1
|
Ju Y, Jia Y, Cheng B, Wang D, Gu D, Jing W, Zhang H, Chen X, Li G. NRT1.1B mediates rice plant growth and soil microbial diversity under different nitrogen conditions. AMB Express 2024; 14:39. [PMID: 38647736 PMCID: PMC11035536 DOI: 10.1186/s13568-024-01683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between microorganisms and plants can stimulate plant growth and promote nitrogen cycling. Nitrogen fertilizers are routinely used in agriculture to improve crop growth and yield; however, poor use efficiency impairs the optimal utilization of such fertilizers. Differences in the microbial diversity and plant growth of rice soil under different nitrogen application conditions and the expression of nitrogen-use efficiency-related genes have not been previously investigated. Therefore, this study investigates how nitrogen application and nitrogen-use efficiency-related gene NRT1.1B expression affect the soil microbial diversity and growth indices of two rice varieties, Huaidao 5 and Xinhuai 5. In total, 103,463 and 98,427 operational taxonomic units were detected in the soils of the Huaidao 5 and Xinhuai 5 rice varieties, respectively. The Shannon and Simpson indices initially increased and then decreased, whereas the Chao and abundance-based coverage estimator indices decreased after the application of nitrogen fertilizer. Nitrogen fertilization also reduced soil bacterial diversity and richness, as indicated by the reduced abundances of Azotobacter recorded in the soils of both rice varieties. Nitrogen application initially increased and then decreased the grain number per panicle, yield per plant, root, stem, and leaf nitrogen, total nitrogen content, glutamine synthetase, nitrate reductase, urease, and root activities of both varieties. Plant height showed positive linear trends in response to nitrogen application, whereas thousand-grain weights showed a negative trend. Our findings may be used to optimize nitrogen fertilizer use for rice cultivation and develop crop-variety-specific strategies for nitrogen fertilizer application.
Collapse
Affiliation(s)
- Yawen Ju
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Yanyan Jia
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Baoshan Cheng
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Di Wang
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Dalu Gu
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Wenjiang Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223001, China.
| | - Gang Li
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China.
| |
Collapse
|
2
|
Wang X, Ren Y, Ashraf U, Gui R, Deng H, Dai L, Tang X, Wang Z, Mo Z. Optimization of liquid fertilizer management improves grain yield, biomass accumulation, and nutrient uptake of late-season indica fragrant rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6800-6813. [PMID: 37278411 DOI: 10.1002/jsfa.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND The use of liquid fertilizer is an effective measure to increase rice yield and nitrogen use efficiency. There has been a lack of information regarding the effects on the grain yield, biomass accumulation, and nutrient uptake in late-season indica fragrant rice of split fertilizer application and of nitrogen management in liquid fertilizer application. RESULTS A 2-year field experiment was carried out during 2019 and 2020 with two fragrant rice cultivars grown under differing fertilizer management treatments. Results showed that the fertilization treatments affected the grain yield, yield components, biomass accumulation, and nutrient accumulation significantly. The mean nitrogen recovery efficiency with liquid fertilizer management was greater than in a control treatment corresponding to a practice commonly used by farmers (H2). The effects of nitrogen metabolism enzymes in the leaves of both rice cultivars were stronger with liquid fertilizer treatments than with H2. Grain yield was positively associated with the effective panicle number, spikelets per panicle, dry matter accumulation, N and K accumulation, and the nitrogen metabolism enzymes. CONCLUSIONS Optimized liquid fertilizer management increases biomass accumulation, nitrogen utilization efficiency, and nitrogen metabolism. It stabilizes yields and increases the economic benefits of late-season indica fragrant rice. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yong Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, People's Republic of China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Runfei Gui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Huizi Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Lan Dai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Zaiman Wang
- Key Laboratory of Key Technology for South Agricultural Machine and Equipment, Ministry of Education, College of Engineering, South China Agricultural University, Guangzhou, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| |
Collapse
|
3
|
Sun Y, Yuan X, Chen K, Wang H, Luo Y, Guo C, Wang Z, Shu C, Yang Y, Weng Y, Zhou X, Yang Z, Chen Z, Ma J, Sun Y. Improving the yield and nitrogen use efficiency of hybrid rice through rational use of controlled-release nitrogen fertilizer and urea topdressing. FRONTIERS IN PLANT SCIENCE 2023; 14:1240238. [PMID: 37692439 PMCID: PMC10484103 DOI: 10.3389/fpls.2023.1240238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Introduction Controlled-release fertilizers effectively improve crop yield and nitrogen use efficiency (NUE). However, their use increases the cost of crop production. Optimal management modes involving urea replacement with controlled-release N fertilizers to increase rice yield through enhanced NUE are not widely explored. Methods Field experiments were conducted from 2017 to 2018 to determine the effects of different controlled-release N fertilizers combined with urea [urea-N (180 kg ha-1, N1)]. We used controlled-release N (150 kg ha-1, N2) as the base, and four controlled-release N and urea-N ratio treatments [(80%:0% (N3), 60%:20% (N4), 40%:40% (N5), or 20%:60% (N6) as the base with 20% urea-N as topdressing at the panicle initiation stage under 150 kg ha-1] to study their impact on the grain yield and NUE of machine-transplanted rice. Results and discussion Grain yield and NUE were positively correlated with increases in photosynthetic production, flag leaf net photosynthetic rate (Pn), root activity, N transport, and grain-filling characteristics. The photosynthetic potential and population growth rate from the jointing to the full-heading stage, highly effective leaf area index (LAI) rate and Pn at the full-heading stage, root activity at 15 d after the full-heading stage, and N transport in the leaves from the full-heading to mature stage were significantly increased by the N4 treatment, thereby increasing both grain yield and NUE. Furthermore, compared with the other N treatments, the N4 treatment promoted the mean filling rate of inferior grains, which is closely related to increased filled grains per spikelet and filled grains rate. These effects ultimately improved the grain yield (5.03-25.75%), N agronomic efficiency (NAE, 3.96-17.58%), and N partial factor productivity (NPP, 3.98-27.13%) under the N4 treatment. Thus, the N4 treatment with controlled-release N (60%) and urea-N (20%) as a base and urea-N (20%) as topdressing at the panicle-initiation stage proved effective in improving the grain yield and NUE of machine-transplanted hybrid indica rice. These findings offer a theoretical and practical basis for enhancing rice grain yield, NUE, and saving the cost of fertilizer.
Collapse
Affiliation(s)
- Yuanyuan Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan, China
| | - Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Haiyue Wang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Changchun Guo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhonglin Wang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chuanhai Shu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanfang Weng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhou
- Sichuan Agricultural Machinery Research Academy, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongjian Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Maignan V, Bernay B, Géliot P, Avice JC. Biostimulant impacts of Glutacetine® and derived formulations (VNT1 and VNT4) on the bread wheat grain proteome. J Proteomics 2021; 244:104265. [PMID: 33992839 DOI: 10.1016/j.jprot.2021.104265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Nitrogen (N) fertilizer is essential to ensure grain yield and quality in bread wheat. Improving N use efficiency is therefore crucial for wheat grain protein quality. In the present work, we analysed the effects on the winter wheat grain proteome of biostimulants containing Glutacetine® or two derived formulations (VNT1 and 4) when mixed with urea-ammonium-nitrate fertilizer. A large-scale quantitative proteomics analysis of two wheat flour fractions produced a dataset of 4369 identified proteins. Quantitative analysis revealed 9, 39 and 96 proteins with a significant change in abundance after Glutacetine®, VNT1 and VNT4 treatments, respectively, with a common set of 11 proteins that were affected by two different biostimulants. The major effects impacted proteins involved in (i) protein synthesis regulation (mainly ribosomal and binding proteins), (ii) defence and responses to stresses (including chitin-binding protein, heat shock 70 kDa protein 1 and glutathione S-transferase proteins), (iii) storage functions related to gluten protein alpha-gliadins and starch synthase and (iv) seed development with proteins implicated in protease activity, energy machinery, and the C and N metabolism pathways. Altogether, our study showed that Glutacetine®, VNT1 and VNT4 biostimulants positively affected protein composition related to grain quality. Data are available via ProteomeXchange with identifier PXD021513. SIGNIFICANCE: We performed a large-scale quantitative proteomics study of the total protein extracts from flour samples to determine the effect of Glutacetine®-based biostimulants treatment on the protein composition of bread wheat grain. To our knowledge, only a few studies in the literature have applied proteomic approaches to study bread wheat grains and in particular to investigate the effect of biostimulants on the grain proteome of this cereal crop. In addition, most approaches used fractional extraction of proteins to target reserve proteins followed electrophoresis which leads to low identification rate of proteins. We identified and quantified a large protein dataset of 4369 proteins and determined ontological class of proteins affected by biostimulants treatments. Our proteomics investigation revealed the important role of these new biostimulants in achieving significant changes in protein synthesis regulation, storage functions, protease activity, energy machinery, C and N metabolism pathways and responses to biotic and abiotic stresses in grain.
Collapse
Affiliation(s)
- Victor Maignan
- Normandie Univ, UNICAEN, INRAE, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France; Via Végétale, 44430 Le Loroux-Bottereau, France.
| | - Benoit Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032 Caen cedex, France
| | | | - Jean-Christophe Avice
- Normandie Univ, UNICAEN, INRAE, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France
| |
Collapse
|
5
|
Amino Acid Transporters in Plant Cells: A Brief Review. PLANTS 2020; 9:plants9080967. [PMID: 32751704 PMCID: PMC7464682 DOI: 10.3390/plants9080967] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Amino acids are not only a nitrogen source that can be directly absorbed by plants, but also the major transport form of organic nitrogen in plants. A large number of amino acid transporters have been identified in different plant species. Despite belonging to different families, these amino acid transporters usually exhibit some general features, such as broad expression pattern and substrate selectivity. This review mainly focuses on transporters involved in amino acid uptake, phloem loading and unloading, xylem-phloem transfer, import into seed and intracellular transport in plants. We summarize the other physiological roles mediated by amino acid transporters, including development regulation, abiotic stress tolerance and defense response. Finally, we discuss the potential applications of amino acid transporters for crop genetic improvement.
Collapse
|
6
|
Liu MY, Tang D, Shi Y, Ma L, Li Y, Zhang Q, Ruan J. Short-term inhibition of glutamine synthetase leads to reprogramming of amino acid and lipid metabolism in roots and leaves of tea plant (Camellia sinensis L.). BMC PLANT BIOLOGY 2019; 19:425. [PMID: 31615403 PMCID: PMC6794879 DOI: 10.1186/s12870-019-2027-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/11/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Nitrogen (N) nutrition significantly affected metabolism and accumulation of quality-related compounds in tea plant (Camellia sinensis L.). Little is known about the physiological and molecular mechanisms underlying the effects of short-term repression of N metabolism on tea roots and leaves for a short time. RESULTS In this study, we subjected tea plants to a specific inhibitor of glutamine synthetase (GS), methionine sulfoximine (MSX), for a short time (30 min) and investigated the effect of the inhibition of N metabolism on the transcriptome and metabolome of quality-related compounds. Our results showed that GS activities in tea roots and leaves were significantly inhibited upon MSX treatment, and both tissue types showed a sensitive metabolic response to GS inhibition. In tea leaves, the hydrolysis of theanine decreased with the increase in theanine and free ammonium content. The biosynthesis of all other amino acids was repressed, and the content of N-containing lipids declined, suggesting that short-term inhibition of GS reduces the level of N reutilization in tea leaves. Metabolites related to glycolysis and the tricarboxylic acid (TCA) cycle accumulated after GS repression, whereas the content of amino acids such as glycine, serine, isoleucine, threonine, leucine, and valine declined in the MXS treated group. We speculate that the biosynthesis of amino acids is affected by glycolysis and the TCA cycle in a feedback loop. CONCLUSIONS Overall, our data suggest that GS repression in tea plant leads to the reprogramming of amino acid and lipid metabolic pathways.
Collapse
Affiliation(s)
- Mei-Ya Liu
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Dandan Tang
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Yuanzhi Shi
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Lifeng Ma
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Yan Li
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Qunfeng Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008 China
| |
Collapse
|
7
|
Jia W, Wang C, Ma C, Wang J, Sun H, Xing B. Mineral elements uptake and physiological response of Amaranthus mangostanus (L.) as affected by biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:58-65. [PMID: 30889400 DOI: 10.1016/j.ecoenv.2019.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Amaranthus mangostanus L. (amaranth) was hydroponically grown in different concentrations of biochar amended nutrient solution to investigate the mineral elements migration and physiological response of amaranth as affected by biochar. Our results showed that exposure to 26.6 g/L of biochar greatly increased the root and shoot K, Na and Al content, while 2.6 g/L of biochar greatly increased the root Ca and Mg content. The uptake of K and Al notably altered other elements' accumulation in shoots and roots upon the biochar exposure. The ratio of Ca: K in shoots and Mg: K in roots were negatively correlated to the biochar concentrations, while the ratio of Al: Ca and Al: Mg in roots were positively related to the biochar concentrations. The Al: Fe ratio was also polynomial correlated to the concentrations of biochar. The addition of biochar beyond 2.6 g/L resulted in the cell membrane and DNA damages in roots. The activity of SOD and CAT in 6.7 g/L biochar treated roots was significantly elevated as compared to the ones in other biochar treatments and was almost 2-fold of the control. The photosynthetic Fv/Fm intensity and subcellular structure in leaves were also compromised upon exposure to 26.6 g/L biochar. Taken together, biochar could significantly alter the mineral migration in amaranth and physiologically damage in the plants. It is essential to study the effect of biochar within appropriate concentrations on plants prior to wide application in agriculture.
Collapse
Affiliation(s)
- Weili Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering/Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering/Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin 300071, China.
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| | - Jicheng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering/Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering/Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin 300071, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
8
|
Tang Y, Li X, Lu W, Wei X, Zhang Q, Lv C, Song N. Enhanced photorespiration in transgenic rice over-expressing maize C 4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:577-588. [PMID: 30114676 DOI: 10.1016/j.plaphy.2018.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/25/2018] [Accepted: 08/08/2018] [Indexed: 05/27/2023]
Abstract
The objective of this study was to reveal the physiological and molecular mechanisms of low-nitrogen (N) tolerance in transgenic plant lines containing C4 phosphoenolpyruvate carboxylase (C4-PEPC) gene. The transgenic rice lines only over-expressing the maize C4-PEPC) (PC) and their untransformed wild type, Kitaake (WT), were used in this study. At different N levels, the dry weight, total N content, carbon and N levels, photorespiration-related enzymatic activities, gene expression levels and photorespiration-related product accumulations were measured, as were the transgenic lines' agronomic traits. The PC line, having lower total N and higher soluble sugar contents, was more tolerant to low-N stress than WT, which was consistent with its higher PEPC and lower N-assimilation-related enzyme activity levels. The photosynthetic parameters, enzymatic activity levels, transcripts and products related to photorespiration in PC were also greater than in WT under low-N conditions. This study showed that increased carbon levels in transgenic rice lines overexpressing C4-PEPC could help regulate the photorespiratory pathway under low-N conditions, conferring low-N tolerance and a higher grain yield per plant.
Collapse
Affiliation(s)
- Yuting Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xia Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Wei Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodong Wei
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qijun Zhang
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chuangen Lv
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ningxi Song
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
9
|
Kuang Q, Zhang S, Wu P, Chen Y, Li M, Jiang H, Wu G. Global gene expression analysis of the response of physic nut (Jatropha curcas L.) to medium- and long-term nitrogen deficiency. PLoS One 2017; 12:e0182700. [PMID: 28817702 PMCID: PMC5560629 DOI: 10.1371/journal.pone.0182700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022] Open
Abstract
Jatropha curcas L. is an important biofuel plant with excellent tolerance of barren environments. However, studies on the regulatory mechanisms that operate in this plant in response to nitrogen (N) shortage are scarce. In this study, genome-wide transcriptional profiles of the roots and leaves of 8-week old physic nut seedlings were analyzed after 2 and 16 days of N starvation. Enrichment results showed that genes associated with N metabolism, processing and regulation of RNA, and transport predominated among those showing alterations in expression. Genes encoding transporter families underwent major changes in expression in both roots and leaves; in particular, those with roles in ammonia, amino acid and peptide transport were generally up-regulated after long-term starvation, while AQUAPORIN genes, whose products function in osmoregulation, were down-regulated. We also found that ASPARA−GINASE B1 and SARCOSINE OXIDASE genes were up-regulated in roots and leaves after 2 and 16 d N starvation. Genes associated with ubiquitination-mediated protein degradation were significantly up-regulated. In addition, genes in the JA biosynthesis pathway were strongly activated while expression of those in GA signaling was inhibited in leaves. We showed that four major classes of genes, those with roles in N uptake, N reutilization, C/N ratio balance, and cell structure and synthesis, were particularly influenced by long-term N limitation. Our discoveries may offer clues to the molecular mechanisms that regulate N reallocation and reutilization so as to maintain or increase plant performance even under adverse environmental conditions.
Collapse
Affiliation(s)
- Qi Kuang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sheng Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (HWJ); (GJW)
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (HWJ); (GJW)
| |
Collapse
|
10
|
Hawkesford MJ. Genetic variation in traits for nitrogen use efficiency in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2627-2632. [PMID: 28338945 DOI: 10.1093/jxb/erx079] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Crop nutrient and especially nitrogen use efficiency (NUE) is both an economically and an environmentally highly desirable trait. It has been estimated that only a third of nitrogen inputs to cereal crop worldwide are recovered in grain for consumption, resulting in a huge waste of resource with major negative impacts on the environment. Most measures of NUE in wheat and other cereals are based on field assessments of crop yields at given N inputs, performance responses to added N fertilizer, or by quantifying N fertilizer recovery rates. However, NUE is a complex trait comprising two key major components, N uptake and N utilization efficiency, both also complex traits in themselves, each involving many physiological processes and biochemical pathways. A deeper understanding of the processes involved in NUE has been a target of the UK Wheat Genetic Improvement Network project (http://www.wgin.org.uk/). This has enabled the breakdown of characteristics contributing to NUE and an assessment of the variation present in those characteristics, predominantly in modern cultivars; a total of 13 years of data have been obtained to date. Significant but limited variation suggests a requirement for broader germplasm screening such as older varieties, landraces, and wild relatives.
Collapse
Affiliation(s)
- Malcolm J Hawkesford
- Rothamsted Research, Plant Sciences Department, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
11
|
Mosleth EF, Wan Y, Lysenko A, Chope GA, Penson SP, Shewry PR, Hawkesford MJ. A novel approach to identify genes that determine grain protein deviation in cereals. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:625-35. [PMID: 25400203 DOI: 10.1111/pbi.12285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 05/20/2023]
Abstract
Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR).
Collapse
Affiliation(s)
- Ellen F Mosleth
- Nofima AS, Ås, Norway
- Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Yongfang Wan
- Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | - Gemma A Chope
- Cereals and Ingredients Processing, Campden BRI, Chipping Campden, Gloucestershire, UK
| | - Simon P Penson
- Cereals and Ingredients Processing, Campden BRI, Chipping Campden, Gloucestershire, UK
| | | | | |
Collapse
|
12
|
Yan S, Du X, Wu F, Li L, Li C, Meng Z. Proteomics insights into the basis of interspecific facilitation for maize (Zea mays) in faba bean (Vicia faba)/maize intercropping. J Proteomics 2014; 109:111-24. [PMID: 25009142 DOI: 10.1016/j.jprot.2014.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/29/2014] [Accepted: 06/27/2014] [Indexed: 11/15/2022]
Abstract
UNLABELLED Faba bean/maize intercropping significantly promotes maize productivity in phosphorus-deficient soils. This has been attributed to the below-ground interactions including rhizosphere effects and spatial effects. Nevertheless, the molecular mechanisms underlying these interactions have been scarcely investigated. Here, three types of pots were used to distinguish the influences of rhizosphere effects vs. spatial effects. Phosphorus and nitrogen uptake of shoots, biomass, total root length, and root classification were evaluated between the three treatments. Quantitative RT-PCR and proteomics analyses were conducted to investigate the putative components in the molecular basis of these interactions. Quantitative RT-PCR results indicated that rhizosphere effects promoted maize phosphorus status at molecular levels. 66 differentially accumulated protein spots were successfully identified through proteomics analyses. Most of the protein species were found to be involved in phosphorus, nitrogen, and allelochemical metabolism, signal transduction, or stress resistance. The results suggest that rhizosphere effects promoted phosphorus and nitrogen assimilation in maize roots and thus enhanced maize growth and nutrient uptake. The reprogramming of proteome profiles suggests that rhizosphere effects can also enhance maize tolerance through regulating the metabolism of allelochemicals and eliciting systemic acquired resistance via the stimulation of a mitogen-activated protein kinase signal pathway. BIOLOGICAL SIGNIFICANCE The results obtained contribute to a comprehensive understanding of the response of maize to the changes of rhizosphere condition influenced by the below-ground interactions in faba bean/maize intercropping at molecular levels. The identified protein species involved in nutrient metabolisms and stress resistance reveal the molecular basis underlying the major advantages of effective nutrient utilization and higher stress tolerance in legume/cereal intercropping systems. This work provides essential new insights into the putative components in the molecular basis of interspecific facilitation for maize in faba bean/maize intercropping.
Collapse
Affiliation(s)
- Shuo Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaoqiu Du
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Nanchong Academy of Agricultural sciences, Nanchong, Sichuan, 637000, China
| | - Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Long Li
- Key Laboratory of Plant and Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100094, China
| | - Chengyun Li
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
13
|
Nigro D, Gu YQ, Huo N, Marcotuli I, Blanco A, Gadaleta A, Anderson OD. Structural analysis of the wheat genes encoding NADH-dependent glutamine-2-oxoglutarate amidotransferases and correlation with grain protein content. PLoS One 2013; 8:e73751. [PMID: 24069228 PMCID: PMC3775782 DOI: 10.1371/journal.pone.0073751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/21/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Nitrogen uptake and the efficient absorption and metabolism of nitrogen are essential elements in attempts to breed improved cereal cultivars for grain or silage production. One of the enzymes related to nitrogen metabolism is glutamine-2-oxoglutarate amidotransferase (GOGAT). Together with glutamine synthetase (GS), GOGAT maintains the flow of nitrogen from NH4 (+) into glutamine and glutamate, which are then used for several aminotransferase reactions during amino acid synthesis. RESULTS The aim of the present work was to identify and analyse the structure of wheat NADH-GOGAT genomic sequences, and study the expression in two durum wheat cultivars characterized by low and high kernel protein content. The genomic sequences of the three homoeologous A, B and D NADH-GOGAT genes were obtained for hexaploid Triticum aestivum and the tetraploid A and B genes of Triticum turgidum ssp. durum. Analysis of the gene sequences indicates that all wheat NADH-GOGAT genes are composed of 22 exons and 21 introns. The three hexaploid wheat homoeologous genes have high conservation of sequence except intron 13 which shows differences in both length and sequence. A comparative analysis of sequences among di- and mono-cotyledonous plants shows both regions of high conservation and of divergence. qRT-PCR performed with the two durum wheat cvs Svevo and Ciccio (characterized by high and low protein content, respectively) indicates different expression levels of the two NADH-GOGAT-3A and NADH-GOGAT-3B genes. CONCLUSION The three hexaploid wheat homoeologous NADH-GOGAT gene sequences are highly conserved - consistent with the key metabolic role of this gene. However, the dicot and monocot amino acid sequences show distinctive patterns, particularly in the transit peptide, the exon 16-17 junction, and the C-terminus. The lack of conservation in the transit peptide may indicate subcellular differences between the two plant divisions - while the sequence conservation within enzyme functional domains remains high. Higher expression levels of NADH-GOGAT are associated with higher grain protein content in two durum wheats.
Collapse
Affiliation(s)
- Domenica Nigro
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari “Aldo Moro”, Bari, Italy
| | - Yong Q. Gu
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, United States of America
| | - Naxin Huo
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, United States of America
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari “Aldo Moro”, Bari, Italy
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari “Aldo Moro”, Bari, Italy
- * E-mail: (AG); (OA)
| | - Olin D. Anderson
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, Albany, California, United States of America
- * E-mail: (AG); (OA)
| |
Collapse
|
14
|
Sulpice R, Nikoloski Z, Tschoep H, Antonio C, Kleessen S, Larhlimi A, Selbig J, Ishihara H, Gibon Y, Fernie AR, Stitt M. Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of Arabidopsis accessions. PLANT PHYSIOLOGY 2013; 162:347-63. [PMID: 23515278 PMCID: PMC3641214 DOI: 10.1104/pp.112.210104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/11/2013] [Indexed: 05/18/2023]
Abstract
Natural genetic diversity provides a powerful tool to study the complex interrelationship between metabolism and growth. Profiling of metabolic traits combined with network-based and statistical analyses allow the comparison of conditions and identification of sets of traits that predict biomass. However, it often remains unclear why a particular set of metabolites is linked with biomass and to what extent the predictive model is applicable beyond a particular growth condition. A panel of 97 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions was grown in near-optimal carbon and nitrogen supply, restricted carbon supply, and restricted nitrogen supply and analyzed for biomass and 54 metabolic traits. Correlation-based metabolic networks were generated from the genotype-dependent variation in each condition to reveal sets of metabolites that show coordinated changes across accessions. The networks were largely specific for a single growth condition. Partial least squares regression from metabolic traits allowed prediction of biomass within and, slightly more weakly, across conditions (cross-validated Pearson correlations in the range of 0.27-0.58 and 0.21-0.51 and P values in the range of <0.001-<0.13 and <0.001-<0.023, respectively). Metabolic traits that correlate with growth or have a high weighting in the partial least squares regression were mainly condition specific and often related to the resource that restricts growth under that condition. Linear mixed-model analysis using the combined metabolic traits from all growth conditions as an input indicated that inclusion of random effects for the conditions improves predictions of biomass. Thus, robust prediction of biomass across a range of conditions requires condition-specific measurement of metabolic traits to take account of environment-dependent changes of the underlying networks.
Collapse
|
15
|
Bordes J, Ravel C, Jaubertie JP, Duperrier B, Gardet O, Heumez E, Pissavy AL, Charmet G, Le Gouis J, Balfourier F. Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:805-822. [PMID: 23192671 DOI: 10.1007/s00122-012-2019-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 11/05/2012] [Indexed: 05/27/2023]
Abstract
Modern wheat (Triticum aestivum L.) varieties in Western Europe have mainly been bred, and selected in conditions where high levels of nitrogen-rich fertilizer are applied. However, high input crop management has greatly increased the risk of nitrates leaching into groundwater with negative impacts on the environment. To investigate wheat nitrogen tolerance characteristics that could be adapted to low input crop management, we supplied 196 accessions of a wheat core collection of old and modern cultivars with high or moderate amounts of nitrogen fertilizer in an experimental network consisting of three sites and 2 years. The main breeding traits were assessed including grain yield and grain protein content. The response to nitrogen level was estimated for grain yield and grain number per m(2) using both the difference and the ratio between performance at the two input levels and the slope of joint regression. A large variability was observed for all the traits studied and the response to nitrogen level. Whole genome association mapping was carried out using 899 molecular markers taking into account the five ancestral group structure of the collection. We identified 54 main regions involving almost all chromosomes that influence yield and its components, plant height, heading date and grain protein concentration. Twenty-three regions, including several genes, spread over 16 chromosomes were involved in the response to nitrogen level. These chromosomal regions may be good candidates to be used in breeding programs to improve the performance of wheat varieties at moderate nitrogen input levels.
Collapse
Affiliation(s)
- Jacques Bordes
- INRA, UMR 1095 Génétique, Diversité Et Ecophysiologie Des Céréales, 234 Avenue Du Brézet, 63100, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Rivière N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Le Gouis J, Feuillet C, Salse J. Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:745-56. [PMID: 21251102 DOI: 10.1111/j.1365-313x.2010.04461.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements.
Collapse
Affiliation(s)
- Umar Masood Quraishi
- INRA/Université Blaise Pascal UMR 1095 GDEC, Domaine de Crouelle, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. THE PLANT CELL 2010; 22:3603-20. [PMID: 21075769 PMCID: PMC3015121 DOI: 10.1105/tpc.110.073833] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 10/20/2010] [Accepted: 10/29/2010] [Indexed: 05/17/2023]
Abstract
Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.
Collapse
Affiliation(s)
| | | | | | | | | | - Mechthild Tegeder
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236
| |
Collapse
|
18
|
Bernard SM, Habash DZ. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. THE NEW PHYTOLOGIST 2009; 182:608-620. [PMID: 19422547 DOI: 10.1111/j.1469-8137.2009.02823.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.
Collapse
Affiliation(s)
- Stéphanie M Bernard
- Earth Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Dimah Z Habash
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
19
|
Tonsor SJ, Scheiner SM. Plastic Trait Integration across a CO2Gradient inArabidopsis thaliana. Am Nat 2007; 169:E119-40. [PMID: 17427126 DOI: 10.1086/513493] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 12/21/2006] [Indexed: 11/03/2022]
Abstract
Shifts across environments in patterns of trait integration may govern or alter adaptive responses. Changes in resource supply rates may be an especially important cause of plasticity of trait integration because they can lead to shifts in colimitation and coregulation of traits. Traditional evolutionary genetic characterization of trait integration relies on covariance analyses. Structural equation modeling (SEM) can complement such analyses. The SEM provides insights into causal structure not possible with a covariance analysis, thereby providing mechanistic understanding of shifts in integration and suggesting likely foci of selection in changing environments. We tested for changes in trait integration by growing 35 genotypes of Arabidopsis thaliana (Brassicaceae; mouse-eared cress) from throughout the species' range in four atmospheric CO2 concentrations: 250 (past), 355 (approximately recent CO2), 530, and 710 (future) microM M(-1). SEM revealed significant shifts in the integration of N, C, and H2O use and their effects on reproductive dry mass across the CO2 gradient. The low CO2 stress of 250 microM M(-1) had the most divergent integration structures. Standardized total effects of C assimilation, water loss, and early N mass changed in sign across the C supply gradient, and the total effect of quantum yield decreased from significant to nonsignificant values across the gradient. Transpiration exhibited significant genetic variation and is thus a candidate target for selection and adaptation under novel growth CO2 concentrations. The strength of the correlation between C assimilation and transpiration declined by 19% from 250 to 710 microM M(-1), indicating a partial decoupling of their current mutual evolutionary constraint in the atmosphere of the future. Structural equation analysis of functional integration provides unique insights into the mechanisms through which changes in limiting resources can alter the nature of trait integration.
Collapse
Affiliation(s)
- Stephen J Tonsor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
20
|
Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. PLANT, CELL & ENVIRONMENT 2007; 30:85-112. [PMID: 17177879 DOI: 10.1111/j.1365-3040.2006.01608.x] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Affymetrix ATH1 arrays, large-scale real-time reverse transcription PCR of approximately 2200 transcription factor genes and other gene families, and analyses of metabolites and enzyme activities were used to investigate the response of Arabidopsis to phosphate (Pi) deprivation and re-supply. Transcript data were analysed with MapMan software to identify coordinated, system-wide changes in metabolism and other cellular processes. Phosphorus (P) deprivation led to induction or repression of > 1000 genes involved in many processes. A subset, including the induction of genes involved in P uptake, the mobilization of organic Pi, the conversion of phosphorylated glycolytic intermediates to carbohydrates and organic acids, the replacement of P-containing phospholipids with galactolipids and the repression of genes involved in nucleotide/nucleic acid synthesis, was reversed within 3 h after Pi re-supply. Analyses of 22 enzyme activities revealed that changes in transcript levels often, but not always, led to changes in the activities of the encoded enzymes in P-deprived plants. Analyses of metabolites confirmed that P deprivation leads to a shift towards the accumulation of carbohydrates, organic acids and amino acids, and that Pi re-supply leads to use of the latter. P-deprived plants also showed large changes in the expression of many genes involved in, for example, secondary metabolism and photosynthesis. These changes were not reversed rapidly upon Pi re-supply and were probably secondary in origin. Differentially expressed and highly P-specific putative regulator genes were identified that presumably play central roles in coordinating the complex responses of plants to changes in P nutrition. The specific responses to Pi differ markedly from those found for nitrate, whereas the long-term responses during P and N deprivation share common and non-specific features.
Collapse
Affiliation(s)
- Rosa Morcuende
- Max-Planck Institute for Molecular Plant Physiology, Science Park Golm, 14476 Potsdam, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M. Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. PLANT PHYSIOLOGY 2006; 142:1574-88. [PMID: 17085515 PMCID: PMC1676042 DOI: 10.1104/pp.106.086629] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our understanding of the interaction of carbon (C) metabolism with nitrogen (N) metabolism and growth is based mainly on studies of responses to environmental treatments, and studies of mutants and transformants. Here, we investigate which metabolic parameters vary and which parameters change in a coordinated manner in 24 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions, grown in C-limited conditions. The accessions were grown in short days, moderate light, and high nitrate, and analyzed for rosette biomass, levels of structural components (protein, chlorophyll), total phenols and major metabolic intermediates (sugars, starch, nitrate, amino acids), and the activities of seven representative enzymes from central C and N metabolism. The largest variation was found for plant weight, reducing sugars, starch at the end of the night, and several enzyme activities. High levels of one sugar correlated with high levels of other sugars and starch, and a trend to increased amino acids, slightly lower nitrate, and higher protein. The activities of enzymes at the interface of C and N metabolism correlated with each other, but were unrelated to carbohydrates, amino acid levels, and total protein. Rosette weight was unrelated or showed a weak negative trend to sugar and amino acid contents at the end of the day in most of the accessions, and was negatively correlated with starch at the end of the night. Rosette weight was positively correlated with several enzyme activities. We propose that growth is not related to the absolute levels of starch, sugars, and amino acids; instead, it is related to flux, which is indicated by the enzymatic capacity to use these central resources.
Collapse
Affiliation(s)
- Joanna M Cross
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Calenge F, Saliba-Colombani V, Mahieu S, Loudet O, Daniel-Vedele F, Krapp A. Natural variation for carbohydrate content in Arabidopsis. Interaction with complex traits dissected by quantitative genetics. PLANT PHYSIOLOGY 2006; 141:1630-43. [PMID: 16798941 PMCID: PMC1533913 DOI: 10.1104/pp.106.082396] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 05/28/2006] [Accepted: 05/30/2006] [Indexed: 05/10/2023]
Abstract
Besides being a metabolic fuel, carbohydrates play important roles in plant growth and development, in stress responses, and as signal molecules. We exploited natural variation in Arabidopsis (Arabidopsis thaliana) to decipher the genetic architecture determining carbohydrate content. A quantitative trait locus (QTL) approach in the Bay-0 x Shahdara progeny grown in two contrasting nitrogen environments led to the identification of 39 QTLs for starch, glucose, fructose, and sucrose contents representing at least 14 distinct polymorphic loci. A major QTL for fructose content (FR3.4) and a QTL for starch content (ST3.4) were confirmed in heterogeneous inbred families. Several genes associated with carbon (C) metabolism colocalize with the identified QTL. QTLs for senescence-related traits, and for flowering time, water status, and nitrogen-related traits, previously detected with the same genetic material, colocalize with C-related QTLs. These colocalizations reflect the complex interactions of C metabolism with other physiological processes. QTL fine-mapping and cloning could thus lead soon to the identification of genes potentially involved in the control of different connected physiological processes.
Collapse
Affiliation(s)
- Fanny Calenge
- Unité de Nutrition Azotée des Plantes , Institut National de la Recherche Agronomique, Centre de Versailles, 78026 Versailles, France
| | | | | | | | | | | |
Collapse
|
23
|
Fernie AR, Tadmor Y, Zamir D. Natural genetic variation for improving crop quality. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:196-202. [PMID: 16480915 DOI: 10.1016/j.pbi.2006.01.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 01/24/2006] [Indexed: 05/06/2023]
Abstract
The narrow genetic basis of many crops combined with restrictions on the commercial use of genetically modified plants, has led to a surge of interest in exploring natural biodiversity as a source of novel alleles to improve the productivity, adaptation, quality and nutritional value of crops. Genetic methodologies have been applied to natural variation to improve quality aspects that are associated with the chemical composition of agricultural products. A future challenge in this emerging field is to integrate metabolic, phenotypic and genomic databases to allow a wider view of the plant metabolome and the application of this knowledge within genomics-assisted breeding.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Abteilung Willmitzer, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|