1
|
Orłowska R, Dynkowska WM, Niedziela A, Zebrowski J, Zimny J, Androsiuk P, Bednarek PT. β-glucans, SAM, and GSH fluctuations in barley anther tissue culture conditions affect regenerants' DNA methylation and GPRE. BMC PLANT BIOLOGY 2024; 24:853. [PMID: 39261760 PMCID: PMC11391688 DOI: 10.1186/s12870-024-05572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Microspore embryogenesis is a process that produces doubled haploids in tissue culture environments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mechanisms involving DNA methylation (demethylation-DM, de novo methylation-DNM). The conclusions mentioned were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study looks at how DNM, DM, Cu(II), SAM, GSH, and β-glucan affect the ability of green plant regeneration efficiency (GPRE). RESULTS The experiment involved spring barley regenerants obtained through anther culture. Nine variants (trials) of induction media were created by adding copper (CuSO4: 0.1; 5; 10 µM) and silver salts (AgNO3: 0; 10; 60 µM), with varying incubation times for the anthers (21, 28, and 35 days). Changes in DNA methylation were estimated using the DArTseqMet molecular marker method, which also detects cytosine methylation. Phenotype variability in β-glucans, SAM and GSH induced by the nutrient treatments was assessed using tentative assignments based on the Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The effectiveness of green plant regeneration ranged from 0.1 to 2.91 plants per 100 plated anthers. The level of demethylation ranged from 7.61 to 32.29, while de novo methylation reached values ranging from 6.83 to 32.27. The paper demonstrates that the samples from specific in vitro conditions (trials) formed tight groups linked to the factors contributing to the two main components responsible for 55.05% of the variance (to the first component DNM, DM, to the second component GSH, β-glucans, Cu(II), GPRE). CONCLUSIONS We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Wioletta Monika Dynkowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Agnieszka Niedziela
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Al. Rejtana 16C, Rzeszow, 35-959, Poland
| | - Janusz Zimny
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-719, Poland
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland.
| |
Collapse
|
2
|
Huang L, Gao G, Jiang C, Guo G, He Q, Zong Y, Liu C, Yang P. Generating homozygous mutant populations of barley microspores by ethyl methanesulfonate treatment. ABIOTECH 2023; 4:202-212. [PMID: 37970468 PMCID: PMC10638298 DOI: 10.1007/s42994-023-00108-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/31/2023] [Indexed: 11/17/2023]
Abstract
Induced mutations are important for genetic research and breeding. Mutations induced by physical or chemical mutagenesis are usually heterozygous during the early generations. However, mutations must be fixed prior to phenotyping or field trials, which requires additional rounds of self-pollination. Microspore culture is an effective method to produce double-haploid (DH) plants that are fixed homozygotes. In this study, we conducted ethyl methanesulfonate (EMS)-induced mutagenesis of microspore cultures of barley (Hordeum vulgare) cultivar 'Hua30' and landrace 'HTX'. The EMS concentrations were negatively correlated with the efficiency of callus induction and the frequency of mutant plant regeneration. The two genotypes showed different regeneration efficiencies. The phenotypic variation of the regenerated M1 plants and the presence of genome-wide nucleotide mutations, revealed by whole-genome sequencing, highlight the utility of EMS-induced mutagenesis of isolated microspore cultures for developing DH mutants. Genome-wide analysis of the mutation frequency in the regenerated plants revealed that a considerable proportion of mutations resulted from microspore culture (somaclonal variation) rather than EMS-induced mutagenesis. In addition to producing a population of 1972 homozygous mutant lines that are available for future field trials, this study lays the foundation for optimizing the regeneration efficiency of DH plants and the richness of mutations (mainly by fine-tuning the mutagen dosage).
Collapse
Affiliation(s)
- Linli Huang
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Guangqi Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Congcong Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Guimei Guo
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yingjie Zong
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
3
|
Sharma U, Sikdar A, Igamberdiev AU, Debnath SC. Exploring Genetic and Epigenetic Changes in Lingonberry Using Molecular Markers: Implications for Clonal Propagation. Curr Issues Mol Biol 2023; 45:6296-6310. [PMID: 37623216 PMCID: PMC10453208 DOI: 10.3390/cimb45080397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Lingonberry (Vaccinium vitis-idaea L.) is an important and valuable horticultural crop due to its high antioxidant properties. Plant tissue culture is an advanced propagation system employed in horticultural crops. However, the progeny derived using this technique may not be true-to-type. In order to obtain the maximum return of any agricultural enterprise, uniformity of planting materials is necessary, which sometimes is not achieved due to genetic and epigenetic instabilities under in vitro culture. Therefore, we analyzed morphological traits and genetic and epigenetic variations under tissue-culture and greenhouse conditions in lingonberry using molecular markers. Leaf length and leaf width under greenhouse conditions and shoot number per explant, shoot height and shoot vigor under in vitro conditions were higher in hybrid H1 compared to the cultivar Erntedank. Clonal fidelity study using one expressed sequence tag (EST)-polymerase chain reaction (PCR), five EST-simple sequence repeat (SSR) and six genomic (G)-SSR markers revealed monomorphic bands in micropropagated shoots and plants in lingonberry hybrid H1 and cultivar Erntedank conforming genetic integrity. Epigenetic variation was studied by quantifying cytosine methylation using a methylation-sensitive amplification polymorphism (MSAP) technique. DNA methylation ranged from 32% in greenhouse-grown hybrid H1 to 44% in cultivar Erntedank under a tissue culture system. Although total methylation was higher in in vitro grown shoots, fully methylated bands were observed more in the greenhouse-grown plants. On the contrary, hemimethylated DNA bands were more prominent in tissue culture conditions as compared to the greenhouse-grown plants. The study conclude that lingonberry maintains its genetic integrity but undergoes variable epigenetic changes during in vitro and ex vitro conditions.
Collapse
Affiliation(s)
- Umanath Sharma
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada; (U.S.); (A.S.); (A.U.I.)
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada
| | - Arindam Sikdar
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada; (U.S.); (A.S.); (A.U.I.)
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada; (U.S.); (A.S.); (A.U.I.)
| | - Samir C. Debnath
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada
| |
Collapse
|
4
|
Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture. Cells 2022; 12:cells12010163. [PMID: 36611956 PMCID: PMC9818285 DOI: 10.3390/cells12010163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Green plant regeneration efficiency (GPRE) via in vitro anther culture results from biochemical pathways and cycle dysfunctions that may affect DNA and histone methylation, with gene expression influencing whole cell functioning. The reprogramming from gametophytic to sporophytic fate is part of the phenomenon. While DNA methylation and sequence changes related to the GPRE have been described, little attention was paid to the biochemical aspects of the phenomenon. Furthermore, only a few theoretical models that describe the complex relationships between biochemical aspects of GPRE and the role of Cu(II) ions in the induction medium and as cofactors of enzymatic reactions have been developed. Still, none of these models are devoted directly to the biochemical level. Fourier transform infrared (FTIR) spectroscopy was used in the current study to analyze triticale regenerants derived under various in vitro tissue culture conditions, including different Cu(II) and Ag(I) ion concentrations in the induction medium and anther culture times. The FTIR spectra of S-adenosyl-L-methionine (SAM), glutathione, and pectins in parallel with the Cu(II) ions, as well as the evaluated GPRE values, were put into the structural equation model (SEM). The data demonstrate the relationships between SAM, glutathione, pectins, and Cu(II) in the induction medium and how they affect GPRE. The SEM reflects the cell functioning under in vitro conditions and varying Cu(II) concentrations. In the presented model, the players are the Krebs and Yang cycles, the transsulfuration pathway controlled by Cu(II) ions acting as cofactors of enzymatic reactions, and the pectins of the primary cell wall.
Collapse
|
5
|
Wijerathna-Yapa A, Ramtekey V, Ranawaka B, Basnet BR. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2273. [PMID: 36079653 PMCID: PMC9459818 DOI: 10.3390/plants11172273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022]
Abstract
Sources of new genetic variability have been limited to existing germplasm in the past. Wheat has been studied extensively for various agronomic traits located throughout the genome. The large size of the chromosomes and the ability of its polyploid genome to tolerate the addition or loss of chromosomes facilitated rapid progress in the early study of wheat genetics using cytogenetic techniques. At the same time, its large genome size has limited the progress in genetic characterization studies focused on diploid species, with a small genome and genetic engineering procedures already developed. Today, the genetic transformation and gene editing procedures offer attractive alternatives to conventional techniques for breeding wheat because they allow one or more of the genes to be introduced or altered into an elite cultivar without affecting its genetic background. Recently, significant advances have been made in regenerating various plant tissues, providing the essential basis for regenerating transgenic plants. In addition, Agrobacterium-mediated, biolistic, and in planta particle bombardment (iPB) gene delivery procedures have been developed for wheat transformation and advanced transgenic wheat development. As a result, several useful genes are now available that have been transferred or would be helpful to be transferred to wheat in addition to the current traditional effort to improve trait values, such as resistance to abiotic and biotic factors, grain quality, and plant architecture. Furthermore, the in planta genome editing method will significantly contribute to the social implementation of genome-edited crops to innovate the breeding pipeline and leverage unique climate adaptations.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vinita Ramtekey
- ICAR-Indian Institute of Seed Science, Kushmaur, Mau, Uttar Pradesh 275103, India
| | - Buddhini Ranawaka
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Bhoja Raj Basnet
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batán 56237, Mexico
| |
Collapse
|
6
|
S-Adenosyl-L-Methionine and Cu(II) Impact Green Plant Regeneration Efficiency. Cells 2022; 11:cells11172700. [PMID: 36078107 PMCID: PMC9454820 DOI: 10.3390/cells11172700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The biological improvement of triticale, a cereal of increasing importance in agriculture, may be accelerated via the production of doubled haploid lines using in vitro culture. Among the relevant factors affecting the culture efficiency are Cu(II) or Ag(I) acting, e.g., as cofactors of enzymes. The copper ions are known to positively affect green plant regeneration efficiency. However, the biochemical basis, mainly its role in the generation of in vitro-induced genetic and epigenetic variation and green plant regeneration efficiency, is not well understood. Here, we employed structural equation modeling to evaluate the relationship between de novo DNA methylation affecting the asymmetric context of CHH sequences, the methylation-sensitive Amplified Fragment Length Polymorphism related sequence variation, and the concentration of Cu(II) and Ag(I) ions in induction media, as well as their effect on S-adenosyl-L-methionine perturbations, observed using FTIR spectroscopy, and the green plant regeneration efficiency. Our results allowed the construction of a theory-based model reflecting the biological phenomena associated with green plant regeneration efficiency. Furthermore, it is shown that Cu(II) ions in induction media affect plant regeneration, and by manipulating their concentration, the regeneration efficiency can be altered. Additionally, S-adenosyl-L-methionine is involved in the efficiency of green plant regeneration through methylation of the asymmetric CHH sequence related to de novo methylation. This shows that the Yang cycle may impact the production of green regenerants.
Collapse
|
7
|
Triticale doubled haploid plant regeneration factors linked by structural equation modeling. J Appl Genet 2022; 63:677-690. [PMID: 36018540 PMCID: PMC9637073 DOI: 10.1007/s13353-022-00719-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Triticale regeneration via anther culture faces many difficulties, e.g., a low percentage of regenerated plants and the presence of albinos. Plant regeneration may be affected by abiotic stresses and by ingredients added to the induction medium. The latter influences biochemical pathways and plant regeneration efficiency. Among such ingredients, copper and silver ions acting as cofactors for enzymatic reactions are of interest. However, their role in plant tissue cultures and relationships with biochemical pathways has not been studied yet. The study evaluated relationships between DNA methylation, changes in DNA sequence variation, and green plant regeneration efficiency influenced by copper and silver ions during triticale plant regeneration. For this purpose, a biological model based on donor plants and their regenerants, a methylation-sensitive amplified fragment length polymorphism, and structural equation modeling were employed. The green plant regeneration efficiency varied from 0.71 to 6.06 green plants per 100 plated anthers. The values for the components of tissue culture-induced variation related to cytosine methylation in a CHH sequence context (where H is A, C, or T) were 8.65% for sequence variation, 0.76% for DNA demethylation, and 0.58% for de novo methylation. The proposed model states that copper ions affect the regeneration efficiency through cytosine methylation and may induce mutations through, e.g., oxidative processes, which may interfere with the green plant regeneration efficiency. The linear regression confirms that the plant regeneration efficiency rises with increasing copper ion concentration in the absence of Ag ions in the induction medium. The least absolute shrinkage and selection operator regression shows that de novo methylation, demethylation, and copper ions may be involved in the green plant regeneration efficiency. According to structural equation modeling, copper ions play a central role in the model determining the regeneration efficiency.
Collapse
|
8
|
Pachota KA, Orłowska R. Effect of copper and silver ions on sequence and DNA methylation changes in triticale regenerants gained via somatic embryogenesis. J Appl Genet 2022; 63:663-675. [PMID: 35984629 PMCID: PMC9637072 DOI: 10.1007/s13353-022-00717-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Somatic embryogenesis is a plant regeneration method that can be exploited in tissue culture systems for a variety of tasks, such as genetic modification or the selection of somaclones with advantageous characteristics. Therefore, it is crucial to create efficient regeneration procedures and comprehend how medium components affect regeneration effectiveness or the degree of variation created in plant tissue cultures. The level of tissue culture-induced variation in triticale regenerants was examined in the current study in relation to the concentration of copper and silver ions in the induction media as well as the length of time immature zygotic embryo explants were incubated on these media. The high degree of variation (45%) revealed by the methylation-sensitive amplified fragment length polymorphism approach for estimating variation included 38% DNA sequence alterations, 6% DNA demethylation, and 1% de novo DNA methylation. Different levels of variance were found in relation to various DNA sequence settings. The CHG context had the most alterations, whereas CG experienced the fewest; sequence variation predominated in each sequence context. Lower copper ion concentrations showed the most variance. However, it could not be connected to the duration of in vitro culture or the effect of silver ions. Accordingly, we think that altering the concentration of copper ions in the induction medium may throw off the equilibrium of the metabolic processes in which copper is involved, resulting in tissue culture-induced variation.
Collapse
Affiliation(s)
- Katarzyna Anna Pachota
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Renata Orłowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland.
| |
Collapse
|
9
|
Go X X Biowska G, Stawoska I, Wese X Ucha-Birczy X Ska A. Cold-modulated leaf compounds in winter triticale DH lines tolerant to freezing and Microdochium nivale infection: LC-MS and Raman study. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:725-741. [PMID: 35379383 DOI: 10.1071/fp21300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Tolerance to freezing and seedling diseases caused by Microdochium spp. is an essential trait for the wintering of triticale (×Triticosecale Wittmack) and other cereals. Preceding multi-year studies indicate that after long-term exposure to the low temperature, cereal seedlings acquire a genotype-dependent cross-tolerance to other subsequent stresses. This paper presents the first non-gel protein profiling performed via high performance liquid chromatography coupled with Mass Spectrometry as well as Fourier Transform-Raman spectroscopy measurements performed directly on leaves of triticale seedlings growing under different conditions. The research used doubled haploid lines selected from the mapping population, with extreme tolerance/susceptibility to freezing and M. nivale infection. These non-targeted methods led to the detection of twenty two proteins cold-accumulated in the most tolerant seedlings in relation to susceptible ones, classified as involved in protein biosynthesis, response to different stimuli, energy balancing, oxidative stress response, protein modification, membrane structure and anthocyanin synthesis. Additionally, in seedlings of the most freezing- and M. nivale -tolerant line, cold-hardening caused decrease of the carotenoid and chlorophyll content. Moreover, a decrease in the band intensity typical for carbohydrates as well as an increase in the band intensity characteristic for protein compounds were detected. Both studied lines revealed a different answer to stress in the characteristics of phenolic components.
Collapse
Affiliation(s)
- Gabriela Go X X Biowska
- Pedagogical University of Krakow, Institute of Biology, Podchorazych 2, Kraków 30-084, Poland
| | - Iwona Stawoska
- Pedagogical University of Krakow, Institute of Biology, Podchorazych 2, Kraków 30-084, Poland
| | | |
Collapse
|
10
|
Hou BH, Tsai YH, Chiang MH, Tsao SM, Huang SH, Chao CP, Chen HM. Cultivar-specific markers, mutations, and chimerisim of Cavendish banana somaclonal variants resistant to Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 2022; 23:470. [PMID: 35752751 PMCID: PMC9233791 DOI: 10.1186/s12864-022-08692-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The selection of tissue culture–derived somaclonal variants of Giant Cavendish banana (Musa spp., Cavendish sub-group AAA) by the Taiwan Banana Research Institute (TBRI) has resulted in several cultivars resistant to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a destructive fungus threatening global banana production. However, the mutations in these somaclonal variants have not yet been determined. We performed an RNA-sequencing (RNA-seq) analysis of three TBRI Foc TR4–resistant cultivars: ‘Tai-Chiao No. 5’ (TC5), ‘Tai-Chiao No. 7’ (TC7), and ‘Formosana’ (FM), as well as their susceptible progenitor ‘Pei-Chiao’ (PC), to investigate the sequence variations among them and develop cultivar-specific markers. Results A group of single-nucleotide variants (SNVs) specific to one cultivar were identified from the analysis of RNA-seq data and validated using Sanger sequencing from genomic DNA. Several SNVs were further converted into cleaved amplified polymorphic sequence (CAPS) markers or derived CAPS markers that could identify the three Foc TR4–resistant cultivars among 6 local and 5 international Cavendish cultivars. Compared with PC, the three resistant cultivars showed a loss or alteration of heterozygosity in some chromosomal regions, which appears to be a consequence of single-copy chromosomal deletions. Notably, TC7 and FM shared a common deletion region on chromosome 5; however, different TC7 tissues displayed varying degrees of allele ratios in this region, suggesting the presence of chimerism in TC7. Conclusions This work demonstrates that reliable SNV markers of tissue culture–derived and propagated banana cultivars with a triploid genome can be developed through RNA-seq data analysis. Moreover, the analysis of sequence heterozygosity can uncover chromosomal deletions and chimerism in banana somaclonal variants. The markers obtained from this study will assist with the identification of TBRI Cavendish somaclonal variants for the quality control of tissue culture propagation, and the protection of breeders’ rights. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08692-5.
Collapse
Affiliation(s)
- Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan
| | - Yi-Heng Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan
| | - Ming-Hau Chiang
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan
| | - Shu-Ming Tsao
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan
| | | | - Chih-Ping Chao
- Taiwan Banana Research Institute, 90442, Pingtung, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|
11
|
Gołębiowska G, Dyda M, Wajdzik K. Quantitative Trait Loci and Candidate Genes Associated with Cold-Acclimation and Microdochium nivale Tolerance/Susceptibility in Winter Triticale (x Triticosecale). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122678. [PMID: 34961149 PMCID: PMC8704164 DOI: 10.3390/plants10122678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Tolerance to pink snow mold caused by Microdochium nivale appears after a cold-hardening period and it is an essential, genotype-dependent, complex quantitative trait for the wintering of triticale (x Triticosecale) and other cereals. Despite long-term studies, a marker for the selection of the tolerant genotypes is still insufficiently recognized. Chlorophyll fluorescence has been reported as a sensitive indicator of stress effects on photosynthesis and can be used to predict plant tolerance. In this study, the genomic regions (QTLs) associated with the level of winter triticale seedlings damage caused by M. nivale infection as well as photosynthesis quantum efficiency and chlorophyll a fluorescence parameters were identified in seedlings of mapping population of 89 doubled haploids lines (DHs) derived from F1 hybrid of cv. 'Hewo' and cv. 'Magnat' accompanied with the genetic map consisting of 20 linkage groups with a total map length 4997.4 cm. Independent experiments performed in controlled conditions revealed 13 regions identified by a composite interval mapping, located on 7A, 1B, 2B, 6B, 7B, 3R, 5R, and 6R linkage groups and related to the PI, PIABS, TRo/CS, ABS/CS, ABS/CSm, ABS/RC, and Qy values as well as M. nivale tolerance T and susceptibility level P expressed by the seedling damage index. Additionally, candidate genes were in silico identified with the sequence position on wheat (2B and 7B) and rye (5R) chromosomes, where relevant QTL regions were found. The most important candidate genes indicated for M. nivale tolerance of cold-hardened triticale seedlings include those coding: sterol 3-beta-glucosyltransferase UGT80A2-like, transcription factor NAI1-like, and flavonol3-sulfotransferase-like proteins on chromosomes 2B and 5R.
Collapse
|
12
|
Bednarek PT, Orłowska R, Mańkowski DR, Oleszczuk S, Zebrowski J. Structural Equation Modeling (SEM) Analysis of Sequence Variation and Green Plant Regeneration via Anther Culture in Barley. Cells 2021; 10:2774. [PMID: 34685752 PMCID: PMC8534894 DOI: 10.3390/cells10102774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The process of anther culture involves numerous abiotic stresses required for cellular reprogramming, microspore developmental switch, and plant regeneration. These stresses affect DNA methylation patterns, sequence variation, and the number of green plants regenerated. Recently, in barley (Hordeum vulgare L.), mediation analysis linked DNA methylation changes, copper (Cu2+) and silver (Ag+) ion concentrations, sequence variation, β-glucans, green plants, and duration of anther culture (Time). Although several models were used to explain particular aspects of the relationships between these factors, a generalized complex model employing all these types of data was not established. In this study, we combined the previously described partial models into a single complex model using the structural equation modeling approach. Based on the evaluated model, we demonstrated that stress conditions (such as starvation and darkness) influence β-glucans employed by cells for glycolysis and the tricarboxylic acid cycle. Additionally, Cu2+ and Ag+ ions affect DNA methylation and induce sequence variation. Moreover, these ions link DNA methylation with green plants. The structural equation model also showed the role of time in relationships between parameters included in the model and influencing plant regeneration via anther culture. Utilization of structural equation modeling may have both scientific and practical implications, as it demonstrates links between biological phenomena (e.g., culture-induced variation, green plant regeneration and biochemical pathways), and provides opportunities for regulating these phenomena for particular biotechnological purposes.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Dariusz Rafał Mańkowski
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Sylwia Oleszczuk
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, 35-959 Rzeszow, Poland;
| |
Collapse
|
13
|
Abstract
Manifold and diverse applications of doubled haploid (DH) plants have emerged in academy and in the plant breeding industry since the first discovery of a haploid mutant in the Jimson Weed (Datura stramonium), followed by the first reports about anther culture in the same species, maternal haploids by wide crosses in tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.), interspecific hybridization, ovary culture (gynogenesis), isolated microspore culture, and more recently the CENH3 approach in thale cress (Arabidopsis thaliana L.) and other species. Research and development efforts were and are still significant in both user groups. Luckily, often academic and industrial partners cooperate in challenging and sometimes voluminous projects worldwide. Not only to develop innovative DH protocols and technologies per se, but also to exploit the advantages of DH plants in a huge variety of research and development experiments. This review concentrates not on the DH technologies per se, but on the application of DHs in plant-related research and development projects.
Collapse
|
14
|
Bednarek PT, Pachota KA, Dynkowska WM, Machczyńska J, Orłowska R. Understanding In Vitro Tissue Culture-Induced Variation Phenomenon in Microspore System. Int J Mol Sci 2021; 22:7546. [PMID: 34299165 PMCID: PMC8304781 DOI: 10.3390/ijms22147546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro tissue culture plant regeneration is a complicated process that requires stressful conditions affecting the cell functioning at multiple levels, including signaling pathways, transcriptome functioning, the interaction between cellular organelles (retro-, anterograde), compounds methylation, biochemical cycles, and DNA mutations. Unfortunately, the network linking all these aspects is not well understood, and the available knowledge is not systemized. Moreover, some aspects of the phenomenon are poorly studied. The present review attempts to present a broad range of aspects involved in the tissue culture-induced variation and hopefully would stimulate further investigations allowing a better understanding of the phenomenon and the cell functioning.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.A.P.); (W.M.D.); (J.M.); (R.O.)
| | | | | | | | | |
Collapse
|
15
|
Comparative Study of the Genetic and Biochemical Variability of Polyscias filicifolia (Araliaceae) Regenerants Obtained by Indirect and Direct Somatic Embryogenesis as a Source of Triterpenes. Int J Mol Sci 2021; 22:ijms22115752. [PMID: 34072251 PMCID: PMC8198449 DOI: 10.3390/ijms22115752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Polyscias filicifolia (Araliaceae) is broadly used in traditional medicine in Southeast Asia due to its antimicrobial, immunomodulating and cytotoxic activities. The main groups of compounds responsible for pharmacological effects are believed to be oleanolic triterpene saponins. However, Polyscias plants demonstrate relatively slow growth in natural conditions, which led to applying a developing sustainable source of plant material via primary (PSE), secondary (DSE) and direct somatic embryogenesis from DSE (TSE). The AFLP and metAFLP genotyping resulted in 1277 markers, amplified by a total of 24 pairs of selective primers. Only 3.13% of the markers were polymorphic. The analysis of variance showed that the PSE and TSE regenerants differed only in terms of root number, while the DSE plantlets differed for all studied morphological characteristics. Further, the chemical analysis revealed that oleanolic acid (439.72 µg/g DW), ursolic acid (111.85 µg/g DW) and hederagenin (19.07 µg/g DW) were determined in TSE regenerants. Our results indicate that direct somatic embryogenesis ensures the production of homogeneous plant material, which can serve as a potential source of triterpene compounds. Plants obtained via somatic embryogenesis could also be reintroduced into the natural environment to protect and preserve its biodiversity.
Collapse
|
16
|
Orłowska R. Barley somatic embryogenesis-an attempt to modify variation induced in tissue culture. ACTA ACUST UNITED AC 2021; 28:9. [PMID: 33726856 PMCID: PMC7962293 DOI: 10.1186/s40709-021-00138-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Background Somatic embryogenesis is a phenomenon carried out in an environment that generates abiotic stress. Thus, regenerants may differ from the source of explants at the morphological, genetic, and epigenetic levels. The DNA changes may be the outcome of induction media ingredients (i.e., copper and silver ions) and their concentrations and time of in vitro cultures. Results This study optimised the level of copper and silver ion concentration in culture media parallel with the induction medium longevity step towards obtaining barley regenerants via somatic embryogenesis with a minimum or maximum level of tissue culture-induced differences between the donor plant and its regenerants. The optimisation process is based on tissue culture-induced variation evaluated via the metAFLP approach for regenerants derived under varying in vitro tissue culture conditions and exploited by the Taguchi method. In the optimisation and verification experiments, various copper and silver ion concentrations and the different number of days differentiated the tested trials concerning the tissue culture-induced variation level, DNA demethylation, and de novo methylation, including symmetric (CG, CHG) and asymmetric (CHH) DNA sequence contexts. Verification of optimised conditions towards obtaining regenerants with minimum and maximum variability compared to donor plants proved useful. The main changes that discriminate optimised conditions belonged to DNA demethylation events with particular stress on CHG context. Conclusions The combination of tissue culture-induced variation evaluated for eight experimental trials and implementation of the Taguchi method allowed the optimisation of the in vitro tissue culture conditions towards the minimum and maximum differences between a source of tissue explants (donor plant) and its regenerants from somatic embryos. The tissue culture-induced variation characteristic is mostly affected by demethylation with preferences towards CHG sequence context.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding & Acclimatization Institute-National Research Institute, 05-870 Błonie, Radzików, Poland.
| |
Collapse
|
17
|
Orłowska R, Zimny J, Bednarek PT. Copper Ions Induce DNA Sequence Variation in Zygotic Embryo Culture-Derived Barley Regenerants. FRONTIERS IN PLANT SCIENCE 2021; 11:614837. [PMID: 33613587 PMCID: PMC7889974 DOI: 10.3389/fpls.2020.614837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 05/18/2023]
Abstract
In vitro tissue culture could be exploited to study cellular mechanisms that induce sequence variation. Altering the metal ion composition of tissue culture medium affects biochemical pathways involved in tissue culture-induced variation. Copper ions are involved in the mitochondrial respiratory chain and Yang cycle. Copper ions may participate in oxidative mutations, which may contribute to DNA sequence variation. Silver ions compete with copper ions to bind to the complex IV subunit of the respiratory chain, thus affecting the Yang cycle and DNA methylation. The mechanisms underlying somaclonal variation are unknown. In this study, we evaluated embryo-derived barley regenerants obtained from a single double-haploid plant via embryo culture under varying copper and silver ion concentrations and different durations of in vitro culture. Morphological variation among regenerants and the donor plant was not evaluated. Methylation-sensitive Amplified Fragment Length Polymorphism analysis of DNA samples showed DNA methylation pattern variation in CG and CHG (H = A, C, or T) sequence contexts. Furthermore, modification of in vitro culture conditions explained DNA sequence variation, demethylation, and de novo methylation in the CHG context, as indicated by analysis of variance. Linear regression indicated that DNA sequence variation was related to de novo DNA methylation in the CHG context. Mediation analysis showed the role of copper ions as a mediator of sequence variation in the CHG context. No other contexts showed a significant sequence variation in mediation analysis. Silver ions did not act as a mediator between any methylation contexts and sequence variation. Thus, incorporating copper ions in the induction medium should be treated with caution.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute–National Research Institute, Błonie, Poland
| | | | | |
Collapse
|
18
|
Time of In Vitro Anther Culture May Moderate Action of Copper and Silver Ions that Affect the Relationship between DNA Methylation Change and the Yield of Barley Green Regenerants. PLANTS 2020; 9:plants9091064. [PMID: 32825181 PMCID: PMC7570150 DOI: 10.3390/plants9091064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Plant anther culture allows for the regeneration of uniform and homozygous double haploids. However, off-type regenerants may appear as a result of so-called tissue culture-induced variation (TCIV). In addition, the presence of Cu2+ and Ag+ ions in the culture medium might influence the number of green plants. The regenerants were obtained via anther cultures of barley under varying Cu2+ and Ag+ ion concentrations in the induction medium during distinct time conditions. DArTseqMet markers were evaluated based on regenerants and donor plants and delivering data on DNA demethylation (DM) and de novo methylation (DNM) and changes in methylation (Delta). The number of green regenerated plants per 100 anthers (GPs) was evaluated. The Cu2+ and Ag+ ion concentrations moderated relationships between Delta and the number of green plants conditional on time of tissue cultures. Depending on the ions, moderated moderation is valid within the different time of anther culture. When the highest concentration of copper is analyzed, plant regeneration is possible under short ‘Time’ (21 days) of anther culture wherein Delta is negative or under elongated Time when Delta is positive. Under 21 days of culture, the highest concentration of silver ions and when Delta is negative, some regenerants could be evaluated. However, under high Ag+ concentration when Time of culture is long and Delta positive, the highest number of green plants could be obtained.
Collapse
|
19
|
Bednarek PT, Zebrowski J, Orłowska R. Exploring the Biochemical Origin of DNA Sequence Variation in Barley Plants Regenerated via in Vitro Anther Culture. Int J Mol Sci 2020; 21:E5770. [PMID: 32796744 PMCID: PMC7461140 DOI: 10.3390/ijms21165770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue culture is an essential tool for the regeneration of uniform plant material. However, tissue culture conditions can be a source of abiotic stress for plants, leading to changes in the DNA sequence and methylation patterns. Despite the growing evidence on biochemical processes affected by abiotic stresses, how these altered biochemical processes affect DNA sequence and methylation patterns remains largely unknown. In this study, the methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach was used to investigate de novo methylation, demethylation, and sequence variation in barley regenerants derived by anther culture. Additionally, we used Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy to identify the spectral features of regenerants, which were then analyzed by mediation analysis. The infrared spectrum ranges (710-690 and 1010-940 cm-1) identified as significant in the mediation analysis were most likely related to β-glucans, cellulose, and S-adenosyl-L-methionine (SAM). Additionally, the identified compounds participated as predictors in moderated mediation analysis, explaining the role of demethylation of CHG sites (CHG_DMV) in in vitro tissue culture-induced sequence variation, depending on the duration of tissue culture. The data demonstrate that ATR-FTIR spectroscopy is a useful tool for studying the biochemical compounds that may affect DNA methylation patterns and sequence variation, if combined with quantitative characteristics determined using metAFLP molecular markers and mediation analysis. The role of β-glucans, cellulose, and SAM in DNA methylation, and in cell wall, mitochondria, and signaling, are discussed to highlight the putative cellular mechanisms involved in sequence variation.
Collapse
Affiliation(s)
- Piotr T. Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Al. Rejtana 16c A, 35-959 Rzeszow, Poland;
| | - Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
20
|
Graham N, Patil GB, Bubeck DM, Dobert RC, Glenn KC, Gutsche AT, Kumar S, Lindbo JA, Maas L, May GD, Vega-Sanchez ME, Stupar RM, Morrell PL. Plant Genome Editing and the Relevance of Off-Target Changes. PLANT PHYSIOLOGY 2020; 183:1453-1471. [PMID: 32457089 PMCID: PMC7401131 DOI: 10.1104/pp.19.01194] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/07/2020] [Indexed: 05/12/2023]
Abstract
Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.
Collapse
Affiliation(s)
- Nathaniel Graham
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, Minnesota 55108
- Pairwise, Durham, North Carolina 27709
| | - Gunvant B Patil
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | | | | | | | | | | | | | - Luis Maas
- Enza Zaden Research USA, San Juan Bautista, California 95045
| | | | | | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
21
|
Bednarek PT, Orłowska R. CG Demethylation Leads to Sequence Mutations in an Anther Culture of Barley Due to the Presence of Cu, Ag Ions in the Medium and Culture Time. Int J Mol Sci 2020; 21:E4401. [PMID: 32575771 PMCID: PMC7353013 DOI: 10.3390/ijms21124401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
During plant tissue cultures the changes affecting regenerants have a broad range of genetic and epigenetic implications. These changes can be seen at the DNA methylation and sequence variation levels. In light of the latest studies, DNA methylation change plays an essential role in determining doubled haploid (DH) regenerants. The present study focuses on exploring the relationship between DNA methylation in CG and CHG contexts, and sequence variation, mediated by microelements (CuSO4 and AgNO3) supplemented during barley anther incubation on induction medium. To estimate such a relationship, a mediation analysis was used based on the results previously obtained through metAFLP method. Here, an interaction was observed between DNA demethylation in the context of CG and the time of culture. It was also noted that the reduction in DNA methylation was associated with a total decrease in the amount of Cu and Ag ions in the induction medium. Moreover, the total increase in Cu and Ag ions increased sequence variation. The importance of the time of tissue culture in the light of the observed changes resulted from the grouping of regenerants obtained after incubation on the induction medium for 28 days. The present study demonstrated that under a relatively short time of tissue culture (28 days), the multiplication of the Cu2+ and Ag+ ion concentrations ('Cu*Ag') acts as a mediator of demethylation in CG context. Change (increase) in the demethylation in CG sequence results in the decrease of 'Cu*Ag', and that change induces sequence variation equal to the value of the indirect effect. Thus, Cu and Ag ions mediate sequence variation. It seems that the observed changes at the level of methylation and DNA sequence may accompany the transition from direct to indirect embryogenesis.
Collapse
Affiliation(s)
- Piotr T. Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, 05–870 Błonie, Radzików, Poland;
| | | |
Collapse
|
22
|
Orłowska R, Bednarek PT. Precise evaluation of tissue culture-induced variation during optimisation of in vitro regeneration regime in barley. PLANT MOLECULAR BIOLOGY 2020; 103:33-50. [PMID: 32048207 PMCID: PMC7170832 DOI: 10.1007/s11103-020-00973-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/30/2020] [Indexed: 05/15/2023]
Abstract
KEY MESSAGE The Taguchi method and metAFLP analysis were used to optimise barley regenerants towards maximum and minimum levels of tissue culture-induced variation. The subtle effects of symmetric and asymmetric methylation changes in regenerants were identified. Plant tissue cultures (PTCs) provide researchers with unique materials that accelerate the development of new breeding cultivars and facilitate studies on off-type regenerants. The emerging variability of regenerants derived from PTCs may have both genetic and epigenetic origins, and may be desirable or degrade the value of regenerated plants. Thus, it is crucial to determine how the PTC variation level can be controlled. The easiest way to manipulate total tissue culture-induced variation (TTCIV) is to utilise appropriate stress factors and suitable medium components. This study describes the optimisation of in vitro tissue culture-induced variation in plant regenerants derived from barley anther culture, and maximizes and minimizes regenerant variation compared with the source explants. The approach relied on methylation amplified fragment length polymorphism (metAFLP)-derived TTCIV characteristics, which were evaluated in regenerants derived under distinct tissue culture conditions and analysed via Taguchi statistics. The factors that may trigger TTCIV included CuSO4, AgNO3 and the total time spent on the induction medium. The donor plants prepared for regeneration purposes had 5.75% and 2.01% polymorphic metAFLP loci with methylation and sequence changes, respectively. The level of TTCIV (as the sum of all metAFLP characteristics analyzed) identified in optimisation and verification experiments reached 7.51 and 10.46%, respectively. In the trial designed to produce a minimum number of differences between donor and regenerant plants, CuSO4 and AgNO3 were more crucial than time, which was not a significant factor. In the trial designed to produce a maximum number of differences between donor and regenerant plants, all factors had comparable impact on variation. The Taguchi method reduced the time required for experimental trials compared with a grid method and suggested that medium modifications were required to control regenerant variation. Finally, the effects of symmetric and asymmetric methylation changes on regenerants were identified using novel aspects of the metAFLP method developed for this analysis.
Collapse
Affiliation(s)
- Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Błonie, 05-870, Radzików, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Błonie, 05-870, Radzików, Poland.
| |
Collapse
|
23
|
Fan X, Chen J, Wu Y, Teo C, Xu G, Fan X. Genetic and Global Epigenetic Modification, Which Determines the Phenotype of Transgenic Rice? Int J Mol Sci 2020; 21:E1819. [PMID: 32155767 PMCID: PMC7084647 DOI: 10.3390/ijms21051819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/17/2023] Open
Abstract
Transgenic technologies have been applied to a wide range of biological research. However, information on the potential epigenetic effects of transgenic technology is still lacking. Here, we show that the transgenic process can simultaneously induce both genetic and epigenetic changes in rice. We analyzed genetic, epigenetic, and phenotypic changes in plants subjected to tissue culture regeneration, using transgenic lines expressing the same coding sequence from two different promoters in transgenic lines of two rice cultivars: Wuyunjing7 (WYJ7) and Nipponbare (NP). We determined the expression of OsNAR2.1 in two overexpression lines generated from the two cultivars, and in the RNA interference (RNAi) OsNAR2.1 line in NP. DNA methylation analyses were performed on wild-type cultivars (WYJ7 and NP), regenerated lines (CK, T0 plants), segregation-derived wild-type from pOsNAR2.1-OsNAR2.1 (SDWT), pOsNAR2.1-OsNAR2.1, pUbi-OsNAR2.1, and RNAi lines. Interestingly, we observed global methylation decreased in the T0 regenerated line of WYJ7 (CK-WJY7) and pOsNAR2.1-OsNAR2.1 lines but increased in pUbi-OsNAR2.1 and RNAi lines of NP. Furthermore, the methylation pattern in SDWT returned to the WYJ7 level after four generations. Phenotypic changes were detected in all the generated lines except for SDWT. Global methylation was found to decrease by 13% in pOsNAR2.1-OsNAR2.1 with an increase in plant height of 4.69% compared with WYJ7, and increased by 18% in pUbi-OsNAR2.1 with an increase of 17.36% in plant height compared with NP. This suggests an absence of a necessary link between global methylation and the phenotype of transgenic plants with OsNAR2.1 gene over-expression. However, epigenetic changes can influence phenotype during tissue culture, as seen in the massive methylation in CK-WYJ7, T0 regenerated lines, resulting in decreased plant height compared with the wild-type, in the absence of a transformed gene. We conclude that in the transgenic lines the phenotype is mainly determined by the nature and function of the transgene after four generations of transformation, while the global epigenetic modification is dependent on the genetic background. Our research suggests an innovative insight in explaining the reason behind the occurrence of transgenic plants with random and undesirable phenotypes.
Collapse
Affiliation(s)
- Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China; (X.F.); (J.C.); (G.X.)
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China; (X.F.); (J.C.); (G.X.)
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Yufeng Wu
- Bioinformatics Center, Nanjing Agricultural University, Nanjing 210095, China;
| | - CheeHow Teo
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia;
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China; (X.F.); (J.C.); (G.X.)
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China; (X.F.); (J.C.); (G.X.)
| |
Collapse
|
24
|
Orłowska R, Pachota KA, Machczyńska J, Niedziela A, Makowska K, Zimny J, Bednarek PT. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2019.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Genetic stability assessment of Taraxacum pieninicum plantlets after long-term slow growth storage using ISSR and SCoT markers. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00377-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Li HL, Guo D, Zhu JH, Wang Y, Peng SQ. Identification of histone methylation modifiers and their expression patterns during somatic embryogenesis in Hevea brasiliensis. Genet Mol Biol 2019; 43:e20180141. [PMID: 31441928 PMCID: PMC7229888 DOI: 10.1590/1678-4685-gmb-2018-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 03/10/2019] [Indexed: 12/17/2022] Open
Abstract
Histone methylation plays a crucial role in various biological processes, from heterochromatin formation to transcriptional regulation. Currently, no information is available regarding histone methylation modifiers in the important rubber-producing plant Hevea brasiliensis. Here, we identified 47 histone methyltransferase (HMT) genes and 25 histone demethylase (HDM) genes as possible members of the histone methylation modifiers in the rubber tree genome. According to the structural features of HMT and HDM, the HbHMTs were classified into two groups (HbPRMs and HbSDGs), the HbHDMs have two groups (HbLSDs and HbJMJs). Expression patterns were analyzed in five different tissues and at different phases of somatic embryogenesis. HbSDG10, 21, 25, 33, HbJMJ2, 18, 20 were with high expression at different phases of somatic embryogenesis. HbSDG10,14, 20, 21, 33 and HbPRMT4 were expressed highly in anther, HbSDG14, 20, 21, 22, 23, 33, 35 and HbPRMT1 HbJMJ7 and HbLSD1, 2, 3, 4 showed high expression levels in callus. HbSDG1, 7, 10, 13, 14, 18, 19, 21, 22, 23, 35, HbPRMT1, 8, HbJMJ5, 7, 11, 16, 20 and HbLSD2, 3, 4 were expressed highly in somatic embryo. HbSDG10, 21, 25, 33, HbLSD2, 3 were expressed highly in bud of regenerated plant. The analyses reveal that HbHMTs and HbHDMs exhibit different expression patterns at different phases during somatic embryogenesis, implying that some HbHMTs and HbHDMs play important roles during somatic embryogenesis. This study provide fundamental information for further studies on histone methylation in Hevea brasiliensis.
Collapse
Affiliation(s)
- Hui-Liang Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Guo
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jia-Hong Zhu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ying Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shi-Qing Peng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
27
|
Kok EJ, Glandorf DC, Prins TW, Visser RG. Food and environmental safety assessment of new plant varieties after the European Court decision: Process-triggered or product-based? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Akomeah B, Quain MD, Ramesh SA, Anand L, Rodríguez López CM. Common garden experiment reveals altered nutritional values and DNA methylation profiles in micropropagated three elite Ghanaian sweet potato genotypes. PLoS One 2019; 14:e0208214. [PMID: 31026262 PMCID: PMC6485893 DOI: 10.1371/journal.pone.0208214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/07/2019] [Indexed: 11/18/2022] Open
Abstract
Micronutrient deficiency is the cause of multiple diseases in developing countries. Staple crop biofortification is an efficient means to combat such deficiencies in the diets of local consumers. Biofortified lines of sweet potato (Ipomoea batata L. Lam) with enhanced beta-carotene content have been developed in Ghana to alleviate Vitamin A Deficiency. These genotypes are propagated using meristem micropropagation to ensure the generation of virus-free propagules. In vitro culture exposes micropropagated plants to conditions that can lead to the accumulation of somaclonal variation with the potential to generate unwanted aberrant phenotypes. However, the effect of micropropagation induced somaclonal variation on the production of key nutrients by field-grown plants has not been previously studied. Here we assessed the extent of in vitro culture induced somaclonal variation, at a phenotypic, compositional and genetic/epigenetic level, by comparing field-maintained and micropropagated lines of three elite Ghanaian sweet potato genotypes grown in a common garden. Although micropropagated plants presented no observable morphological abnormalities compared to field maintained lines, they presented significantly lower levels of iron, total protein, zinc, and glucose. Methylation Sensitive Amplification Polymorphism analysis showed a high level of in vitro culture induced molecular variation in micropropagated plants. Epigenetic, rather than genetic variation, accounts for most of the observed molecular variability. Taken collectively, our results highlight the importance of ensuring the clonal fidelity of the micropropagated biofortified lines in order to reduce potential losses in the nutritional value prior to their commercial release.
Collapse
Affiliation(s)
- Belinda Akomeah
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
- CSIR-Crops Research Institute, Kumasi, Ghana
| | | | - Sunita A Ramesh
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
| | - Lakshay Anand
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, United States America
| | - Carlos M. Rodríguez López
- The Waite Research Institute and The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1 Glen Osmond, South Africa, Australia
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, United States America
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Abstract
Oryza sativa indica (cv. IR64) and Oryza sativa japonica (cv. TNG67) vary in their regeneration efficiency. Such variation may occur in response to cultural environments that induce somaclonal variation. Somaclonal variations may arise from epigenetic factors, such as DNA methylation. We hypothesized that somaclonal variation may be associated with the differential regeneration efficiency between IR64 and TNG67 through changes in DNA methylation. We generated the stage-associated methylome and transcriptome profiles of the embryo, induced calli, sub-cultured calli, and regenerated calli (including both successful and failed regeneration) of IR64 and TNG67. We found that stage-associated changes are evident by the increase in the cytosine methylation of all contexts upon induction and decline upon regeneration. These changes in the methylome are largely random, but a few regions are consistently targeted at the later stages of culture. The expression profiles showed a dominant tissue-specific difference between the embryo and the calli. A prominent cultivar-associated divide in the global methylation pattern was observed, and a subset of cultivar-associated differentially methylated regions also showed stage-associated changes, implying a close association between differential methylation and the regeneration programs of these two rice cultivars. Based on these findings, we speculate that the differential epigenetic regulation of stress response and developmental pathways may be coupled with genetic differences, ultimately leading to differential regeneration efficiency. The present study elucidates the impact of tissue culture on callus formation and delineates the impact of stage and cultivar to determine the dynamics of the methylome and transcriptome in culture.
Collapse
|
31
|
Ligaba-Osena A, Jones J, Donkor E, Chandrayan S, Pole F, Wu CH, Vieille C, Adams MWW, Hankoua BB. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase. FRONTIERS IN PLANT SCIENCE 2018; 9:192. [PMID: 29541080 PMCID: PMC5836596 DOI: 10.3389/fpls.2018.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/01/2018] [Indexed: 11/06/2023]
Abstract
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Jenna Jones
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Emmanuel Donkor
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Sanjeev Chandrayan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Farris Pole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Claire Vieille
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Bertrand B. Hankoua
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
32
|
Coronel CJ, González AI, Ruiz ML, Polanco C. Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. PLANT CELL REPORTS 2018; 37:137-152. [PMID: 29038910 DOI: 10.1007/s00299-017-2217-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/04/2017] [Indexed: 05/14/2023]
Abstract
We provide evidence that nucleotide sequence and methylation status changes occur in the Arabidopsis genome during in vitro tissue culture at a frequency high enough to represent an important source of variation. Somaclonal variation is a general consequence of the tissue culture process that has to be analyzed specifically when regenerated plants are obtained in any plant species. Currently, there are few studies about the variability comprising sequence changes and methylation status at the DNA level, generated by the culture of A. thaliana cells and tissues. In this work, two types of highly reproducible molecular markers, modified methylation sensitive AFLP (metAFLP) and transposon methylation display (TMD) have been used for the first time in this species to analyze the nucleotide and cytosine methylation changes induced by transformation and tissue culture protocols. We found significantly higher average methylation values (7.5%) in regenerated and transgenic plants when compared to values obtained from seed derived plants (3.2%) and that the main component of the somaclonal variation present in Arabidopsis clonal plants is genetic rather than epigenetic. However, we have found that the Arabidopsis regenerated and transgenic plants had a higher number of non-fully methylated sites flanking transposable elements than the control plants, and therefore, their mobilization can be facilitated. These data provide further evidence that changes in nucleotide sequence and methylation status occur in the Arabidopsis genome during in vitro tissue culture frequently enough to be an important source of variation in this species.
Collapse
Affiliation(s)
- Carlos J Coronel
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Ana I González
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - María L Ruiz
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
| | - Carlos Polanco
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
| |
Collapse
|
33
|
Ślusarkiewicz-Jarzina A, Pudelska H, Woźna J, Pniewski T. Improved production of doubled haploids of winter and spring triticale hybrids via combination of colchicine treatments on anthers and regenerated plants. J Appl Genet 2017; 58:287-295. [PMID: 28063128 PMCID: PMC5509786 DOI: 10.1007/s13353-016-0387-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 10/25/2022]
Abstract
Double haploids (DH), obtained during androgenesis in vitro or by genome diploidisation in regenerated haploids, are one type of basic materials used in triticale breeding programmes. The aim of this study was to improve DH production by a combination of colchicine treatment methods on a sample of five winter and five spring triticale hybrids. Colchicine was applied in vitro either in the C17 medium to induce embryo-like structures (ELS) or in the 190-2 medium for green plant (GP) development. Regenerants which remained haploid were immersed in a colchicine solution either when placed on the medium prior to transferring to soil or when growing in pots, followed by the application or absence of cooling. Colchicine treatment during anther culture affected neither ELS nor GP development, but significantly increased the number of DH plants in comparison to spontaneous chromosome doubling. The highest efficiency was recorded when colchicine was applied in the induction medium (55%) versus the regeneration medium (44.5%) or no colchicine treatment (30%). The effectiveness of chromosome duplication in haploid plants ranged from 32 to 64.5% and it was the highest for the treatment on the medium followed by cooling. Individual hybrids differed regarding their capability of regeneration and chromosome doubling, which were consistent only to a low or moderate extent. However, taken together, winter and spring hybrids did not differ significantly. Combined colchicine application resulted in a high yield of DH production, 82.6% for all triticale hybrids, and can provide a considerable number of fertile DH lines for triticale breeding programmes.
Collapse
Affiliation(s)
| | - Hanna Pudelska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Jolanta Woźna
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tomasz Pniewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
34
|
Bednarek PT, Orłowska R, Niedziela A. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress. BMC PLANT BIOLOGY 2017; 17:79. [PMID: 28431570 PMCID: PMC5399823 DOI: 10.1186/s12870-017-1028-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/10/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND We present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting HpaII and MspI restriction sites in control and stressed samples, and takes advantage of molecular marker profiles generated by EcoRI/HpaII and EcoRI/MspI MSAP platforms. METHODS Five Al-tolerant and five non-tolerant triticale lines were exposed to aluminum stress using the physiologicaltest. Total genomic DNA was isolated from root tips of all tolerant and non-tolerant lines before and after Al stress following metAFLP and MSAP approaches. Based on codes reflecting events affecting cytosines within a given restriction site recognized by HpaII and MspI in control and stressed samples demethylation (DM), de novo methylation (DNM), preservation of methylated sites (MSP), and preservation of nonmethylatedsites (NMSP) were evaluated. MSAP profiles were used for Agglomerative hierarchicalclustering (AHC) based on Squared Euclidean distance and Ward's Agglomeration method whereas MSAP characteristics for ANOVA. RESULTS Relative quantitative MSAP analysis revealed that both Al-tolerant and non-tolerant triticale lines subjected to Al stress underwent demethylation, with demethylation of CG predominating over CHG. The rate of de novo methylation in the CG context was ~3-fold lower than demethylation, whereas de novo methylation of CHG was observed only in Al-tolerant lines. CONCLUSIONS Our relative quantitative MSAP approach, based on methylation events affecting cytosines within HpaII-MspI recognition sequences, was capable of quantifying de novo methylation, demethylation, methylation, and non-methylated status in control and stressed Al-tolerant and non-tolerant triticale inbred lines. The method could also be used to analyze methylation events affecting CG and CHG contexts, which were differentially methylated under Al stress. We cannot exclude that the methylation changes revealed among lines as well as between Al-tolerant and non-tolerant groups of lines were due to some experimental errors or that the number of lines was too small for ANOVA to prove the influence of Al stress. Nevertheless, we suspect that Al tolerance in triticale could be partly regulated by epigenetic factors acting at the level of DNA methylation. This method provides a valuable tool for studies of abiotic stresses in plants.
Collapse
Affiliation(s)
- Piotr T. Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Agnieszka Niedziela
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
35
|
Abstract
Abstract
The technology for in vitro anther culturing was optimized in hexaploid triticale using combination of external factors that allowed to obtain more than 100 doubled haploid lines. Investigation of genetic variation among anther culture derived doubled haploids of triticale showed the occurrence of heterozygous plants.
Collapse
|
36
|
Li HL, Guo D, Zhu JH, Wang Y, Chen XT, Peng SQ. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones. FRONTIERS IN PLANT SCIENCE 2016; 7:1204. [PMID: 27555864 PMCID: PMC4977288 DOI: 10.3389/fpls.2016.01204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/28/2016] [Indexed: 05/18/2023]
Abstract
Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.
Collapse
|