1
|
Feng Y, Kang Y, Wang Z, Du C, Tan J, Zhao X, Qi G. Ralstonia solanacearum infection induces tobacco root to secrete chemoattractants to recruit antagonistic bacteria and defensive compounds to inhibit pathogen. PEST MANAGEMENT SCIENCE 2025; 81:1817-1828. [PMID: 39673161 DOI: 10.1002/ps.8581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Plant root exudates play crucial roles in maintaining the structure and function of the whole belowground ecosystem and regulating the interactions between roots and soil microorganisms. Ralstonia solanacearum causes bacterial wilt disease in many plants, while root exudate-mediated inhibition of pathogen infection is poorly understood. Here, we characterize the chemical divergence between root exudates of healthy and diseased tobacco plants and the effects of that variability on the rhizosphere microbial community and the occurrence of bacterial wilt. RESULTS Compared with the healthy plants, root exudates in diseased plants showed distinct exudation patterns and metabolite profiles including increased amounts of flavonoids, phenylpropanoids, terpenoids and defense-related hormones, as well as distinct bacterial community composition, as illustrated by an increased abundance of Ralstonia and decreased abundances of Bacillus and Streptomyces in diseased plants rhizosphere. Pathogen infection stimulated roots to secrete more defensive compounds to inhibit pathogen growth. Change of root exudates modulated rhizosphere microbial community. Specific root exudates could benefit plants by attracting antagonistic Bacillus amyloliquefaciens and inhibiting pathogens. Bacillus amyloliquefaciens could utilize specific root exudates as carbon sources. Benzyl cinnamatel promoted the biofilm formation and colonization of B. amyloliquefaciens on roots. CONCLUSION To defend against pathogen invasion, tobacco plants recruited antagonistic and plant growth-promoting rhizobacteria to the rhizosphere by modifying root exudate profiles. Specific signal molecules are recommended to recruit beneficial microorganisms for controlling bacterial wilt. The results provide insights concerning the metabolic divergence of root exudates integral to understanding root-microorganism interaction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yali Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue Kang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhibo Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenyang Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Tan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Stranska M, Behner A, Ovesna J, Svoboda P, Hajslova J. What Happens Inside the Germinating Grain After Microbial Decontamination by Pulsed Electric Field? Data-Driven Multi-Omics Helps Find the Answer. Molecules 2025; 30:924. [PMID: 40005235 PMCID: PMC11858265 DOI: 10.3390/molecules30040924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Pulsed electric field (PEF) has previously been recognized as a method of gentle food processing, and its use has been shown to be helpful in reducing the levels of toxigenic Fusarium micromycetes developed during malting. The aim of this study was to describe the effects of PEF on gene expression and metabolite production at the pre-finishing stage of barley malting by using a novel multi-omics data-driven approach. The study helps to uncover the processes occurring in the germinated grain and discusses the up-/downregulation of genes and metabolites in relation to fungal infection and/or PEF-induced abiotic stress. Among the factors upregulated by PEF and previously described as supportive against Fusarium diseases, we identified the increased expression of genes encoding vegetative gp1-like protein, which positively correlated with flavonoids, (methylsulfanyl)prop-2-enoates, triterpenoid glycosides, and indole alkaloids. On the other hand, some genes associated with barley resistance to fungal infection were also overexpressed in the untreated control (in particular, genes encoding ethylene response factor 3-like, putrescine hydroxycinnamoyltransferase 3-like, and dirigent protein 21-like). This study provides the first 'data-driven' basic research results that contribute to the understanding of the role of PEF as an effective fungal decontamination strategy and allows the formulation of new hypotheses related to Fusarium pathogen crosstalk.
Collapse
Affiliation(s)
- Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic; (A.B.); (J.H.)
| | - Adam Behner
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic; (A.B.); (J.H.)
| | - Jaroslava Ovesna
- Crop Research Institute in Prague, Drnovska 507/73, 161 06 Prague, Czech Republic; (J.O.); (P.S.)
| | - Pavel Svoboda
- Crop Research Institute in Prague, Drnovska 507/73, 161 06 Prague, Czech Republic; (J.O.); (P.S.)
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic; (A.B.); (J.H.)
| |
Collapse
|
3
|
Saeedi M, Shirzad H, Noruzi P, Ghasemi G. Foliar application of sodium nitroprusside alters the physicochemical properties, antioxidant capacities, and enzymatic activities of strawberry cv. Camarosa. Sci Rep 2024; 14:30943. [PMID: 39730711 DOI: 10.1038/s41598-024-81936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv. Camarosa) cultivated in a soilless culture system. It was attempted to identify optimal treatment concentrations that would improve the quality and yield of the strawberries. The analysis of variance revealed significant differences (p ≤ 0.01) in all morphological and phytochemical properties, as well as antioxidant and enzymatic activities, between the treated samples and the control group. Notably, the highest concentrations of total phenolics, phenylalanine ammonia-lyase (PAL) enzyme activity, guaiacol peroxidase enzyme activity, and potassium content in the fruit were recorded at the 400 μM SNP treatment. Specifically, these values were 6.67 mg GAE 100 g⁻1 FW, 57.42 nmol g⁻1 FW min⁻1, 0.183 μmol H2O2 min-1 100 ml-1 extract, and 5.9% DW, respectively. Furthermore, the 200 μM SNP treatment yielded the highest ascorbic acid content (0.587 mg AA 100 g-1 FW) and the lowest 50% inhibitory concentration for free radicals at 44.18 μl. In contrast, the 600 μM treatment resulted in the highest total flavonoid content (0.529 mg QE 100 g⁻1 FW). In conclusion, the findings indicated that SNP treatment can effectively enhance the yield and improve the quality and marketability of the strawberry fruit.
Collapse
Affiliation(s)
- Mahin Saeedi
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Habib Shirzad
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Parviz Noruzi
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Ghader Ghasemi
- Horticulture Crops Research Department, West Azerbaijan Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran
| |
Collapse
|
4
|
Qiao Y, Peng J, Wu B, Wang M, He G, Peng Q, Gao Y, Liu Y, Yang S, Dai X. Transcriptome and metabolome analyses provide crucial insights into the adaptation of chieh-qua to Fusarium oxysporum infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1344155. [PMID: 39574453 PMCID: PMC11578706 DOI: 10.3389/fpls.2024.1344155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 09/11/2024] [Indexed: 11/24/2024]
Abstract
Introduction Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) is a wax gourd variety that is generally susceptible to infection and damage by Fusarium oxysporum during its cultivation. Therefore, analyzing the adaption mechanism of chieh-qua to F. Oxysporum infection is of great significance for cultivating resistant varieties. Methods Through comparative transcriptome analysis, comparative metabolome analysis, integrated analysis of transcriptome and metabolome and between F. Oxysporum infected samples and control samples of susceptible lines. Results This study found that proteins such as NPR1, TGA and PR1 in plant hormone signal transduction pathway were up-regulated after infection, which may activate a series of plant secondary metabolic synthesis pathways. In addition, the expression of 27 genes in the flavonoid biosynthetic process in resistant lines after infection was significantly higher than that in susceptible lines, indicating that these genes may be involved in fungal resistance. This study also found that alternative splicing of genes may play an important role in responding to F. Oxysporum infection. For example, plant protein kinase genes such as EDR1, SRK2E and KIPK1 were not differentially expressed after F. Oxysporum infection, but the transcripts they produced differ at the transcription level. Finally, through comparative metabolome analysis, this study identified potentially functional substances such as oxalic acid that increased in content after F. Oxysporum infection. Through integrated analysis of transcriptome and metabolome, some differential expressed genes significantly related to differential metabolites were also identified. Discussion This study provides a basis for understanding and utilizing chieh-qua's infection mechanism of F. Oxysporum through analysis of the transcriptome and metabolome.
Collapse
Affiliation(s)
- Yanchun Qiao
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jiazhu Peng
- Vegetable Research Institute, Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Bei Wu
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Min Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoping He
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Qingwu Peng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yin Gao
- South China Agricultural University, College of Horticulture, Guangzhou, China
| | - Yuping Liu
- Vegetable Research Institute, Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiuchun Dai
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| |
Collapse
|
5
|
Funnell-Harris DL, Sattler SE, Dill-Macky R, Wegulo SN, Duray ZT, O'Neill PM, Gries T, Masterson SD, Graybosch RA, Mitchell RB. Responses of Wheat ( Triticum aestivum) Constitutively Expressing Four Different Monolignol Biosynthetic Genes to Fusarium Head Blight Caused by Fusarium graminearum. PHYTOPATHOLOGY 2024; 114:2096-2112. [PMID: 38875177 DOI: 10.1094/phyto-01-24-0005-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The Fusarium head blight (FHB) pathogen Fusarium graminearum produces the trichothecene mycotoxin deoxynivalenol and reduces wheat yield and grain quality. Spring wheat (Triticum aestivum) genotype CB037 was transformed with constitutive expression (CE) constructs containing sorghum (Sorghum bicolor) genes encoding monolignol biosynthetic enzymes caffeoyl coenzyme A (CoA) 3-O-methyltransferase (SbCCoAOMT), 4-coumarate-CoA ligase (Sb4CL), or coumaroyl shikimate 3-hydroxylase (SbC3'H) or monolignol pathway transcriptional activator SbMyb60. Spring wheats were screened for type I (resistance to initial infection, using spray inoculations) and type II (resistance to spread within the spike, using single-floret inoculations) resistances in the field (spray) and greenhouse (spray and single floret). Following field inoculations, disease index, percentage of Fusarium-damaged kernels (FDK), and deoxynivalenol measurements of CE plants were similar to or greater than those of CB037. For greenhouse inoculations, the area under the disease progress curve (AUDPC) and FDK were determined. Following screens, focus was placed on two each of SbC3'H and SbCCoAOMT CE lines because of trends toward a decreased AUDPC and FDK observed following single-floret inoculations. These four lines were as susceptible as CB037 following spray inoculations. However, single-floret inoculations showed that these CE lines had a significantly reduced AUDPC (P < 0.01) and FDK (P ≤ 0.02) compared with CB037, indicating improved type II resistance. None of these CE lines had increased acid detergent lignin compared with CB037, indicating that lignin concentration may not be a major factor in FHB resistance. The SbC3'H and SbCCoAOMT CE lines are valuable for investigating phenylpropanoid-based resistance to FHB.
Collapse
Affiliation(s)
- Deanna L Funnell-Harris
- U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Scott E Sattler
- U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Stephen N Wegulo
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Zachary T Duray
- U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Patrick M O'Neill
- U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Tammy Gries
- U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Steven D Masterson
- U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Robert A Graybosch
- U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Robert B Mitchell
- U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| |
Collapse
|
6
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
7
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Adhikary D, Kisiala A, Sarkar A, Basu U, Rahman H, Emery N, Kav NNV. Early-stage responses to Plasmodiophora brassicae at the transcriptome and metabolome levels in clubroot resistant and susceptible oilseed Brassica napus. Mol Omics 2022; 18:991-1014. [PMID: 36382681 DOI: 10.1039/d2mo00251e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clubroot, a devastating soil-borne root disease, in Brassicaceae is caused by Plasmodiophora brassicae Woronin (P. brassicae W.), an obligate biotrophic protist. Plant growth and development, as well as seed yield of Brassica crops, are severely affected due to this disease. Several reports described the molecular responses of B. napus to P. brassicae; however, information on the early stages of pathogenesis is limited. In this study, we have used transcriptomics and metabolomics to characterize P. brassicae pathogenesis at 1-, 4-, and 7-days post-inoculation (DPI) in clubroot resistant (CR) and susceptible (CS) doubled-haploid (DH) canola lines. When we compared between inoculated and uninoculated groups, a total of 214 and 324 putative genes exhibited differential expression (q-value < 0.05) at one or more time-points in the CR and CS genotypes, respectively. When the inoculated CR and inoculated CS genotypes were compared, 4765 DEGs were differentially expressed (q-value < 0.05) at one or more time-points. Several metabolites related to organic acids (e.g., citrate, pyruvate), amino acids (e.g., proline, aspartate), sugars, and mannitol, were differentially accumulated in roots in response to pathogen infection when the CR and CS genotypes were compared. Several DEGs also corresponded to differentially accumulated metabolites, including pyrroline-5-carboxylate reductase (BnaC04g11450D), citrate synthase (BnaC02g39080D), and pyruvate kinase (BnaC04g23180D) as detected by transcriptome analysis. Our results suggest important roles for these genes in mediating resistance to clubroot disease. To our knowledge, this is the first report of an integrated transcriptome and metabolome analysis aimed at characterizing the molecular basis of resistance to clubroot in canola.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Ananya Sarkar
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Hameed A, Poznanski P, Noman M, Ahmed T, Iqbal A, Nadolska-Orczyk A, Orczyk W. Barley Resistance to Fusarium graminearum Infections: From Transcriptomics to Field with Food Safety Concerns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14571-14587. [PMID: 36350344 DOI: 10.1021/acs.jafc.2c05488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Global climate change and the urgency to transform food crops require substantial breeding efforts to meet the food security challenges. Barley, an important cereal, has remained a preferential host of phytotoxic diseases caused by the Fusarium graminearum that not only severely reduces the crop yield but also compromises its food quality due to the accumulation of mycotoxins. To develop resistance against Fusarium infections, a better understanding of the host-pathogen interaction is inevitable and could be tracked through molecular insights. Here, we focused precisely on the potential gene targets that are exclusive to this devastating pathosystem and could be harnessed for fast breeding of barley. We also discuss the eco-friendly applications of nanobio hybrid and the CRISPR technology for barley protection. This review covers the critical information gaps within the subject and may be useful for the sustainable improvement of barley from the perspective of food and environmental safety concerns.
Collapse
Affiliation(s)
- Amir Hameed
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Pawel Poznanski
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adnan Iqbal
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Wacław Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| |
Collapse
|
10
|
Kushalappa AC, Hegde NG, Yogendra KN. Metabolic pathway genes for editing to enhance multiple disease resistance in plants. JOURNAL OF PLANT RESEARCH 2022; 135:705-722. [PMID: 36036859 DOI: 10.1007/s10265-022-01409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infection area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced (IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resistant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the host-pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to achieve required levels of multiple pathogen resistance under field conditions.
Collapse
Affiliation(s)
- Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Niranjan G Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Kalenahalli N Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
12
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
13
|
Advances in Metabolomics-Driven Diagnostic Breeding and Crop Improvement. Metabolites 2022; 12:metabo12060511. [PMID: 35736444 PMCID: PMC9228725 DOI: 10.3390/metabo12060511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Climate change continues to threaten global crop output by reducing annual productivity. As a result, global food security is now considered as one of the most important challenges facing humanity. To address this challenge, modern crop breeding approaches are required to create plants that can cope with increased abiotic/biotic stress. Metabolomics is rapidly gaining traction in plant breeding by predicting the metabolic marker for plant performance under a stressful environment and has emerged as a powerful tool for guiding crop improvement. The advent of more sensitive, automated, and high-throughput analytical tools combined with advanced bioinformatics and other omics techniques has laid the foundation to broadly characterize the genetic traits for crop improvement. Progress in metabolomics allows scientists to rapidly map specific metabolites to the genes that encode their metabolic pathways and offer plant scientists an excellent opportunity to fully explore and rationally harness the wealth of metabolites that plants biosynthesize. Here, we outline the current application of advanced metabolomics tools integrated with other OMICS techniques that can be used to: dissect the details of plant genotype–metabolite–phenotype interactions facilitating metabolomics-assisted plant breeding for probing the stress-responsive metabolic markers, explore the hidden metabolic networks associated with abiotic/biotic stress resistance, facilitate screening and selection of climate-smart crops at the metabolite level, and enable accurate risk-assessment and characterization of gene edited/transgenic plants to assist the regulatory process. The basic concept behind metabolic editing is to identify specific genes that govern the crucial metabolic pathways followed by the editing of one or more genes associated with those pathways. Thus, metabolomics provides a superb platform for not only rapid assessment and commercialization of future genome-edited crops, but also for accelerated metabolomics-assisted plant breeding. Furthermore, metabolomics can be a useful tool to expedite the crop research if integrated with speed breeding in future.
Collapse
|
14
|
Liu S, Xie L, Su J, Tian B, Fang A, Yu Y, Bi C, Yang Y. Integrated Metabolo-transcriptomics Reveals the Defense Response of Homogentisic Acid in Wheat against Puccinia striiformis f. sp. tritici. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3719-3729. [PMID: 35293725 DOI: 10.1021/acs.jafc.2c00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stripe rust is a widespread and harmful wheat disease caused by Puccinia striiformis f. sp. tritici (Pst) worldwide. Targeted metabolome and transcriptomics analyses of CYR23 infected leaves were performed to identify the differential metabolites and differentially expressed genes related to wheat disease resistance. We observed upregulation of 33 metabolites involved in the primary and secondary metabolism, especially for homogentisic acid (HGA), p-coumaroylagmatine, and saccharopine. These three metabolites were mainly involved in the phenylpropanoid metabolic pathway, hydroxycinnamic acid amides pathway, and saccharopine pathway. Combined with transcriptome data on non-compatible interaction, the synthesis-related genes of these three differential metabolites were all upregulated significantly. The gene regulatory network involved in response to Pst infection was constructed, which revealed that several transcription factor families including WRKYs, MYBs, and bZIPs were identified as potentially hubs in wheat resistance response against Pst. An in vitro test showed that HGA effectively inhibited the germination of stripe rust fungus urediniospores and reduced the occurrence of wheat stripe rust. The results of gene silencing and overexpression of HGA synthesis-related gene 4-hydroxyphenylpyruvate dioxygenase proved that HGA was involved in wheat disease resistance. These results provided a further understanding of the disease resistance of wheat and indicated that HGA can be developed as a potential agent against Pst.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Liyang Xie
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jiaxuan Su
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Wu F, Zhou Y, Shen Y, Sun Z, Li L, Li T. Linking Multi-Omics to Wheat Resistance Types to Fusarium Head Blight to Reveal the Underlying Mechanisms. Int J Mol Sci 2022; 23:ijms23042280. [PMID: 35216395 PMCID: PMC8880642 DOI: 10.3390/ijms23042280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a worldwide disease which has destructive effects on wheat production, resulting in severe yield reduction and quality deterioration, while FHB-infected wheat grains are toxic to people and animals due to accumulation of fungal toxins. Although impressive progress towards understanding host resistance has been achieved, our knowledge of the mechanism underlying host resistance is still quite limited due to the complexity of wheat-pathogen interactions. In recent years, disease epidemics, the resistance germplasms and components, the genetic mechanism of FHB, and disease management and control, etc., have been well reviewed. However, the resistance mechanism of FHB is quite complex with Type I, II to V resistances. In this review, we focus on the potential resistance mechanisms by linking different resistance types to multi-omics and emphasize the pathways or genes that may play significant roles in the different types of resistance. Deciphering the complicated mechanism of FHB resistance types in wheat at the integral levels based on multi-omics may help discover the genes or pathways that are critical for different FHB resistance, which could then be utilized and manipulated to improve FHB resistance in wheat breeding programs by using transgenic approaches, gene editing, or marker assisted selection strategies.
Collapse
|
16
|
Skoppek CI, Punt W, Heinrichs M, Ordon F, Wehner G, Boch J, Streubel J. The barley HvSTP13GR mutant triggers resistance against biotrophic fungi. MOLECULAR PLANT PATHOLOGY 2022; 23:278-290. [PMID: 34816582 PMCID: PMC8743016 DOI: 10.1111/mpp.13161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 05/29/2023]
Abstract
High-yielding and stress-resistant crops are essential to ensure future food supply. Barley is an important crop to feed livestock and to produce malt, but the annual yield is threatened by pathogen infections. Pathogens can trigger an altered sugar partitioning in the host plant, which possibly leads to an advantage for the pathogen. Hampering these processes represents a promising strategy to potentially increase resistance. We analysed the response of the barley monosaccharide transporter HvSTP13 towards biotic stress and its potential use for plant protection. The expression of HvSTP13 increased on bacterial and fungal pathogen-associated molecular pattern (PAMP) application, suggesting a PAMP-triggered signalling that converged on the transcriptional induction of the gene. Promoter studies indicate a region that is probably targeted by transcription factors downstream of PAMP-triggered immunity pathways. We confirmed that the nonfunctional HvSTP13GR variant confers resistance against an economically relevant biotrophic rust fungus in barley. Our experimental setup provides basal prerequisites to further decode the role of HvSTP13 in response to biological stress. Moreover, in line with other studies, our experiments indicate that the alteration of sugar partitioning pathways, in a host-pathogen interaction, is a promising approach to achieve broad and durable resistance in plants.
Collapse
Affiliation(s)
- Caroline Ines Skoppek
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
| | - Wilko Punt
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
- Present address:
Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Marleen Heinrichs
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
- Present address:
Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Frank Ordon
- Institute for Resistance Research and Stress ToleranceJulius Kühn Institute – Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress ToleranceJulius Kühn Institute – Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Jens Boch
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
| | - Jana Streubel
- Department of Plant BiotechnologyInstitute of Plant GeneticsLeibniz Universität HannoverHanoverGermany
| |
Collapse
|
17
|
Yang C, Wu P, Yao X, Sheng Y, Zhang C, Lin P, Wang K. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in Camellia oleifera Defense against Anthracnose. Int J Mol Sci 2022; 23:536. [PMID: 35008957 PMCID: PMC8745097 DOI: 10.3390/ijms23010536] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Camellia oleifera (Ca. oleifera) is a woody tree species cultivated for the production of edible oil from its seed. The growth and yield of tea-oil trees are severely affected by anthracnose (caused by Colletotrichum gloeosporioides). In this study, the transcriptomic and metabolomic analyses were performed to detect the key transcripts and metabolites associated with differences in the susceptibility between anthracnose-resistant (ChangLin150) and susceptible (ChangLin102) varieties of Ca. oleifera. In total, 5001 differentially expressed genes (DEGs) were obtained, of which 479 DEGs were common between the susceptible and resistant varieties and further analyzed. KEGG enrichment analysis showed that these DEGs were significantly enriched in tyrosine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis and isoquinoline alkaloid biosynthesis pathways. Furthermore, 68 differentially accumulated metabolites (DAMs) were detected, including flavonoids, such as epicatechin, phenethyl caffeate and procyanidin B2. Comparison of the DEGs and DAMs revealed that epicatechin, procyanidin B2 and arachidonic acid (peroxide free) are potentially important. The expression patterns of genes involved in flavonoid biosynthesis were confirmed by qRT-PCR. These results suggested that flavonoid biosynthesis might play an important role in the fight against anthracnose. This study provides valuable molecular information about the response of Ca. oleifera to Co. gloeosporioides infection and will aid the selection of resistant varieties using marker-assisted breeding.
Collapse
Affiliation(s)
| | | | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Y.); (P.W.); (Y.S.); (C.Z.); (P.L.); (K.W.)
| | | | | | | | | |
Collapse
|
18
|
Kumar G, Kumar P, Kapoor R, Lore JS, Bhatia D, Kumar A. Characterization of evolutionarily distinct rice BAHD-Acyltransferases provides insight into their plausible role in rice susceptibility to Rhizoctonia solani. THE PLANT GENOME 2021; 14:e20140. [PMID: 34498798 DOI: 10.1002/tpg2.20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/01/2021] [Indexed: 05/06/2023]
Abstract
Plants produce diverse secondary metabolites in response to different environmental cues including pathogens. The modification of secondary metabolites, including acylation, modulates their biological activity, stability, transport, and localization. A plant-specific BAHD-acyltransferase (BAHD-AT) gene family members catalyze the acylation of secondary metabolites. Here we characterized the rice (Oryza sativa L.) BAHD-ATs at the genome-wide level and endeavor to define their plausible role in the tolerance against Rhizoctonia solani AG1-IA. We identified a total of 85 rice OsBAHD-AT genes and classified them into five canonical clades based on their phylogenetic relationship with characterized BAHD-ATs from other plant species. The time-course RNA sequencing (RNA-seq) analysis of OsBAHD-AT genes and qualitative real-time polymerase chain reaction (qRT-PCR) validation showed higher expression in sheath blight susceptible rice genotype. Furthermore, the DNA methylation analysis revealed higher hypomethylation of OsBAHD-AT genes that corresponds to their higher expression in susceptible rice genotype, indicating epigenetic regulation of OsBAHD-AT genes in response to R. solani AG1-IA inoculation. The results shown here indicate that BAHD-ATs may have a negative role in rice tolerance against R. solani AG1-IA possibly mediated through the brassinosteroid (BR) signaling pathway. Altogether, the present analysis suggests the putative functions of several OsBAHD-AT genes, which will provide a blueprint for their functional characterization and to understand the rice-R. solani AG1-IA interaction.
Collapse
Affiliation(s)
- Gulshan Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Pankaj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Jagjeet Singh Lore
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141 004, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141 004, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
19
|
Manes N, Brauer EK, Hepworth S, Subramaniam R. MAMP and DAMP signaling contributes resistance to Fusarium graminearum in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6628-6639. [PMID: 34405877 DOI: 10.1093/jxb/erab285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/06/2021] [Indexed: 05/19/2023]
Abstract
Plants perceive externally produced microbe-associated molecular patterns (MAMPs) and endogenously produced danger-associated molecular patterns (DAMPs) to activate inducible immunity. While several inducible immune responses have been observed during Fusarium graminearum infection, the identity of the signaling pathways involved is only partly known. We screened 227 receptor kinase and innate immune response genes in Arabidopsis to identify nine genes with a role in F. graminearum resistance. Resistance-promoting genes included the chitin receptors LYK5 and CERK1, and the reactive oxygen species (ROS)-producing NADPH oxidase RbohF, which were required for full inducible immune responses during infection. Two of the genes identified in our screen, APEX and the PAMP-induced peptide 1 (PIP1) DAMP receptor RLK7, repressed F. graminearum resistance. Both RbohF and RLK7 were required for full chitin-induced immune responses and PIP1 precursor expression was induced by chitin and F. graminearum infection. Together, this indicates that F. graminearum resistance is mediated by MAMP and DAMP signaling pathways and that chitin-induced signaling is enhanced by PIP1 perception and ROS production.
Collapse
Affiliation(s)
- Nimrat Manes
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Carleton University, Department of Biology, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Elizabeth K Brauer
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Shelley Hepworth
- Carleton University, Department of Biology, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Carleton University, Department of Biology, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
20
|
Kaur B, Sandhu KS, Kamal R, Kaur K, Singh J, Röder MS, Muqaddasi QH. Omics for the Improvement of Abiotic, Biotic, and Agronomic Traits in Major Cereal Crops: Applications, Challenges, and Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1989. [PMID: 34685799 PMCID: PMC8541486 DOI: 10.3390/plants10101989] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Omics technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, are becoming an integral part of virtually every commercial cereal crop breeding program, as they provide substantial dividends per unit time in both pre-breeding and breeding phases. Continuous advances in omics assure time efficiency and cost benefits to improve cereal crops. This review provides a comprehensive overview of the established omics methods in five major cereals, namely rice, sorghum, maize, barley, and bread wheat. We cover the evolution of technologies in each omics section independently and concentrate on their use to improve economically important agronomic as well as biotic and abiotic stress-related traits. Advancements in the (1) identification, mapping, and sequencing of molecular/structural variants; (2) high-density transcriptomics data to study gene expression patterns; (3) global and targeted proteome profiling to study protein structure and interaction; (4) metabolomic profiling to quantify organ-level, small-density metabolites, and their composition; and (5) high-resolution, high-throughput, image-based phenomics approaches are surveyed in this review.
Collapse
Affiliation(s)
- Balwinder Kaur
- Everglades Research and Education Center, University of Florida, 3200 E. Palm Beach Rd., Belle Glade, FL 33430, USA;
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Kawalpreet Kaur
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Jagmohan Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Quddoos H. Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| |
Collapse
|
21
|
Cheng H, Bowler C, Xing X, Bulone V, Shao Z, Duan D. Full-Length Transcriptome of Thalassiosira weissflogii as a Reference Resource and Mining of Chitin-Related Genes. Mar Drugs 2021; 19:392. [PMID: 34356817 PMCID: PMC8307304 DOI: 10.3390/md19070392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
β-Chitin produced by diatoms is expected to have significant economic and ecological value due to its structure, which consists of parallel chains of chitin, its properties and the high abundance of diatoms. Nevertheless, few studies have functionally characterised chitin-related genes in diatoms owing to the lack of omics-based information. In this study, we first compared the chitin content of three representative Thalassiosira species. Cell wall glycosidic linkage analysis and chitin/chitosan staining assays showed that Thalassiosira weissflogii was an appropriate candidate chitin producer. A full-length (FL) transcriptome of T. weissflogii was obtained via PacBio sequencing. In total, the FL transcriptome comprised 23,362 annotated unigenes, 710 long non-coding RNAs (lncRNAs), 363 transcription factors (TFs), 3113 alternative splicing (AS) events and 3295 simple sequence repeats (SSRs). More specifically, 234 genes related to chitin metabolism were identified and the complete biosynthetic pathways of chitin and chitosan were explored. The information presented here will facilitate T. weissflogii molecular research and the exploitation of β-chitin-derived high-value enzymes and products.
Collapse
Affiliation(s)
- Haomiao Cheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chris Bowler
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France;
| | - Xiaohui Xing
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden; (X.X.); (V.B.)
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia
- Adelaide Glycomics, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden; (X.X.); (V.B.)
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia
- Adelaide Glycomics, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia
| | - Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| |
Collapse
|
22
|
Murti RH, Afifah EN, Nuringtyas TR. Metabolomic Response of Tomatoes ( Solanum lycopersicum L.) against Bacterial Wilt ( Ralstonia solanacearum) Using 1H-NMR Spectroscopy. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061143. [PMID: 34205226 PMCID: PMC8226496 DOI: 10.3390/plants10061143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 05/31/2023]
Abstract
Ralstonia solanacearum is the pathogen responsible for wilting, yield losses, and death in tomato plants. The use of resistant cultivars has been proven as the most appropriate solution to controlling this pathogen. Therefore, further study of host-plant resistance mechanisms in tomatoes is urgently needed. 1H-NMR (nuclear magnetic resonance) spectroscopy combined with multivariate data analysis has been used to identify the biochemical compounds that play a crucial role in the defense mechanisms of tomato against bacterial wilt. Eleven metabolites consisting of amino acids, sugars and organic acids were identified and presented at different concentrations in each cultivar. Leucine and valine were determined as distinguishable metabolites of resistant and susceptible cultivars. Permata and Hawaii 7996 as resistant cultivars had a significant decrease of valine after inoculation about 1.5-2 times compared to the susceptible cultivar (GM2). Meanwhile, the resistant cultivars had a higher level of leucine, about 1.3-1.5 times compared to the susceptible ones. Synthesis of leucine and valine are linked as a member of the pyruvate family. Therefore, the decrease in valine may be related to the higher need for leucine to form the leucine-rich receptor, which plays a role in the plant's immune system against the bacterial wilt.
Collapse
Affiliation(s)
- Rudi Hari Murti
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Enik Nurlaili Afifah
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | | |
Collapse
|
23
|
Karre S, Kim S, Samira R, Balint‐Kurti P. The maize ZmMIEL1 E3 ligase and ZmMYB83 transcription factor proteins interact and regulate the hypersensitive defence response. MOLECULAR PLANT PATHOLOGY 2021; 22:694-709. [PMID: 33825303 PMCID: PMC8126188 DOI: 10.1111/mpp.13057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
The plant hypersensitive response (HR), a rapid cell death at the point of pathogenesis, is mediated by nucleotide-binding site, leucine-rich repeat (NLR) resistance proteins (R-proteins) that recognize the presence of specific pathogen-derived proteins. Rp1-D21 is an autoactive maize NLR R-protein that triggers HR spontaneously. We previously mapped loci associated with variation in the strength of HR induced by Rp1-D21. Here we identify the E3 ligase ZmMIEL1 as the causal gene at a chromosome 10 modifier locus. Transient ZmMIEL1 expression in Nicotiana benthamiana reduced HR induced by Rp1-D21, while suppression of ZmMIEL1 expression in maize carrying Rp1-D21 increased HR. ZmMIEL1 also suppressed HR induced by another autoactive NLR, the Arabidopsis R-protein RPM1D505V, in N. benthamiana. We demonstrated that ZmMIEL1 is a functional E3 ligase and that the effect of ZmMIEL1 was dependent on the proteasome but also that levels of Rp1-D21 and RPM1D505V were not reduced when coexpressed with ZmMIEL1 in the N. benthamiana system. By comparison to a similar system in Arabidopsis, we identify ZmMYB83 as a potential target of ZmMIEL1. Suppression of ZmMYB83 expression in maize lines carrying Rp1-D21 suppressed HR. Suppression of ZmMIEL1 expression caused an increase in ZmMYB83 transcript and protein levels in N. benthamiana and maize. Using coimmunoprecipitation and bimolecular fluorescence complementation assays, we demonstrated that ZmMIEL1 and ZmMYB83 physically interacted. Additionally, ZmMYB83 and ZmMIEL1 regulated the expression of a set of maize very long chain fatty acid (VLCFA) biosynthetic genes that may be involved in regulating HR.
Collapse
Affiliation(s)
- Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research InstituteDepartment of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research Unit USDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
24
|
Bioactive Components in Oat and Barley Grain as a Promising Breeding Trend for Functional Food Production. Molecules 2021; 26:molecules26082260. [PMID: 33919686 PMCID: PMC8069901 DOI: 10.3390/molecules26082260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Cereal crops, such as oats and barley, possess a number of valuable properties that meet the requirements for functional diet components. This review summarized the available information about bioactive compounds of oat and barley grain. The results of studying the structure and physicochemical properties of the cell wall polysaccharides of barley and oat are presented. The main components of the flavonoids formation pathway are shown and data, concerning anthocyanins biosynthesis in various barley tissues, are discussed. Moreover, we analyzed the available information about structural and regulatory genes of anthocyanin biosynthesis in Hordeum vulgare L. genome, including β-glucan biosynthesis genes in Avena sativa L species. However, there is not enough knowledge about the genes responsible for biosynthesis of β-glucans and corresponding enzymes and plant polyphenols. The review also covers contemporary studies about collections of oat and barley genetic resources held by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR). This review intended to provide information on the processes of biosynthesis of biologically active compounds in cereals that will promote further researches devoted to transcription factors controlling expression of structural genes and their role in other physiological processes in higher plants. Found achievements will allow breeders to create new highly productive varieties with the desirable properties.
Collapse
|
25
|
Changenet V, Macadré C, Boutet-Mercey S, Magne K, Januario M, Dalmais M, Bendahmane A, Mouille G, Dufresne M. Overexpression of a Cytochrome P450 Monooxygenase Involved in Orobanchol Biosynthesis Increases Susceptibility to Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2021; 12:662025. [PMID: 33868356 PMCID: PMC8048717 DOI: 10.3389/fpls.2021.662025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/11/2021] [Indexed: 05/28/2023]
Abstract
Fusarium Head Blight (FHB) is a cereal disease caused primarily by the ascomycete fungus Fusarium graminearum with public health issues due to the production of mycotoxins including deoxynivalenol (DON). Genetic resistance is an efficient protection means and numerous quantitative trait loci have been identified, some of them related to the production of resistance metabolites. In this study, we have functionally characterized the Brachypodium distachyon BdCYP711A29 gene encoding a cytochrome P450 monooxygenase (CYP). We showed that BdCYP711A29 belongs to an oligogenic family of five members. However, following infection by F. graminearum, BdCYP711A29 is the only copy strongly transcriptionally induced in a DON-dependent manner. The BdCYP711A29 protein is homologous to the Arabidopsis thaliana MAX1 and Oryza sativa MAX1-like CYPs representing key components of the strigolactone biosynthesis. We show that BdCYP711A29 is likely involved in orobanchol biosynthesis. Alteration of the BdCYP711A29 sequence or expression alone does not modify plant architecture, most likely because of functional redundancy with the other copies. B. distachyon lines overexpressing BdCYP711A29 exhibit an increased susceptibility to F. graminearum, although no significant changes in defense gene expression were detected. We demonstrate that both orobanchol and exudates of Bd711A29 overexpressing lines stimulate the germination of F. graminearum macroconidia. We therefore hypothesize that orobanchol is a susceptibility factor to FHB.
Collapse
Affiliation(s)
- Valentin Changenet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Macadré
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Mélanie Januario
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Marie Dufresne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| |
Collapse
|
26
|
Soni N, Altartouri B, Hegde N, Duggavathi R, Nazarian-Firouzabadi F, Kushalappa AC. TaNAC032 transcription factor regulates lignin-biosynthetic genes to combat Fusarium head blight in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110820. [PMID: 33568310 DOI: 10.1016/j.plantsci.2021.110820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB) is a destructive disease affecting cereal crops globally due to mycotoxin contamination of grains that reduce yield and quality. Among hundreds of QTLs identified for resistance, the QTL-Fhb1 is of significant interest even today, for its major contribution to FHB resistance. Previously, QTL-Fhb1 dissection based on a combined metabolo-genomics approach, identified a few potential resistance genes, including a NAC like transcription factor for FHB resistance. Sequencing and phylogenetic analysis confirmed NAC to be the wheat TaNAC032. Also, the quantitative RT-PCR studies revealed a greater induced expression of TaNAC032 in resistant NIL in comparison to susceptible NIL upon Fusarium graminearum (Fg) infection. The virus-induced gene silencing (VIGS) based functional validation of TaNAC032 in resistant NIL confirmed increased disease severity and fungal biomass. Metabolic profiling revealed low abundances of resistance-related (RR) metabolites in TaNAC032 silenced NIL-R compared to non-silenced. Silenced plants showed decreased transcript abundances of RR metabolite biosynthetic genes associated with a reduction in total lignin content in rachis, confirming the regulatory role of TaNAC032 in wheat in response to Fg infection. If TaNA032 is mutated in an FHB susceptible cultivar, it can be edited to enhance FHB resistance.
Collapse
Affiliation(s)
- Nancy Soni
- Plant Science Department, McGill University, Quebec, Canada
| | - Bara Altartouri
- Department of Biological Sciences, Université de Montréal, Quebec, Canada
| | - Niranjan Hegde
- Plant Science Department, McGill University, Quebec, Canada
| | - Raj Duggavathi
- Animal Science Department, McGill University, Quebec, Canada
| | | | | |
Collapse
|
27
|
Rajagopalan N, Lu Y, Burton IW, Monteil-Rivera F, Halasz A, Reimer E, Tweidt R, Brûlé-Babel A, Kutcher HR, You FM, Cloutier S, Cuperlovic-Culf M, Hiebert CW, McCallum BD, Loewen MC. A phenylpropanoid diglyceride associates with the leaf rust resistance Lr34res gene in wheat. PHYTOCHEMISTRY 2020; 178:112456. [PMID: 32692663 DOI: 10.1016/j.phytochem.2020.112456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The gene Lr34res is one of the most long-lasting sources of quantitative fungal resistance in wheat. It is shown to be effective against leaf, stem, and stripe rusts, as well as powdery mildew and spot blotch. Recent biochemical characterizations of the encoded ABC transporter have outlined a number of allocrites, including phospholipids and abscisic acid, consistent with the established general promiscuity of ABC transporters, but ultimately leaving its mechanism of rust resistance unclear. Working with flag leaves of Triticum aestivum L. variety 'Thatcher' (Tc) and a near-isogenic line of 'Thatcher' into which the Lr34res allele was introgressed (Tc+Lr34res; RL6058), a comparative semi-targeted metabolomics analysis of flavonoid-rich extracts revealed virtually identical profiles with the exception of one metabolite accumulating in Tc+Lr34res, which was not present at comparable levels in Tc. Structural characterization of the purified metabolite revealed a phenylpropanoid diglyceride structure, 1-O-p-coumaroyl-3-O-feruloylglycerol (CFG). Additional profiling of CFG across a collection of near-isogenic lines and representative Lr34 haplotypes highlighted a broad association between the presence of Lr34res and elevated accumulations of CFG. Depletion of CFG upon infection, juxtaposed to its relatively lower anti-fungal activity, suggests CFG may serve as a storage form of the more potent anti-microbial hydroxycinnamic acids that are accessed during defense responses. Altogether these findings suggest a role for the encoded LR34res ABC transporter in modifying the accumulation of CFG, leading to increased accumulation of anti-fungal metabolites, essentially priming the wheat plant for defense.
Collapse
Affiliation(s)
- Nandhakishore Rajagopalan
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yuping Lu
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Ian W Burton
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Fanny Monteil-Rivera
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Annamaria Halasz
- National Research Council of Canada, Energy Mining and Environment Research Center, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Elsa Reimer
- Agriculture and Agri-Food Canada, Morden Research and Development Center, 101 Route 100, Unit 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Rebecca Tweidt
- Department of Plant Sciences and the Crop Development Center, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Anita Brûlé-Babel
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd. Winnipeg, MB, R3T 2N2, Canada
| | - Hadley R Kutcher
- Department of Plant Sciences and the Crop Development Center, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Frank M You
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Miroslava Cuperlovic-Culf
- National Research Council of Canada, Digital Technologies Research Center, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Colin W Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Center, 101 Route 100, Unit 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Brent D McCallum
- Agriculture and Agri-Food Canada, Morden Research and Development Center, 101 Route 100, Unit 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Michele C Loewen
- National Research Council of Canada, Aquatic and Crop Resources Development Research Center, 100 Sussex Drive, Ottawa, ON, K1A 5A2, Canada.
| |
Collapse
|
28
|
Isha A, Yusof NA, Shaari K, Osman R, Abdullah SNA, Wong MY. Metabolites identification of oil palm roots infected with Ganoderma boninense using GC–MS-based metabolomics. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1541-1568. [PMID: 31900498 DOI: 10.1007/s00122-019-03525-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB), or scab, for its devastating nature to wheat production and food security, has stimulated worldwide attention. Multidisciplinary efforts have been made to fight against FHB for a long time, but the great progress has been achieved only in the genomics era of the past 20 years, particularly in the areas of resistance gene/QTL discovery, resistance mechanism elucidation and molecular breeding for better resistance. This review includes the following nine main sections, (1) FHB incidence, epidemic and impact, (2) causal Fusarium species, distribution and virulence, (3) types of host resistance to FHB, (4) germplasm exploitation for FHB resistance, (5) genetic control of FHB resistance, (6) fine mapping of Fhb1, Fhb2, Fhb4 and Fhb5, (7) cloning of Fhb1, (8) omics-based gene discovery and resistance mechanism study and (9) breeding for better FHB resistance. The advancements that have been made are outstanding and exciting; however, judged by the complicated nature of resistance to hemi-biotrophic pathogens like Fusarium species and lack of immune germplasm, it is still a long way to go to overcome FHB.
Collapse
Affiliation(s)
- Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Quan Xie
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiyang Zhou
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Na Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Seybold H, Demetrowitsch TJ, Hassani MA, Szymczak S, Reim E, Haueisen J, Lübbers L, Rühlemann M, Franke A, Schwarz K, Stukenbrock EH. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat Commun 2020; 11:1910. [PMID: 32313046 PMCID: PMC7171108 DOI: 10.1038/s41467-020-15633-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Yield losses caused by fungal pathogens represent a major threat to global food production. One of the most devastating fungal wheat pathogens is Zymoseptoria tritici. Despite the importance of this fungus, the underlying mechanisms of plant–pathogen interactions are poorly understood. Here we present a conceptual framework based on coinfection assays, comparative metabolomics, and microbiome profiling to study the interaction of Z. tritici in susceptible and resistant wheat. We demonstrate that Z. tritici suppresses the production of immune-related metabolites in a susceptible cultivar. Remarkably, this fungus-induced immune suppression spreads within the leaf and even to other leaves, a phenomenon that we term “systemic induced susceptibility”. Using a comparative metabolomics approach, we identify defense-related biosynthetic pathways that are suppressed and induced in susceptible and resistant cultivars, respectively. We show that these fungus-induced changes correlate with changes in the wheat leaf microbiome. Our findings suggest that immune suppression by this hemibiotrophic pathogen impacts specialized plant metabolism, alters its associated microbial communities, and renders wheat vulnerable to further infections. The fungal plant pathogen Zymoseptoria tritici is a major threat to wheat yield. Here Seybold et al. show that Z. tritici can suppress immune responses not only in infected tissue but also on other leaves, a phenomenon termed “systemic induced susceptibility” that is correlated with systemic changes in metabolite accumulation.
Collapse
Affiliation(s)
- Heike Seybold
- Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.,Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190401, Israel
| | - Tobias J Demetrowitsch
- Institute of Human Nutrition and Food Science, Kiel University, Heinrich-Hecht-Platz 10, 24118, Kiel, Germany
| | - M Amine Hassani
- Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Silke Szymczak
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Ekaterina Reim
- Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.,Institute of Human Nutrition and Food Science, Kiel University, Heinrich-Hecht-Platz 10, 24118, Kiel, Germany
| | - Janine Haueisen
- Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Luisa Lübbers
- Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Am Botanischen Garten 11, 24118, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Am Botanischen Garten 11, 24118, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Kiel University, Heinrich-Hecht-Platz 10, 24118, Kiel, Germany
| | - Eva H Stukenbrock
- Botanical Institute, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany. .,Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| |
Collapse
|
31
|
Ube N, Yabuta Y, Tohnooka T, Ueno K, Taketa S, Ishihara A. Biosynthesis of Phenylamide Phytoalexins in Pathogen-Infected Barley. Int J Mol Sci 2019; 20:ijms20225541. [PMID: 31698855 PMCID: PMC6888128 DOI: 10.3390/ijms20225541] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022] Open
Abstract
Phytoalexins are inducible antimicrobial metabolites in plants, and have been indicated to be important for the rejection of microbial infection. HPLC analysis detected the induced accumulation of three compounds 1–3 in barley (Hordeum vulgare) roots infected by Fusarium culmorum, the causal agent of Fusarium root rot. Compounds 1–3 were identified as cinnamic acid amides of 9-hydroxy-8-oxotryptamine, 8-oxotryptamine, and (1H-indol-3-yl)methylamine, respectively, by spectroscopic analysis. Compounds 1 and 2 had been previously reported from wheat, whereas 3 was an undescribed compound. We named 1–3 as triticamides A–C, respectively, because they were isolated from barley and wheat, which belong to the Triticeae tribe. These compounds showed antimicrobial activities, indicating that triticamides function as phytoalexins in barley. The administration of deuterium-labeled N-cinnamoyl tryptamine (CinTry) to barley roots resulted in the effective incorporation of CinTry into 1 and 2, which suggested that they were synthesized through the oxidation of CinTry. Nine putative tryptamine hydroxycinnamoyl transferase (THT)-encoding genes (HvTHT1–HvTHT9) were identified by database search on the basis of homology to known THT gene sequences from rice. Since HvTHT7 and HvTHT8 had the same sequences except one base, we measured their expression levels in total by RT-qPCR. HvTHT7/8 were markedly upregulated in response to infection by F. culmorum. The HvTHT7 and HvTHT8 enzymes preferred cinnamoyl- and feruloyl-CoAs as acyl donors and tryptamine as an acyl acceptor, and (1H-indol-3-yl)methylamine was also accepted as an acyl acceptor. These findings suggested that HvTHT7/8 are responsible for the induced accumulation of triticamides in barley.
Collapse
Affiliation(s)
- Naoki Ube
- United Graduate School of Agriculture, Tottori University, Tottori 680-8553, Japan;
| | - Yukinori Yabuta
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (Y.Y.); (K.U.)
| | - Takuji Tohnooka
- National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan;
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (Y.Y.); (K.U.)
| | - Shin Taketa
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (Y.Y.); (K.U.)
- Correspondence: ; Tel.: +81-857-31-5361
| |
Collapse
|
32
|
Karre S, Kumar A, Yogendra K, Kage U, Kushalappa A, Charron JB. HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight. PLANT MOLECULAR BIOLOGY 2019; 100:591-605. [PMID: 31098785 DOI: 10.1007/s11103-019-00882-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/09/2019] [Indexed: 05/20/2023]
Abstract
Crop plant resistance against pathogens is governed by dynamic molecular and biochemical responses driven by complex transcriptional networks. However, the underlying mechanisms are largely unclear. Here we report an interesting role of HvWRKY23 transcription factor (TF) in modulating defense response against Fusarium head blight (FHB) in barley. The combined approach of gene silencing, metabolomics, real time expression analysis and ab initio bioinformatics tools led to the identification of the HvWRKY23 role in FHB resistance. The knock-down of HvWRKY23 gene in the FHB resistant barley genotype CI9831, followed by inoculation with Fusarium graminearum, led to the down regulation of key flavonoid and hydroxycinnamic acid amide biosynthetic genes resulting in reduced accumulation of resistant related (RR) secondary metabolites such as pelargonidin 3-rutinoside, peonidin 3-rhamnoside-5-glucoside, kaempferol 3-O-arabinoside and other flavonoid glycosides. Reduced abundances of RR metabolites in TF silenced plants were also associated with an increased proportion of spikelets diseased and amount of fungal biomass in spikelets, depicting the role of HvWRKY23 in disease resistance. The luciferase reporter assay demonstrated binding of HvWRKY23 protein to promoters of key flavonoid and hydroxycinnamic acid amides (HCAA) biosynthetic genes, such as HvPAL2, HvCHS1, HvHCT, HvLAC15 and HvUDPGT. The accumulation of high abundances of HCAAs and flavonoid glycosides reinforce cell walls to contain the pathogen to initial infection area. This gene in commercial cultivars can be edited, if non-functional, to enhance resistance against FHB.
Collapse
Affiliation(s)
- Shailesh Karre
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Arun Kumar
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Kalenahalli Yogendra
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Udaykumar Kage
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Ajjamada Kushalappa
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada.
| | - Jean-Benoit Charron
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
33
|
Nazarian-Firouzabadi F, Joshi S, Xue H, Kushalappa AC. Genome-wide in silico identification of LysM-RLK genes in potato (Solanum tuberosum L.). Mol Biol Rep 2019; 46:5005-5017. [PMID: 31317454 DOI: 10.1007/s11033-019-04951-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
The receptor like kinases (RLKs) belong to the RLK/Pelle superfamily, one of the largest gene families in plants. RLKs play an important role in plant development, as well as in response to biotic and abiotic stresses. The lysine motif receptor like kinases (LysM-RLKs) are a subfamily of RLKs containing at least one lysine motif (LysM) that are involved in the perception of elicitors or pathogen-associated molecular patterns (PAMPs). In the present study, 77 putative RLKs genes and three receptor like proteins were identified in potato (Solanum tuberosum) genome, following a genome-wide search. The 77 potato RLK proteins are classified into two major phylogenetic groups based on their kinase domain amino acid sequence similarities. Out of 77 RLKs, 10 proteins had at least one LysM. Among them three RLP proteins were found in potato genome with either 2 or three tandem LysM but these lacked a cytoplasmic kinase domain. Expression analyses of a potato LysM-RLKs (StLysM-RLK05) was carried out by a Real time RT-PCR, following inoculation of potato leaves and immature tubers with late blight and common scab pathogens, respectively. The expression was significantly higher in resistant than in susceptible following S. scabies inoculation. The StLysM-RLK05 sequence was verified and it was polymorphic in scab susceptible cultivar. The present study provides an overview of the StLysM-RLKs gene family in potato genome. This information is helpful for future functional analysis of such an important protein family, in Solanaceae species.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.,Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Sripad Joshi
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Huali Xue
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.,College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.
| |
Collapse
|
34
|
Sarowar S, Alam ST, Makandar R, Lee H, Trick HN, Dong Y, Shah J. Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2019; 20:626-640. [PMID: 30597698 PMCID: PMC6637896 DOI: 10.1111/mpp.12781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis-F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.
Collapse
Affiliation(s)
- Sujon Sarowar
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- Present address:
Botanical GeneticsBuffaloNYUSA
| | - Syeda T. Alam
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- BioDiscovery InstituteUniversity of North TexasDentonTX 76201USA
| | - Ragiba Makandar
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- Department of Plant SciencesUniversity of HyderabadGachibowliHyderabad 500046India
| | - Hyeonju Lee
- Department of Plant PathologyKansas State UniversityManhattanKS 66506USA
| | - Harold N. Trick
- Department of Plant PathologyKansas State UniversityManhattanKS 66506USA
| | - Yanhong Dong
- Department of Plant PathologyUniversity of MinnesotaSt. PaulMN 55108USA
| | - Jyoti Shah
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- BioDiscovery InstituteUniversity of North TexasDentonTX 76201USA
| |
Collapse
|
35
|
Hu Z, Chang X, Dai T, Li L, Liu P, Wang G, Liu P, Huang Z, Liu X. Metabolic Profiling to Identify the Latent Infection of Strawberry by Botrytis cinerea. Evol Bioinform Online 2019; 15:1176934319838518. [PMID: 31024215 PMCID: PMC6472161 DOI: 10.1177/1176934319838518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023] Open
Abstract
In plant-pathogen interaction systems, plant metabolism is usually agitated in
the early stages of infection and much before visible symptoms appear. To
identify the latent infection of strawberry by Botrytis cinerea
by metabolome profiling, a metabolomics method based on gas chromatography and
mass spectrometry was applied to identify the affected metabolites and
discriminate diseased plants from healthy ones. An orthogonal partial least
squares (OPLS) score plot showed that the metabolic profiling well separated
B. cinerea-infected strawberry plants at 2, 5, and 7 days
after infection from non-infected healthy plants. Combined analysis of variance
(ANOVA) and OPLS analysis revealed candidate biomarkers of plant resistance and
of infection and expansion of the pathogen in the plants. Among them,
hexadecanoic acid, octadecanoic acid, sucrose, β-lyxopyranose, melibiose, and
1,1,4a-Trimethyl-5,6-dimethylenedecahydronaphthalene were closely related to the
early stage of disease development when symptoms were not visible. A
discrimination method that could distinguish Botrytis gray mold
diseased strawberry plants from healthy ones was established based on the
partial least squares discriminant analysis (PLS-DA) model with a correct
recognition accuracy of 100%. This research offers a good application of
metabolome profiling for early diagnosis of plant disease and interaction
mechanism exploration.
Collapse
Affiliation(s)
- Zhihong Hu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xunian Chang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tan Dai
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lei Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Panqing Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guozhen Wang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongqiao Huang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 2019; 103:1155-1166. [PMID: 30570692 PMCID: PMC6394481 DOI: 10.1007/s00253-018-9556-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The well-being of the microbial community that densely populates the rhizosphere is aided by a plant's root exudates. Maintaining a plant's health is a key factor in its continued existence. As minute as rhizospheric microbes are, their importance in plant growth cannot be overemphasized. They depend on plants for nutrients and other necessary requirements. The relationship between the rhizosphere-microbiome (rhizobiome) and plant hosts can be beneficial, non-effectual, or pathogenic depending on the microbes and the plant involved. This relationship, to a large extent, determines the fate of the host plant's survival. Modern molecular techniques have been used to unravel rhizobiome species' composition, but the interplay between the rhizobiome root exudates and other factors in the maintenance of a healthy plant have not as yet been thoroughly investigated. Many functional proteins are activated in plants upon contact with external factors. These proteins may elicit growth promoting or growth suppressing responses from the plants. To optimize the growth and productivity of host plants, rhizobiome microbial diversity and modulatory techniques need to be clearly understood for improved plant health.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa.
| |
Collapse
|
37
|
Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes. BMC Genomics 2018; 19:642. [PMID: 30157778 PMCID: PMC6116500 DOI: 10.1186/s12864-018-5012-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fusarium head blight (FHB) of wheat in North America is caused mostly by the fungal pathogen Fusarium graminearum (Fg). Upon exposure to Fg, wheat initiates a series of cellular responses involving massive transcriptional reprogramming. In this study, we analyzed transcriptomics data of four wheat genotypes (Nyubai, Wuhan 1, HC374, and Shaw), at 2 and 4 days post inoculation (dpi) with Fg, using RNA-seq technology. Results A total of 37,772 differentially expressed genes (DEGs) were identified, 28,961 from wheat and 8811 from the pathogen. The susceptible genotype Shaw exhibited the highest number of host and pathogen DEGs, including 2270 DEGs associating with FHB susceptibility. Protein serine/threonine kinases and LRR-RK were associated with susceptibility at 2 dpi, while several ethylene-responsive, WRKY, Myb, bZIP and NAC-domain containing transcription factors were associated with susceptibility at 4 dpi. In the three resistant genotypes, 220 DEGs were associated with resistance. Glutathione S-transferase (GST), membrane proteins and distinct LRR-RKs were associated with FHB resistance across the three genotypes. Genes with unique, high up-regulation by Fg in Wuhan 1 were mostly transiently expressed at 2 dpi, while many defense-associated genes were up-regulated at both 2 and 4 dpi in Nyubai; the majority of unique genes up-regulated in HC374 were detected at 4 dpi only. In the pathogen, most genes showed increased expression between 2 and 4 dpi in all genotypes, with stronger levels in the susceptible host; however two pectate lyases and a hydrolase were expressed higher at 2 dpi, and acetyltransferase activity was highly enriched at 4 dpi. Conclusions There was an early up-regulation of LRR-RKs, different between susceptible and resistant genotypes; subsequently, distinct sets of genes associated with defense response were up-regulated. Differences in expression profiles among the resistant genotypes indicate genotype-specific defense mechanisms. This study also shows a greater resemblance in transcriptomics of HC374 to Nyubai, consistent with their sharing of two FHB resistance QTLs on 3BS and 5AS, compared to Wuhan 1 which carries one QTL on 2DL in common with HC374. Electronic supplementary material The online version of this article (10.1186/s12864-018-5012-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Ziying Liu
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - François Fauteux
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yunli Wang
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Curt McCartney
- Morden Research and Development Centre, AAFC, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
38
|
Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes. BMC Genomics 2018. [PMID: 30157778 DOI: 10.1186/s12864-018-5012-5013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Fusarium head blight (FHB) of wheat in North America is caused mostly by the fungal pathogen Fusarium graminearum (Fg). Upon exposure to Fg, wheat initiates a series of cellular responses involving massive transcriptional reprogramming. In this study, we analyzed transcriptomics data of four wheat genotypes (Nyubai, Wuhan 1, HC374, and Shaw), at 2 and 4 days post inoculation (dpi) with Fg, using RNA-seq technology. RESULTS A total of 37,772 differentially expressed genes (DEGs) were identified, 28,961 from wheat and 8811 from the pathogen. The susceptible genotype Shaw exhibited the highest number of host and pathogen DEGs, including 2270 DEGs associating with FHB susceptibility. Protein serine/threonine kinases and LRR-RK were associated with susceptibility at 2 dpi, while several ethylene-responsive, WRKY, Myb, bZIP and NAC-domain containing transcription factors were associated with susceptibility at 4 dpi. In the three resistant genotypes, 220 DEGs were associated with resistance. Glutathione S-transferase (GST), membrane proteins and distinct LRR-RKs were associated with FHB resistance across the three genotypes. Genes with unique, high up-regulation by Fg in Wuhan 1 were mostly transiently expressed at 2 dpi, while many defense-associated genes were up-regulated at both 2 and 4 dpi in Nyubai; the majority of unique genes up-regulated in HC374 were detected at 4 dpi only. In the pathogen, most genes showed increased expression between 2 and 4 dpi in all genotypes, with stronger levels in the susceptible host; however two pectate lyases and a hydrolase were expressed higher at 2 dpi, and acetyltransferase activity was highly enriched at 4 dpi. CONCLUSIONS There was an early up-regulation of LRR-RKs, different between susceptible and resistant genotypes; subsequently, distinct sets of genes associated with defense response were up-regulated. Differences in expression profiles among the resistant genotypes indicate genotype-specific defense mechanisms. This study also shows a greater resemblance in transcriptomics of HC374 to Nyubai, consistent with their sharing of two FHB resistance QTLs on 3BS and 5AS, compared to Wuhan 1 which carries one QTL on 2DL in common with HC374.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Ziying Liu
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - François Fauteux
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yunli Wang
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Curt McCartney
- Morden Research and Development Centre, AAFC, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
39
|
Kazan K, Gardiner DM. Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far. MOLECULAR PLANT PATHOLOGY 2018; 19:764-778. [PMID: 28411402 PMCID: PMC6638174 DOI: 10.1111/mpp.12561] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 05/16/2023]
Abstract
The ascomycete fungal pathogen Fusarium graminearum causes the globally important Fusarium head blight (FHB) disease on cereal hosts, such as wheat and barley. In addition to reducing grain yield, infection by this pathogen causes major quality losses. In particular, the contamination of food and feed with the F. graminearum trichothecene toxin deoxynivalenol (DON) can have many adverse short- and long-term effects on human and animal health. During the last decade, the interaction between F. graminearum and both cereal and model hosts has been extensively studied through transcriptomic analyses. In this review, we present an overview of how such analyses have advanced our understanding of this economically important plant-microbe interaction. From a host point of view, the transcriptomes of FHB-resistant and FHB-susceptible cereal genotypes, including near-isogenic lines (NILs) that differ by the presence or absence of quantitative trait loci (QTLs), have been studied to understand the mechanisms of disease resistance afforded by such QTLs. Transcriptomic analyses employed to dissect host responses to DON have facilitated the identification of the genes involved in toxin detoxification and disease resistance. From the pathogen point of view, the transcriptome of F. graminearum during pathogenic vs. saprophytic growth, or when infecting different cereal hosts or different tissues of the same host, have been studied. In addition, comparative transcriptomic analyses of F. graminearum knock-out mutants with altered virulence have provided new insights into pathogenicity-related processes. The F. graminearum transcriptomic data generated over the years are now being exploited to build a systems level understanding of the biology of this pathogen, with an ultimate aim of developing effective and sustainable disease prevention strategies.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Agriculture and Food Queensland Bioscience PrecinctSt. LuciaQld4067Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI)University of Queensland, Queensland Bioscience PrecinctSt. LuciaQld4067Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and Food Queensland Bioscience PrecinctSt. LuciaQld4067Australia
| |
Collapse
|
40
|
A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Thapa G, Gunupuru LR, Hehir JG, Kahla A, Mullins E, Doohan FM. A Pathogen-Responsive Leucine Rich Receptor Like Kinase Contributes to Fusarium Resistance in Cereals. FRONTIERS IN PLANT SCIENCE 2018; 9:867. [PMID: 29997638 PMCID: PMC6029142 DOI: 10.3389/fpls.2018.00867] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Receptor-like kinases form the largest family of receptors in plants and play an important role in recognizing pathogen-associated molecular patterns and modulating the plant immune responses to invasive fungi, including cereal defenses against fungal diseases. But hitherto, none have been shown to modulate the wheat response to the economically important Fusarium head blight (FHB) disease of small-grain cereals. Homologous genes were identified on barley chromosome 6H (HvLRRK-6H) and wheat chromosome 6DL (TaLRRK-6D), which encode the characteristic domains of surface-localized receptor like kinases. Gene expression studies validated that the wheat TaLRRK-6D is highly induced in heads as an early response to both the causal pathogen of FHB disease, Fusarium graminearum, and its' mycotoxic virulence factor deoxynivalenol. The transcription of other wheat homeologs of this gene, located on chromosomes 6A and 6B, was also up-regulated in response to F. graminearum. Virus-induced gene silencing (VIGS) of the barley HvLRRK-6H compromised leaf defense against F. graminearum. VIGS of TaLRRK-6D in two wheat cultivars, CM82036 (resistant to FHB disease) and cv. Remus (susceptible to FHB), confirmed that TaLRRK-6D contributes to basal resistance to FHB disease in both genotypes. Although the effect of VIGS did not generally reduce grain losses due to FHB, this experiment did reveal that TaLRRK-6D positively contributes to grain development. Further gene expression studies in wheat cv. Remus indicated that VIGS of TaLRRK-6D suppressed the expression of genes involved in salicylic acid signaling, which is a key hormonal pathway involved in defense. Thus, this study provides the first evidence of receptor like kinases as an important component of cereal defense against Fusarium and highlights this gene as a target for enhancing cereal resistance to FHB disease.
Collapse
Affiliation(s)
- Ganesh Thapa
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - Lokanadha R. Gunupuru
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - James G. Hehir
- Crop Science Department, Oak Park Crops Research Centre, Teagasc, Carlow, Ireland
| | - Amal Kahla
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - Ewen Mullins
- Crop Science Department, Oak Park Crops Research Centre, Teagasc, Carlow, Ireland
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
- *Correspondence: Fiona M. Doohan,
| |
Collapse
|
42
|
Surendra A, Cuperlovic-Culf M. Database of resistance related metabolites in Wheat Fusarium head blight Disease (MWFD). DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:4600046. [PMID: 29220474 PMCID: PMC5737199 DOI: 10.1093/database/bax076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
Fungal diseases are an increasing threat to worldwide food security. Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a devastating disease of Triticum aestivum (bread wheat). Partial resistance to FHB of several wheat and barley cultivars includes specific metabolic responses to inoculation. Investigation of metabolic changes in plants, following pathogen infection, provides valuable data for understanding of the role of metabolites and metabolism in plant-pathogen interaction and resistance. Determination of functions of metabolites in resistance can also inspire the development of antifungals. Metabolic changes induced by FHB in resistant and susceptible plants have been previously investigated. However, the functionality of the majority of these investigated metabolites remains unknown. The ‘Metabolites in the Wheat Fusarium head blight Disease’ (MWFD) database was compiled in order to determine possible targets and roles of these molecules in resistance to FBH and aid in the development of related synthetic antifungals. The MWFD database allows for the quick retrieval of known resistance related metabolites, associated target proteins and their sequence analogues in wheat and Fusarium genomes. The database can be searched for compounds, MeSH terms, as well as protein targets. This comprehensive, manually curated, collection of resistance related metabolites is available at https://bioinfo.nrc.ca/mwfd/index.php. Database URL:https://bioinfo.nrc.ca/mwfd/index.php
Collapse
Affiliation(s)
- Anuradha Surendra
- Department of Information and Comunication Technology, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Information and Comunication Technology, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|