers a high temperature sensitivity and impaired chloroplast development at an elevated ambient temperature in Arabidopsis. Subsequent analysis showed that chloroplast RNA editing at several sites including accD-1568, ndhD-2, and petL-5 is impaired in tsl1 mutant plants grown at an elevated temperature. DG1 interacts with MORF2 and other proteins such as DYW1 and DYW2 involved in chloroplast RNA editing. In vitro RNA electrophoretic mobility shift assay demonstrated that DG1 binds to RNA targets such as accD, ndhD, and petL. Thus, our results revealed that DG1 is important for maintaining chloroplast mRNA editing in Arabidopsis.
Collapse
Affiliation(s)
- Jingliang Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Yingying Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
25
|
Zhao X, Huang J, Chory J. Unraveling the Linkage between Retrograde Signaling and RNA Metabolism in Plants. TRENDS IN PLANT SCIENCE 2020; 25:141-147. [PMID: 31791654 DOI: 10.1016/j.tplants.2019.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 05/25/2023]
Abstract
Retrograde signals are signals that originate in organelles to regulate nuclear gene expression. In plant cells, retrograde signaling from both chloroplasts and mitochondria is essential for plant development and growth. Over the past few years, substantial progress has been made in unraveling the linkages between chloroplast retrograde signaling and nuclear RNA metabolism processes or plastidial RNA editing. These findings add to the complexity of the regulation of organelle-to-nucleus communication. Chloroplast development and function rely on the coordinated regulation of chloroplast and nuclear gene expression, especially under stress conditions. A better understanding of retrograde signaling and RNA metabolism, as well as their connection, is essential for breeding stress-tolerant plants to cope with the dynamic and rapidly changing environment.
Collapse
Affiliation(s)
- Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Jianyan Huang
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Chu D, Wei L. Reduced C-to-U RNA editing rates might play a regulatory role in stress response of Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153081. [PMID: 31783167 DOI: 10.1016/j.jplph.2019.153081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
C-to-U RNA editing is prevalent in the mitochondrial and chloroplast genes in plants. The C-to-U editing rates are constantly very high. During genome evolution, those edited cytidines are likely to be replaced with thymidines at the DNA level. C-to-U editing events are suggested to be designed for reversing the unfavorable T-to-C DNA mutations. Despite the existing theory showing the importance of editing mechanisms, few studies have investigated the genome-wide adaptive signals of the C-to-U editome or the potential function of C-to-U editing events in the stress response. By analyzing the transcriptome and translatome data of normal and heat-shocked Arabidopsis thaliana and the RNA-seq from cold-stressed plants, combined with genome-wide comparison of mitochondrial/chloroplast genes and nuclear genes from multiple aspects, we present the conservational and translational features of each gene and depict the dynamic mitochondrial/chloroplast C-to-U RNA editome. We found that the tAI (tRNA adaptation index) and basic translation levels are lower for mitochondrial/chloroplast genes than for nuclear genes. Interestingly, although we found adaptive signals for the global C-to-U RNA editome in mitochondrial/chloroplast genes, the C-to-U (T) alteration would usually cause a reduction in the codon tAI value. Moreover, the C-to-U editing rates are significantly reduced under heat or cold stress when compared to the normal condition. This reduction is irrelevant to the temperature-sensitive RNA structures. Several cases have illustrated that under heat stress, the reduced C-to-U editing rates alleviate ribosome stalling and consequently facilitate the local translation. Our study reveals that in Arabidopsis thaliana the mitochondrial/chloroplast C-to-U RNA editing rates are reduced under heat or cold stress. This reduction is associated with the alleviation of decreased tAI/translation rate of edited codons. The regulation of C-to-U editing rates could be the tradeoff between quantity and quality. We profile the dynamic change of C-to-U RNA editome under heat stress and propose a potential role of editing sites in the heat response. Our work should be appealing to the plant physiologists as well as the RNA editing community.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
27
|
Krüger M, Abeyawardana OAJ, Juříček M, Krüger C, Štorchová H. Variation in plastid genomes in the gynodioecious species Silene vulgaris. BMC PLANT BIOLOGY 2019; 19:568. [PMID: 31856730 PMCID: PMC6921581 DOI: 10.1186/s12870-019-2193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/10/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Gynodioecious species exist in two sexes - male-sterile females and hermaphrodites. Male sterility in higher plants often results from mitonuclear interaction between the CMS (cytoplasmic male sterility) gene(s) encoded by mitochondrial genome and by nuclear-encoded restorer genes. Mitochondrial and nuclear-encoded transcriptomes in females and hermaphrodites are intensively studied, but little is known about sex-specific gene expression in plastids. We have compared plastid transcriptomes between females and hermaphrodites in two haplotypes of a gynodioecious species Silene vulgaris with known CMS candidate genes. RESULTS We generated complete plastid genome sequences from five haplotypes S. vulgaris including the haplotypes KRA and KOV, for which complete mitochondrial genome sequences were already published. We constructed a phylogenetic tree based on plastid sequences of S. vulgaris. Whereas lowland S. vulgaris haplotypes including KRA and KOV clustered together, the accessions from high European mountains diverged early in the phylogram. S. vulgaris belongs among Silene species with slowly evolving plastid genomes, but we still detected 212 substitutions and 112 indels between two accessions of this species. We estimated elevated Ka/Ks in the ndhF gene, which may reflect the adaptation of S. vulgaris to high altitudes, or relaxed selection. We compared depth of coverage and editing rates between female and hermaphrodite plastid transcriptomes and found no significant differences between the two sexes. We identified 51 unique C to U editing sites in the plastid genomes of S. vulgaris, 38 of them in protein coding regions, 2 in introns, and 11 in intergenic regions. The editing site in the psbZ gene was edited only in one of two plastid genomes under study. CONCLUSIONS We revealed no significant differences between the sexes in plastid transcriptomes of two haplotypes of S. vulgaris. It suggests that gene expression of plastid genes is not affected by CMS in flower buds of S. vulgaris, although both sexes may still differ in plastid gene expression in specific tissues. We revealed the difference between the plastid transcriptomes of two S. vulgaris haplotypes in editing rate and in the coverage of several antisense transcripts. Our results document the variation in plastid genomes and transcriptomes in S. vulgaris.
Collapse
Affiliation(s)
- Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Miloslav Juříček
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | | | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| |
Collapse
|
28
|
MORF9 Functions in Plastid RNA Editing with Tissue Specificity. Int J Mol Sci 2019; 20:ijms20184635. [PMID: 31546885 PMCID: PMC6769653 DOI: 10.3390/ijms20184635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 11/17/2022] Open
Abstract
RNA editing in plant mitochondria and plastids converts specific nucleotides from cytidine (C) to uridine (U). These editing events differ among plant species and are relevant to developmental stages or are impacted by environmental conditions. Proteins of the MORF family are essential components of plant editosomes. One of the members, MORF9, is considered the core protein of the editing complex and is involved in the editing of most sites in chloroplasts. In this study, the phenotypes of a T-DNA insertion line with loss of MORF9 and of the genetic complementation line of Arabidopsis were analyzed, and the editing efficiencies of plastid RNAs in roots, rosette leaves, and flowers from the morf9 mutant and the wild-type (WT) control were compared by bulk-cDNA sequencing. The results showed that most of the known MORF9-associated plastid RNA editing events in rosette leaves and flowers were similarly reduced by morf9 mutation, with the exception that the editing rate of the sites ndhB-872 and psbF-65 declined in the leaves and that of ndhB-586 decreased only in the flowers. In the roots, however, the loss of MORF9 had a much lower effect on overall plastid RNA editing, with nine sites showing no significant editing efficiency change, including accD-794, ndhD-383, psbZ-50, ndhF-290, ndhD-878, matK-706, clpP1-559, rpoA-200, and ndhD-674, which were reduced in the other tissues. Furthermore, we found that during plant aging, MORF9 mRNA level, but not the protein level, was downregulated in senescent leaves. On the basis of these observations, we suggest that MORF9-mediated RNA editing is tissue-dependent and the resultant organelle proteomes are pertinent to the specific tissue functions.
Collapse
|
29
|
Chu D, Wei L. The chloroplast and mitochondrial C-to-U RNA editing in Arabidopsis thaliana shows signals of adaptation. PLANT DIRECT 2019; 3:e00169. [PMID: 31517178 PMCID: PMC6732656 DOI: 10.1002/pld3.169] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 05/20/2023]
Abstract
C-to-U RNA editing is the conversion from cytidine to uridine at RNA level. In plants, the genes undergo C-to-U RNA modification are mainly chloroplast and mitochondrial genes. Case studies have identified the roles of C-to-U editing in various biological processes, but the functional consequence of the majority of C-to-U editing events is still undiscovered. We retrieved the deep sequenced transcriptome data in roots and shoots of Arabidopsis thaliana and profiled their C-to-U RNA editomes and gene expression patterns. We investigated the editing level and conservation pattern of these C-to-U editing sites. The levels of nonsynonymous C-to-U editing events are higher than levels of synonymous events. The fraction of nonsynonymous editing sites is higher than neutral expectation. Highly edited cytidines are more conserved at DNA level, and the gene expression levels are correlated with C-to-U editing levels. Our results demonstrate that the global C-to-U editome is shaped by natural selection and that many nonsynonymous C-to-U editing events are adaptive. The editing mechanism might be positively selected and maintained and could have profound effects on the modified RNAs.
Collapse
Affiliation(s)
- Duan Chu
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Lai Wei
- College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
30
|
GUN1 interacts with MORF2 to regulate plastid RNA editing during retrograde signaling. Proc Natl Acad Sci U S A 2019; 116:10162-10167. [PMID: 30988197 PMCID: PMC6525534 DOI: 10.1073/pnas.1820426116] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During development or under stress, chloroplasts generate signals that regulate the expression of a large number of nuclear genes, a process called retrograde signaling. GENOMES UNCOUPLED 1 (GUN1) is an important regulator of this pathway. In this study, we have discovered an unexpected role for GUN1 in plastid RNA editing, as gun1 mutations affect RNA-editing efficiency at multiple sites in plastids during retrograde signaling. GUN1 plays a direct role in RNA editing by physically interacting with MULTIPLE ORGANELLAR RNA EDITING FACTOR 2 (MORF2). MORF2 overexpression causes widespread RNA-editing changes and a strong genomes uncoupled (gun) molecular phenotype similar to gun1 MORF2 further interacts with RNA-editing site-specificity factors: ORGANELLE TRANSCRIPT PROCESSING 81 (OTP81), ORGANELLE TRANSCRIPT PROCESSING 84 (OTP84), and YELLOW SEEDLINGS 1 (YS1). We further show that otp81, otp84, and ys1 single mutants each exhibit a very weak gun phenotype, but combining the three mutations enhances the phenotype. Our study uncovers a role for GUN1 in the regulation of RNA-editing efficiency in damaged chloroplasts and suggests that MORF2 is involved in retrograde signaling.
Collapse
|
31
|
Brenner WG, Mader M, Müller NA, Hoenicka H, Schroeder H, Zorn I, Fladung M, Kersten B. High Level of Conservation of Mitochondrial RNA Editing Sites Among Four Populus Species. G3 (BETHESDA, MD.) 2019; 9:709-717. [PMID: 30617214 PMCID: PMC6404595 DOI: 10.1534/g3.118.200763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/01/2019] [Indexed: 01/29/2023]
Abstract
RNA editing occurs in the endosymbiont organelles of higher plants as C-to-U conversions of defined nucleotides. The availability of large quantities of RNA sequencing data makes it possible to identify RNA editing sites and to quantify their editing extent. We have investigated RNA editing in 34 protein-coding mitochondrial transcripts of four Populus species, a genus noteworthy for its remarkably small number of RNA editing sites compared to other angiosperms. 27 of these transcripts were subject to RNA editing in at least one species. In total, 355 RNA editing sites were identified with high confidence, their editing extents ranging from 10 to 100%. The most heavily edited transcripts were ccmB with the highest density of RNA editing sites (53.7 sites / kb) and ccmFn with the highest number of sites (39 sites). Most of the editing events are at position 1 or 2 of the codons, usually altering the encoded amino acid, and are highly conserved among the species, also with regard to their editing extent. However, one SNP was found in the newly sequenced and annotated mitochondrial genome of P. alba resulting in the loss of an RNA editing site compared to P. tremula and P. davidiana This SNP causes a C-to-T transition and an amino acid exchange from Ser to Phe, highlighting the widely discussed role of RNA editing in compensating mutations.
Collapse
Affiliation(s)
| | - Malte Mader
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Ingo Zorn
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| |
Collapse
|
32
|
Kawabe A, Furihata HY, Tsujino Y, Kawanabe T, Fujii S, Yoshida T. Divergence of RNA editing among Arabidopsis species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:241-247. [PMID: 30824002 DOI: 10.1016/j.plantsci.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 05/25/2023]
Abstract
RNA editing altered the RNA sequence by replacing the C nucleotide to U in the organellar genomes of plants. RNA editing status sometimes differed among distant species. The pattern of conservation and variation of RNA editing status made it possible to evaluate evolutionary mechanisms impacting functional aspects of RNA editing. In this study, divergence of RNA editing in the chloroplast genome among Arabidopsis species was analyzed to determine 9 losses and 1 gain in RNA editing. All changes in A. thaliana lineage resulted from changes to the chloroplast genome sequence, whereas changes in the A. lyrata / halleri lineage were possibly due to exclusive changes in the nuclear editing factors. One loss of RNA editing in A. lyrata was caused by a deficiency in the PPR gene OTP80. The changes in RNA editing occurred approximately every two million years and were not observed at functionally important sites. These results highlight the conserved nature of RNA editing status suggesting the importance of RNA editing during evolution.
Collapse
Affiliation(s)
- Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| | - Hazuka Y Furihata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Yudai Tsujino
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Takahiro Kawanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Sota Fujii
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takanori Yoshida
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| |
Collapse
|
33
|
Kaila T, Saxena S, Ramakrishna G, Tyagi A, Tribhuvan KU, Srivastava H, Chaudhury A, Singh NK, Gaikwad K. Comparative RNA editing profile of mitochondrial transcripts in cytoplasmic male sterile and fertile pigeonpea reveal significant changes at the protein level. Mol Biol Rep 2019; 46:2067-2084. [PMID: 30759299 DOI: 10.1007/s11033-019-04657-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 11/26/2022]
Abstract
RNA editing is a process which leads to post-transcriptional alteration of the nucleotide sequence of the corresponding mRNA molecule which may or may not lead to changes at the protein level. Apart from its role in providing variability at the transcript and protein levels, sometimes, such changes may lead to abnormal expression of the mitochondrial gene leading to a cytoplasmic male sterile phenotype. Here we report the editing status of 20 major mitochondrial transcripts in both male sterile (AKCMS11) and male fertile (AKPR303) pigeonpea genotypes. The validation of the predicted editing sites was done by mapping RNA-seq reads onto the amplified mitochondrial genes, and 165 and 159 editing sites were observed in bud tissues of the male sterile and fertile plant respectively. Among the resulting amino acid alterations, the most frequent one was the conversion of hydrophilic amino acids to hydrophobic. The alterations thus detected in our study indicates differential editing, but no major change in terms of the abnormal protein structure was detected. However, the above investigation provides an insight into the behaviour of pigeonpea mitochondrial genome in native and alloplasmic state and could hold clues in identification of editing factors and their role in adaptive evolution in pigeonpea.
Collapse
Affiliation(s)
- Tanvi Kaila
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Anshika Tyagi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Kishor U Tribhuvan
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Harsha Srivastava
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Ashok Chaudhury
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | | | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
34
|
Pinard D, Myburg AA, Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 2019; 20:132. [PMID: 30760198 PMCID: PMC6373115 DOI: 10.1186/s12864-019-5444-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes. RESULTS In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis. CONCLUSIONS The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
35
|
Qulsum U, Tsukahara T. Tissue-specific alternative splicing of pentatricopeptide repeat (PPR) family genes in Arabidopsis thaliana. Biosci Trends 2018; 12:569-579. [PMID: 30555111 DOI: 10.5582/bst.2018.01178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alternative splicing is a post- and co-transcriptional regulatory mechanism of gene expression. Pentatricopeptide repeat (PPR) family proteins were recently found to be involved in RNA editing in plants. The aim of this study was to investigate the tissue-specific expression and alternative splicing of PPR family genes and their effects on protein structure and functionality. Of the 27 PPR genes in Arabidopsis thaliana, we selected six PPR genes of the P subfamily that are likely alternatively spliced, which were confirmed by sequencing. Four of these genes show intron retention, and the two remaining genes have 3' alternative-splicing sites. Alternative-splicing events occurred in the coding regions of three genes and in the 3' UTRs of the three remaining genes. We also identified five previously unannotated alternatively spliced isoforms of these PPR genes, which were confirmed by PCR and sequencing. Among these, three contain 3' alternative-splicing sites, one contains a 5' alternative-splicing site, and the remaining gene contains a 3'-5' alternative-splicing site. The new isoforms of two genes affect protein structure, and three other alternative-splicing sites are located in 3' UTRs. These findings suggest that tissue-specific expression of different alternatively spliced transcripts occurs in Arabidopsis, even at different developmental stages.
Collapse
Affiliation(s)
- Umme Qulsum
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST).,Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST).,Division of Transdisciplinary Science, Japan Advanced Institute of Science and Technology (JAIST)
| |
Collapse
|
36
|
Hsieh WY, Lin SC, Hsieh MH. Transformation of nad7 into the nuclear genome rescues the slow growth3 mutant in Arabidopsis. RNA Biol 2018; 15:1385-1391. [PMID: 30422048 DOI: 10.1080/15476286.2018.1546528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant pentatricopeptide repeat (PPR) proteins are mostly involved in chloroplast or mitochondrial RNA metabolism. However, direct evidence that correction of the molecular defects in the organelles can restore the plant phenotypes has yet to be demonstrated in a ppr mutant. Arabidopsis slow growth3 (slo3), a ppr mutant, is impaired in the splicing of mitochondrial nad7 intron 2. Here, we have used slo3 as an example to demonstrate that transformation of correctly spliced nad7 into the nuclear genome and targeting the Nad7 subunit into mitochondria can restore complex I activity and plant phenotypes in the mutant. These results provide direct evidence that the strong growth and developmental phenotypes of the slo3 mutant are caused by defects in mitochondrial nad7.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- a Institute of Plant and Microbial Biology , Academia Sinica , Taipei , Taiwan
| | - Sang-Chu Lin
- a Institute of Plant and Microbial Biology , Academia Sinica , Taipei , Taiwan
| | - Ming-Hsiun Hsieh
- a Institute of Plant and Microbial Biology , Academia Sinica , Taipei , Taiwan
| |
Collapse
|
37
|
Kovar L, Nageswara-Rao M, Ortega-Rodriguez S, Dugas DV, Straub S, Cronn R, Strickler SR, Hughes CE, Hanley KA, Rodriguez DN, Langhorst BW, Dimalanta ET, Bailey CD. PacBio-Based Mitochondrial Genome Assembly of Leucaena trichandra (Leguminosae) and an Intrageneric Assessment of Mitochondrial RNA Editing. Genome Biol Evol 2018; 10:2501-2517. [PMID: 30137422 PMCID: PMC6161758 DOI: 10.1093/gbe/evy179] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/31/2022] Open
Abstract
Reconstructions of vascular plant mitochondrial genomes (mt-genomes) are notoriously complicated by rampant recombination that has resulted in comparatively few plant mt-genomes being available. The dearth of plant mitochondrial resources has limited our understanding of mt-genome structural diversity, complex patterns of RNA editing, and the origins of novel mt-genome elements. Here, we use an efficient long read (PacBio) iterative assembly pipeline to generate mt-genome assemblies for Leucaena trichandra (Leguminosae: Caesalpinioideae: mimosoid clade), providing the first assessment of non-papilionoid legume mt-genome content and structure to date. The efficiency of the assembly approach facilitated the exploration of alternative structures that are common place among plant mitochondrial genomes. A compact version (729 kbp) of the recovered assemblies was used to investigate sources of mt-genome size variation among legumes and mt-genome sequence similarity to the legume associated root holoparasite Lophophytum. The genome and an associated suite of transcriptome data from select species of Leucaena permitted an in-depth exploration of RNA editing in a diverse clade of closely related species that includes hybrid lineages. RNA editing in the allotetraploid, Leucaena leucocephala, is consistent with co-option of nearly equal maternal and paternal C-to-U edit components, generating novel combinations of RNA edited sites. A preliminary investigation of L. leucocephala C-to-U edit frequencies identified the potential for a hybrid to generate unique pools of alleles from parental variation through edit frequencies shared with one parental lineage, those intermediate between parents, and transgressive patterns.
Collapse
Affiliation(s)
- Lynsey Kovar
- Department of Biology, New Mexico State University
| | | | | | | | - Shannon Straub
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York
| | - Richard Cronn
- Pacific Northwest Research Station, Corvallis, Oregon
| | | | - Colin E Hughes
- Department of Systematic & Evolutionary Botany, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Hsieh PH, Kan CC, Wu HY, Yang HC, Hsieh MH. Early molecular events associated with nitrogen deficiency in rice seedling roots. Sci Rep 2018; 8:12207. [PMID: 30111825 PMCID: PMC6093901 DOI: 10.1038/s41598-018-30632-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
Nitrogen (N) deficiency is one of the most common problems in rice. The symptoms of N deficiency are well documented, but the underlying molecular mechanisms are largely unknown in rice. Here, we studied the early molecular events associated with N starvation (−N, 1 h), focusing on amino acid analysis and identification of −N-regulated genes in rice roots. Interestingly, levels of glutamine rapidly decreased within 15 min of −N treatment, indicating that part of the N-deficient signals could be mediated by glutamine. Transcriptome analysis revealed that genes involved in metabolism, plant hormone signal transduction (e.g. abscisic acid, auxin, and jasmonate), transporter activity, and oxidative stress responses were rapidly regulated by −N. Some of the −N-regulated genes encode transcription factors, protein kinases and protein phosphatases, which may be involved in the regulation of early −N responses in rice roots. Previously, we used similar approaches to identify glutamine-, glutamate-, and ammonium nitrate-responsive genes. Comparisons of the genes induced by different forms of N with the −N-regulated genes identified here have provided a catalog of potential N regulatory genes for further dissection of the N signaling pathwys in rice.
Collapse
Affiliation(s)
- Ping-Han Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Cheng Kan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiu-Chun Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
39
|
ACR11 modulates levels of reactive oxygen species and salicylic acid-associated defense response in Arabidopsis. Sci Rep 2018; 8:11851. [PMID: 30087396 PMCID: PMC6081435 DOI: 10.1038/s41598-018-30304-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
The ACT domain (aspartate kinase, chorismate mutase and TyrA), an allosteric effector binding domain, is commonly found in amino acid metabolic enzymes. In addition to ACT domain-containing enzymes, plants have a novel family of ACT domain repeat (ACR) proteins, which do not contain any recognizable catalytic domain. Arabidopsis has 12 ACR proteins, whose functions are largely unknown. To study the functions of Arabidopsis ACR11, we have characterized two independent T-DNA insertion mutants, acr11-2 and acr11-3. RNA gel-blot analysis revealed that the expression of wild-type ACR11 transcripts was not detectable in the acr11 mutants. Interestingly, a lesion-mimic phenotype occurs in some rosette leaves of the acr11 mutants. In addition, high levels of reactive oxygen species (ROS), salicylic acid (SA), and callose accumulate in the mutant leaves when grown under normal conditions. The expression of several SA marker genes and the key SA biosynthetic gene ISOCHORISMATE SYNTHASE1 is up-regulated in the acr11 mutants. Furthermore, the acr11 mutants are more resistant to the infection of bacterial pathogen Pseudomonas syringae pathovar tomato DC3000. These results suggest that ACR11 may be directly or indirectly involved in the regulation of ROS and SA accumulation, which in turn modulates SA-associated defense responses and disease resistance in Arabidopsis.
Collapse
|
40
|
Edera AA, Gandini CL, Sanchez-Puerta MV. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. PLANT MOLECULAR BIOLOGY 2018; 97:215-231. [PMID: 29761268 DOI: 10.1007/s11103-018-0734-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Our understanding of the dynamic and evolution of RNA editing in angiosperms is in part limited by the few editing sites identified to date. This study identified 10,217 editing sites from 17 diverse angiosperms. Our analyses confirmed the universality of certain features of RNA editing, and offer new evidence behind the loss of editing sites in angiosperms. RNA editing is a post-transcriptional process that substitutes cytidines (C) for uridines (U) in organellar transcripts of angiosperms. These substitutions mostly take place in mitochondrial messenger RNAs at specific positions called editing sites. By means of publicly available RNA-seq data, this study identified 10,217 editing sites in mitochondrial protein-coding genes of 17 diverse angiosperms. Even though other types of mismatches were also identified, we did not find evidence of non-canonical editing processes. The results showed an uneven distribution of editing sites among species, genes, and codon positions. The analyses revealed that editing sites were conserved across angiosperms but there were some species-specific sites. Non-synonymous editing sites were particularly highly conserved (~ 80%) across the plant species and were efficiently edited (80% editing extent). In contrast, editing sites at third codon positions were poorly conserved (~ 30%) and only partially edited (~ 40% editing extent). We found that the loss of editing sites along angiosperm evolution is mainly occurring by replacing editing sites with thymidines, instead of a degradation of the editing recognition motif around editing sites. Consecutive and highly conserved editing sites had been replaced by thymidines as result of retroprocessing, by which edited transcripts are reverse transcribed to cDNA and then integrated into the genome by homologous recombination. This phenomenon was more pronounced in eudicots, and in the gene cox1. These results suggest that retroprocessing is a widespread driving force underlying the loss of editing sites in angiosperm mitochondria.
Collapse
Affiliation(s)
- Alejandro A Edera
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina.
| | - Carolina L Gandini
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
41
|
Jiang T, Zhang J, Rong L, Feng Y, Wang Q, Song Q, Zhang L, Ouyang M. ECD1 functions as an RNA-editing trans-factor of rps14-149 in plastids and is required for early chloroplast development in seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3037-3051. [PMID: 29648606 PMCID: PMC5972661 DOI: 10.1093/jxb/ery139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/29/2018] [Indexed: 05/18/2023]
Abstract
Chloroplast development is a highly complex process and the regulatory mechanisms have not yet been fully characterized. In this study, we identified Early Chloroplast Development 1 (ECD1), a chloroplast-localized pentatricopeptide repeat protein (PPR) belonging to the PLS subfamily. Inactivation of ECD1 in Arabidopsis led to embryo lethality, and abnormal embryogenesis occurred in ecd1/+ heterozygous plants. A decrease in ECD1 expression induced by RNAi resulted in seedlings with albino cotyledons but normal true leaves. The aberrant morphology and under-developed thylakoid membrane system in cotyledons of RNAi seedlings suggests a role of ECD1 specifically in chloroplast development in seedlings. In cotyledons of ECD1-RNAi plants, RNA-editing of rps14-149 (encoding ribosomal protein S14) was seriously impaired. In addition, dramatically decreased plastid-encoded RNA polymerase-dependent gene expression and abnormal chloroplast rRNA processing were also observed. Taken together, our results indicate that ECD1 is indispensable for chloroplast development at the seedling stage in Arabidopsis.
Collapse
Affiliation(s)
- Tian Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjiang Feng
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiulai Song
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
42
|
Pinard D, Mizrachi E. Unsung and understudied: plastids involved in secondary growth. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:30-36. [PMID: 29459221 DOI: 10.1016/j.pbi.2018.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 05/17/2023]
Abstract
Plastids represent the only subcellular compartment where aromatic amino acid precursors for lignin can be synthesized during secondary growth in vascular plants. Despite this, aside from a general shared understanding that plastid-localized metabolism occurs during secondary growth, virtually no research has been performed on understanding their biology. Of particular importance will be insight into their ontogeny, morphology and ultrastructure, and (given the complex cytonuclear communication required) their nuclear-encoded and organellar-encoded regulation. Updating and integrating this knowledge will contribute to our fundamental understanding of a ubiquitous developmental process in vascular plants, and a major terrestrial carbon sink, as well as carbon-related plant biotechnology. Given available evidence, we propose a new name for a distinct plastid derivative-the 'xyloplast', is required.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| |
Collapse
|
43
|
de Santana Lopes A, Gomes Pacheco T, Nimz T, do Nascimento Vieira L, Guerra MP, Nodari RO, de Souza EM, de Oliveira Pedrosa F, Rogalski M. The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae. PLANTA 2018; 247:1011-1030. [PMID: 29340796 DOI: 10.1007/s00425-018-2841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/10/2018] [Indexed: 05/08/2023]
Abstract
The plastome of macaw palm was sequenced allowing analyses of evolution and molecular markers. Additionally, we demonstrated that more than half of plastid protein-coding genes in Arecaceae underwent positive selection. Macaw palm is a native species from tropical and subtropical Americas. It shows high production of oil per hectare reaching up to 70% of oil content in fruits and an interesting plasticity to grow in different ecosystems. Its domestication and breeding are still in the beginning, which makes the development of molecular markers essential to assess natural populations and germplasm collections. Therefore, we sequenced and characterized in detail the plastome of macaw palm. A total of 221 SSR loci were identified in the plastome of macaw palm. Additionally, eight polymorphism hotspots were characterized at level of subfamily and tribe. Moreover, several events of gain and loss of RNA editing sites were found within the subfamily Arecoideae. Aiming to uncover evolutionary events in Arecaceae, we also analyzed extensively the evolution of plastid genes. The analyses show that highly divergent genes seem to evolve in a species-specific manner, suggesting that gene degeneration events may be occurring within Arecaceae at the level of genus or species. Unexpectedly, we found that more than half of plastid protein-coding genes are under positive selection, including genes for photosynthesis, gene expression machinery and other essential plastid functions. Furthermore, we performed a phylogenomic analysis using whole plastomes of 40 taxa, representing all subfamilies of Arecaceae, which placed the macaw palm within the tribe Cocoseae. Finally, the data showed here are important for genetic studies in macaw palm and provide new insights into the evolution of plastid genes and environmental adaptation in Arecaceae.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tabea Nimz
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel P Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens O Nodari
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
44
|
Yang HC, Kan CC, Hung TH, Hsieh PH, Wang SY, Hsieh WY, Hsieh MH. Identification of early ammonium nitrate-responsive genes in rice roots. Sci Rep 2017; 7:16885. [PMID: 29203827 PMCID: PMC5715151 DOI: 10.1038/s41598-017-17173-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/22/2017] [Indexed: 11/14/2022] Open
Abstract
Ammonium has long been used as the predominant form of nitrogen source for paddy rice (Oryza sativa). Recently, increasing evidence suggests that nitrate also plays an important role for nitrogen acquisition in the rhizosphere of waterlogged paddy rice. Ammonium and nitrate have a synergistic effect on promoting rice growth. However, the molecular responses induced by simultaneous treatment with ammonium and nitrate have been less studied in rice. Here, we performed transcriptome analysis to identify genes that are rapidly regulated by ammonium nitrate (1.43 mM, 30 min) in rice roots. The combination of ammonium and nitrate preferentially induced the expression of nitrate-responsive genes. Gene ontology enrichment analysis revealed that the early ammonium nitrate-responsive genes were enriched in "regulation of transcription, DNA-dependent" and "protein amino acid phosphorylation" indicating that some of the genes identified in this study may play an important role in nitrogen sensing and signaling. Several defense/stress-responsive genes, including some encoding transcription factors and mitogen-activated protein kinase kinase kinases, were also rapidly induced by ammonium nitrate. These results suggest that nitrogen metabolism, signaling, and defense/stress responses are interconnected. Some of the genes identified here may be involved in the interaction of nitrogen signaling and defense/stress-response pathways in plants.
Collapse
Affiliation(s)
- Hsiu-Chun Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Cheng Kan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Ping-Han Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shi-Yun Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
45
|
Chen TC, Liu YC, Wang X, Wu CH, Huang CH, Chang CC. Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana. BOTANICAL STUDIES 2017; 58:38. [PMID: 28916985 PMCID: PMC5602750 DOI: 10.1186/s40529-017-0193-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/08/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND RNA editing is a process of post-transcriptional level of gene regulation by nucleotide modification. Previously, the chloroplast DNA of Taiwan endemic moth orchid, P. aphrodite subsp. formosana was determined, and 44 RNA editing sites were identified from 24 plastid protein-coding transcripts of leaf tissue via RT-PCR and then conventional Sanger sequencing. However, the RNA editing status of whole-plastid transcripts in leaf and other distinct tissue types in moth orchids has not been addressed. To sensitively and extensively examine the plastid RNA editing status of moth orchid, RNA-Seq was used to investigate the editing status of whole-plastid transcripts from leaf and floral tissues by mapping the sequence reads to the corresponding cpDNA template. With the threshold of at least 5% C-to-U or U-to-C conversion events observed in sequence reads considered as RNA editing sites. RESULTS In total, 137 edits with 126 C-to-U and 11 U-to-C conversions, including 93 newly discovered edits, were identified in plastid transcripts, representing an average of 0.09% of the nucleotides examined in moth orchid. Overall, 110 and 106 edits were present in leaf and floral tissues, respectively, with 79 edits in common. As well, 79 edits were involved in protein-coding transcripts, and the 58 nucleotide conversions caused the non-synonymous substitution. At least 32 edits showed significant (≧20%) differential editing between leaf and floral tissues. Finally, RNA editing in trnM is required for the formation of a standard clover-leaf structure. CONCLUSIONS We identified 137 edits in plastid transcripts of moth orchid, the highest number reported so far in monocots. The consequence of RNA editing in protein-coding transcripts mainly cause the amino acid change and tend to increase the hydrophobicity as well as conservation among plant phylogeny. RNA editing occurred in non-protein-coding transcripts such as tRNA, introns and untranslated regulatory regions could affect the formation and stability of secondary structure, which might play an important role in the regulation of gene expression. Furthermore, some unidentified tissue-specific factors might be required for regulating RNA editing in moth orchid.
Collapse
Affiliation(s)
- Ting-Chieh Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yu-Chang Liu
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Chi-Hsuan Wu
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Chih-Hao Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Ching-Chun Chang
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|
46
|
Llamas E, Pulido P, Rodriguez-Concepcion M. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis. PLoS Genet 2017; 13:e1007022. [PMID: 28937985 PMCID: PMC5627961 DOI: 10.1371/journal.pgen.1007022] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/04/2017] [Accepted: 09/15/2017] [Indexed: 11/27/2022] Open
Abstract
Disruption of protein homeostasis in chloroplasts impairs the correct functioning of essential metabolic pathways, including the methylerythritol 4-phosphate (MEP) pathway for the production of plastidial isoprenoids involved in photosynthesis and growth. We previously found that misfolded and aggregated forms of the first enzyme of the MEP pathway are degraded by the Clp protease with the involvement of Hsp70 and Hsp100/ClpC1 chaperones in Arabidopsis thaliana. By contrast, the combined unfolding and disaggregating actions of Hsp70 and Hsp100/ClpB3 chaperones allow solubilization and hence reactivation of the enzyme. The repair pathway is promoted when the levels of ClpB3 proteins increase upon reduction of Clp protease activity in mutants or wild-type plants treated with the chloroplast protein synthesis inhibitor lincomycin (LIN). Here we show that LIN treatment rapidly increases the levels of aggregated proteins in the chloroplast, unleashing a specific retrograde signaling pathway that up-regulates expression of ClpB3 and other nuclear genes encoding plastidial chaperones. As a consequence, folding capacity is increased to restore protein homeostasis. This sort of chloroplast unfolded protein response (cpUPR) mechanism appears to be mediated by the heat shock transcription factor HsfA2. Expression of HsfA2 and cpUPR-related target genes is independent of GUN1, a central integrator of retrograde signaling pathways. However, double mutants defective in both GUN1 and plastome gene expression (or Clp protease activity) are seedling lethal, confirming that the GUN1 protein is essential for protein homeostasis in chloroplasts.
Collapse
Affiliation(s)
- Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| |
Collapse
|
47
|
Hsieh WY, Liao JC, Wang HT, Hung TH, Tseng CC, Chung TY, Hsieh MH. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B 1 biosynthesis pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:145-157. [PMID: 28346710 DOI: 10.1111/tpj.13552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 05/24/2023]
Abstract
Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
48
|
Bobik K, McCray TN, Ernest B, Fernandez JC, Howell KA, Lane T, Staton M, Burch-Smith TM. The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:114-131. [PMID: 28346704 DOI: 10.1111/tpj.13550] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 05/06/2023]
Abstract
INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is a chloroplast-localized RNA helicase that is indispensable for proper plant development. Chloroplasts in leaves with reduced ISE2 expression have previously been shown to exhibit reduced thylakoid contents and increased stromal volume, indicative of defective development. It has recently been reported that ISE2 is required for the splicing of group II introns from chloroplast transcripts. The current study extends these findings, and presents evidence for ISE2's role in multiple aspects of chloroplast RNA processing beyond group II intron splicing. Loss of ISE2 from Arabidopsis thaliana leaves resulted in defects in C-to-U RNA editing, altered accumulation of chloroplast transcripts and chloroplast-encoded proteins, and defective processing of chloroplast ribosomal RNAs. Potential ISE2 substrates were identified by RNA immunoprecipitation followed by next-generation sequencing (RIP-seq), and the diversity of RNA species identified supports ISE2's involvement in multiple aspects of chloroplast RNA metabolism. Comprehensive phylogenetic analyses revealed that ISE2 is a non-canonical Ski2-like RNA helicase that represents a separate sub-clade unique to green photosynthetic organisms, consistent with its function as an essential protein. Thus ISE2's evolutionary conservation may be explained by its numerous roles in regulating chloroplast gene expression.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Katharine A Howell
- Plant Energy Biology, ARC Center of Excellence, University of Western Australia, Perth, Australia
| | - Thomas Lane
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Margaret Staton
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
49
|
Rodrigues NF, Fonseca GCD, Kulcheski FR, Margis R. Salt stress affects mRNA editing in soybean chloroplasts. Genet Mol Biol 2017; 40:200-208. [PMID: 28257523 PMCID: PMC5452132 DOI: 10.1590/1678-4685-gmb-2016-0055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
Soybean, a crop known by its economic and nutritional importance, has been the
subject of several studies that assess the impact and the effective plant responses
to abiotic stresses. Salt stress is one of the main environmental stresses and
negatively impacts crop growth and yield. In this work, the RNA editing process in
the chloroplast of soybean plants was evaluated in response to a salt stress.
Bioinformatics approach using sRNA and mRNA libraries were employed to detect
specific sites showing differences in editing efficiency. RT-qPCR was used to measure
editing efficiency at selected sites. We observed that transcripts of
NDHA, NDHB, RPS14 and
RPS16 genes presented differences in coverage and editing rates
between control and salt-treated libraries. RT-qPCR assays demonstrated an increase
in editing efficiency of selected genes. The salt stress enhanced the RNA editing
process in transcripts, indicating responses to components of the electron transfer
chain, photosystem and translation complexes. These increases can be a response to
keep the homeostasis of chloroplast protein functions in response to salt stress.
Collapse
Affiliation(s)
- Nureyev F Rodrigues
- Departamento de Genética, PPGBM, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme C da Fonseca
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franceli R Kulcheski
- Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rogério Margis
- Departamento de Genética, PPGBM, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia, PPGBCM, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
50
|
Kan CC, Chung TY, Wu HY, Juo YA, Hsieh MH. Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics 2017; 18:186. [PMID: 28212609 PMCID: PMC5316172 DOI: 10.1186/s12864-017-3588-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/13/2017] [Indexed: 11/10/2022] Open
Abstract
Background Glutamate is an active amino acid. In addition to protein synthesis and metabolism, increasing evidence indicates that glutamate may also function as a signaling molecule in plants. Still, little is known about the nutritional role of glutamate and genes that are directly regulated by glutamate in rice. Results Exogenous glutamate could serve as a nitrogen nutrient to support the growth of rice seedlings, but it was not as effective as ammonium nitrate or glutamine. In nitrogen-starved rice seedlings, glutamate was the most abundant free amino acid and feeding of glutamate rapidly and significantly increased the endogenous levels of glutamine, but not glutamate. These results indicated that glutamate was quickly metabolized and converted to the other nitrogen-containing compounds in rice. Transcriptome analysis revealed that at least 122 genes involved in metabolism, transport, signal transduction, and stress responses in the roots were rapidly induced by 2.5 mM glutamate within 30 min. Many of these genes were also up-regulated by glutamine and ammonium nitrate. Still, we were able to identify some transcription factor, kinase/phosphatase, and elicitor-responsive genes that were specifically or preferentially induced by glutamate. Conclusions Glutamate is a functional amino acid that plays important roles in plant nutrition, metabolism, and signal transduction. The rapid and specific induction of transcription factor, kinase/phosphatase and elicitor-responsive genes suggests that glutamate may efficiently amplify its signal and interact with other signaling pathways to regulate metabolism, growth and defense responses in rice. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3588-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Cheng Kan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yan-An Juo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|