1
|
Baharetha HM, Abdul Majid AMS, Nazari MV, Samad NA, Al-Mansoub MA, Taleb Agha M, Dahham SS. Optimised formulation and characterisation of liposomes for enhanced stability and antiproliferative efficacy of Orthosiphon aristatus var. aristatus extract in lung cancer treatment. Nat Prod Res 2025:1-13. [PMID: 40258057 DOI: 10.1080/14786419.2025.2494638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
This study aimed to characterise and evaluate the antiproliferative potency of a standardised 50% ethanol extract of Orthosiphon aristatus var. aristatus leaves against human lung cancer cells in vitro. A liposomal drug delivery system was developed to enhance bioavailability and efficacy. Three formulations were designed with different extract-to-phospholipid ratios, phospholipid, and cholesterol content. NP2, formulated with a 1:1 extract-to-phosphatidylcholine ratio and 20% cholesterol, demonstrated optimal stability and efficacy. Liposomes were quantitatively and qualitatively characterised using light microscopy, TEM, SEM, zeta sizer, and zeta potential analysis. NP2 demonstrated better bioactive compounds release properties and better stability than the extract. The extract and liposomes inhibited the proliferation of human lung adenocarcinoma (A549) and normal endothelial cells (EA.hy926). The findings indicate that the extract possesses potent anti-lung cancer activity, with the NP2 liposomal formulation enhancing its therapeutic potential.
Collapse
Affiliation(s)
- Hussein M Baharetha
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
- Department of Pharmacy, College of Medicine and Health Sciences, Hadhramout University, Mukalla, Yemen
| | | | | | - Nozlena Abdul Samad
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Majed Ahmed Al-Mansoub
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Mohamad Taleb Agha
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Saad S Dahham
- Department of Science, University of Technology and Applied Sciences, Rustaq, Oman
| |
Collapse
|
2
|
Gautam D, Behera JR, Shinde S, Pattada SD, Roth M, Yao L, Welti R, Kilaru A. Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations. BIOLOGY 2024; 13:726. [PMID: 39336153 PMCID: PMC11429132 DOI: 10.3390/biology13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Membrane lipid composition is critical for an organism's growth, adaptation, and functionality. Mosses, as early non-vascular land colonizers, show significant adaptations and changes, but their dynamic membrane lipid alterations remain unexplored. Here, we investigated the temporal changes in membrane lipid composition of the moss Physcomitrium patens during five developmental stages and analyzed the acyl content and composition of the lipids. We observed a gradual decrease in total lipid content from the filamentous protonema stage to the reproductive sporophytes. Notably, we found significant levels of very long-chain polyunsaturated fatty acids, particularly arachidonic acid (C20:4), which are not reported in vascular plants and may aid mosses in cold and abiotic stress adaptation. During vegetative stages, we noted high levels of galactolipids, especially monogalactosyldiacylglycerol, associated with chloroplast biogenesis. In contrast, sporophytes displayed reduced galactolipids and elevated phosphatidylcholine and phosphatidic acid, which are linked to membrane integrity and environmental stress protection. Additionally, we observed a gradual decline in the average double bond index across all lipid classes from the protonema stage to the gametophyte stage. Overall, our findings highlight the dynamic nature of membrane lipid composition during moss development, which might contribute to its adaptation to diverse growth conditions, reproductive processes, and environmental challenges.
Collapse
Affiliation(s)
- Deepshila Gautam
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| | - Jyoti R. Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| | - Suhas Shinde
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shivakumar D. Pattada
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
- BioStrategies LC, 504 University Loop, Jonesboro, AR 72401, USA
| | - Mary Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Libin Yao
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| |
Collapse
|
3
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Effendi DB, Suzuki I, Murata N, Awai K. DesC1 and DesC2, Δ9 Fatty Acid Desaturases of Filamentous Cyanobacteria: Essentiality and Complementarity. PLANT & CELL PHYSIOLOGY 2024; 65:975-985. [PMID: 38147500 DOI: 10.1093/pcp/pcad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
DesC1 and DesC2, which are fatty acid desaturases found in cyanobacteria, are responsible for introducing a double bond at the Δ9 position of fatty-acyl chains, which are subsequently esterified to the sn-1 and sn-2 positions of the glycerol moiety, respectively. However, since the discovery of these two desaturases in the Antarctic cyanobacterium Nostoc sp. SO-36, no further research has been reported. This study presents a comprehensive characterization of DesC1 and DesC2 through targeted mutagenesis and transformation using two cyanobacteria strains: Anabaena sp. PCC 7120, comprising both desaturases, and Synechocystis sp. PCC 6803, containing a single Δ9 desaturase (hereafter referred to as DesCs) sharing similarity with DesC1 in amino acid sequence. The results suggested that both DesC1 and DesC2 were essential in Anabaena sp. PCC 7120 and that DesC1, but not DesC2, complemented DesCs in Synechocystis sp. PCC 6803. In addition, DesC2 from Anabaena sp. PCC 7120 desaturated fatty acids esterified to the sn-2 position of the glycerol moiety in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Devi B Effendi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Norio Murata
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Koichiro Awai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka, 422-8529 Japan
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Chuo-ku, Hamamatsu, Shizuoka, 432-8561 Japan
| |
Collapse
|
5
|
Gaschignard G, Millet M, Bruley A, Benzerara K, Dezi M, Skouri-Panet F, Duprat E, Callebaut I. AlphaFold2-guided description of CoBaHMA, a novel family of bacterial domains within the heavy-metal-associated superfamily. Proteins 2024; 92:776-794. [PMID: 38258321 DOI: 10.1002/prot.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
Three-dimensional (3D) structure information, now available at the proteome scale, may facilitate the detection of remote evolutionary relationships in protein superfamilies. Here, we illustrate this with the identification of a novel family of protein domains related to the ferredoxin-like superfold, by combining (i) transitive sequence similarity searches, (ii) clustering approaches, and (iii) the use of AlphaFold2 3D structure models. Domains of this family were initially identified in relation with the intracellular biomineralization of calcium carbonates by Cyanobacteria. They are part of the large heavy-metal-associated (HMA) superfamily, departing from the latter by specific sequence and structural features. In particular, most of them share conserved basic amino acids (hence their name CoBaHMA for Conserved Basic residues HMA), forming a positively charged surface, which is likely to interact with anionic partners. CoBaHMA domains are found in diverse modular organizations in bacteria, existing in the form of monodomain proteins or as part of larger proteins, some of which are membrane proteins involved in transport or lipid metabolism. This suggests that the CoBaHMA domains may exert a regulatory function, involving interactions with anionic lipids. This hypothesis might have a particular resonance in the context of the compartmentalization observed for cyanobacterial intracellular calcium carbonates.
Collapse
Affiliation(s)
- Geoffroy Gaschignard
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Maxime Millet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Apolline Bruley
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Manuela Dezi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Feriel Skouri-Panet
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
6
|
Hernández ML, Jiménez-López J, Cejudo FJ, Pérez-Ruiz JM. 2-Cys peroxiredoxins contribute to thylakoid lipid unsaturation by affecting ω-3 fatty acid desaturase 8. PLANT PHYSIOLOGY 2024; 195:1521-1535. [PMID: 38386701 PMCID: PMC11142380 DOI: 10.1093/plphys/kiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
Fatty acid unsaturation levels affect chloroplast function and plant acclimation to environmental cues. However, the regulatory mechanism(s) controlling fatty acid unsaturation in thylakoid lipids is poorly understood. Here, we have investigated the connection between chloroplast redox homeostasis and lipid metabolism by focusing on 2-Cys peroxiredoxins (Prxs), which play a central role in balancing the redox state within the organelle. The chloroplast redox network relies on NADPH-dependent thioredoxin reductase C (NTRC), which controls the redox balance of 2-Cys Prxs to maintain the reductive activity of redox-regulated enzymes. Our results show that Arabidopsis (Arabidopsis thaliana) mutants deficient in 2-Cys Prxs contain decreased levels of trienoic fatty acids, mainly in chloroplast lipids, indicating that these enzymes contribute to thylakoid membrane lipids unsaturation. This function of 2-Cys Prxs is independent of NTRC, the main reductant of these enzymes, hence 2-Cys Prxs operates beyond the classic chloroplast regulatory redox system. Moreover, the effect of 2-Cys Prxs on lipid metabolism is primarily exerted through the prokaryotic pathway of glycerolipid biosynthesis and fatty acid desaturase 8 (FAD8). While 2-Cys Prxs and FAD8 interact in leaf membranes as components of a large protein complex, the levels of FAD8 were markedly decreased when FAD8 is overexpressed in 2-Cys Prxs-deficient mutant backgrounds. These findings reveal a function for 2-Cys Prxs, possibly acting as a scaffold protein, affecting the unsaturation degree of chloroplast membranes.
Collapse
Affiliation(s)
- María Luisa Hernández
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Julia Jiménez-López
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Francisco Javier Cejudo
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
7
|
Kobayashi K, Jimbo H, Nakamura Y, Wada H. Biosynthesis of phosphatidylglycerol in photosynthetic organisms. Prog Lipid Res 2024; 93:101266. [PMID: 38040200 DOI: 10.1016/j.plipres.2023.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Phosphatidylglycerol (PG) is a unique phospholipid class with its indispensable role in photosynthesis and growth in land plants, algae, and cyanobacteria. PG is the only major phospholipid in the thylakoid membrane of cyanobacteria and plant chloroplasts and a main lipid component in photosynthetic protein-cofactor complexes such as photosystem I and photosystem II. In plants and algae, PG is also essential as a substrate for the biosynthesis of cardiolipin, which is a unique lipid present only in mitochondrial membranes and crucial for the functions of mitochondria. PG biosynthesis pathways in plants include three membranous organelles, plastids, mitochondria, and the endoplasmic reticulum in a complex manner. While the molecular biology underlying the role of PG in photosynthetic functions is well established, many enzymes responsible for the PG biosynthesis are only recently cloned and functionally characterized in the model plant species including Arabidopsis thaliana and Chlamydomonas reinhardtii and cyanobacteria such as Synechocystis sp. PCC 6803. The characterization of those enzymes helps understand not only the metabolic flow for PG production but also the crosstalk of biosynthesis pathways between PG and other lipids. This review aims to summarize recent advances in the understanding of the PG biosynthesis pathway and functions of involved enzymes.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan.
| | - Haruhiko Jimbo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Semenov AY, Tikhonov AN. Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment-Protein Complexes. MEMBRANES 2023; 13:866. [PMID: 37999352 PMCID: PMC10673362 DOI: 10.3390/membranes13110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed.
Collapse
Affiliation(s)
- Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
9
|
Phytohormones regulate the non-redundant response of ω-3 fatty acid desaturases to low temperatures in Chorispora bungeana. Sci Rep 2023; 13:2799. [PMID: 36797352 PMCID: PMC9935925 DOI: 10.1038/s41598-023-29910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
To explore the contributions of ω-3 fatty acid desaturases (FADs) to cold stress response in a special cryophyte, Chorispora bungeana, two plastidial ω-3 desaturase genes (CbFAD7, CbFAD8) were cloned and verified in an Arabidopsis fad7fad8 mutant, before being compared with the microsomal ω-3 desaturase gene (CbFAD3). Though these genes were expressed in all tested tissues of C. bungeana, CbFAD7 and CbFAD8 have the highest expression in leaves, while CbFAD3 was mostly expressed in suspension-cultured cells. Low temperatures resulted in significant increases in trienoic fatty acids (TAs), corresponding to the cooperation of CbFAD3 and CbFAD8 in cultured cells, and the coordination of CbFAD7 and CbFAD8 in leaves. Furthermore, the cold induction of CbFAD8 in the two systems were increased with decreasing temperature and independently contributed to TAs accumulation at subfreezing temperature. A series of experiments revealed that jasmonie acid and brassinosteroids participated in the cold-responsive expression of ω-3 CbFAD genes in both C. bungeana cells and leaves, while the phytohormone regulation in leaves was complex with the participation of abscisic acid and gibberellin. These results point to the hormone-regulated non-redundant contributions of ω-3 CbFADs to maintain appropriate level of TAs under low temperatures, which help C. bungeana survive in cold environments.
Collapse
|
10
|
Light modulates the lipidome of the photosynthetic sea slug Elysia timida. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159249. [PMID: 36336252 DOI: 10.1016/j.bbalip.2022.159249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Long-term kleptoplasty, the capability to retain functional stolen chloroplasts (kleptoplasts) for several weeks to months, has been shown in a handful of Sacoglossa sea slugs. One of these sea slugs is Elysia timida, endemic to the Mediterranean, which retains functional chloroplasts of the macroalga Acetabularia acetabulum. To understand how light modulates the lipidome of E. timida, sea slug specimens were subjected to two different 4-week light treatments: regular light and quasi-dark conditions. Lipidomic analyses were performed by HILIC-HR-ESI-MS and MS/MS. Quasi-dark conditions caused a reduction in the amount of essential lipids for photosynthetic membranes, such as glycolipids, indicating high level of kleptoplast degradation under sub-optimal light conditions. However, maximum photosynthetic capacities (Fv/Fm) were identical in both light treatments (≈0.75), showing similar kleptoplast functionality and suggesting that older kleptoplasts were targeted for degradation. Although more stable, the phospholipidome showed differences between light treatments: the amount of certain lipid species of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylglycerol (PG) decreased under quasi-dark conditions, while other lipid species of phosphatidylcholine (PC), PE and lyso-PE (LPE) increased. Quasi-dark conditions promoted a decrease in the relative abundance of polyunsaturated fatty acids. These results suggest a light-driven remodelling of the lipidome according to the functions of the different lipids and highlight the plasticity of polar lipids in the photosynthetic sea slug E. timida.
Collapse
|
11
|
Nokhsorov VV, Senik SV, Sofronova VE, Kotlova ER, Misharev AD, Chirikova NK, Dudareva LV. Role of Lipids of the Evergreen Shrub Ephedra monosperma in Adaptation to Low Temperature in the Cryolithozone. PLANTS (BASEL, SWITZERLAND) 2022; 12:15. [PMID: 36616144 PMCID: PMC9823733 DOI: 10.3390/plants12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Lipids are the fundamental components of cell membranes and they play a significant role in their integrity and fluidity. The alteration in lipid composition of membranes has been reported to be a major response to abiotic environmental stresses. Seasonal dynamics of membrane lipids in the shoots of Ephedra monosperma J.G. Gmel. ex C.A. Mey. growing in natural conditions of permafrost ecosystems was studied using HPTLC, GC-MS and ESI-MS. An important role of lipid metabolism was established during the autumn-winter period when the shoots of the evergreen shrub were exposed to low positive (3.6 °C), negative (-8.3 °C) and extremely low temperatures (-38.4 °C). Maximum accumulation of phosphatidic acid (PA), the amount of which is times times greater than the sum of phosphatidylcholine and phosphatidylethanolamine (PC + PE) was noted in shoots of E. monosperma in the summer-autumn period. The autumn hardening period (3.6 °C) is accompanied by active biosynthesis and accumulation of membrane lipids, a decrease of saturated 34:1 PCs, 34:1 PEs and 34:1 PAs, and an increase in unsaturated long-chain 38:5 PEs, 38:6 PEs, indicating that the adaptation of E. monosperma occurs not at the level of lipid classes but at the level of molecular species. At a further decrease of average daily air temperature in October (-8.3 °C) a sharp decline of PA level was registered. At an extreme reduction of environmental temperature (-38.4 °C) the content of non-bilayer PE and PA increases, the level of unsaturated fatty acids (FA) rises due to the increase of C18:2(Δ9,12) and C18:3(Δ9,12,15) acids and the decrease of C16:0 acids. It is concluded that changes in lipid metabolism reflect structural and functional reorganization of cell membranes and are an integral component of the complex process of plant hardening to low temperatures, which contributes to the survival of E. monosperma monocotyledonous plants in the extreme conditions of the Yakutia cryolithozone.
Collapse
Affiliation(s)
- Vasiliy V. Nokhsorov
- Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, 41 Lenina Av., 677000 Yakutsk, Russia
| | - Svetlana V. Senik
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., 197376 St. Petersburg, Russia
| | - Valentina E. Sofronova
- Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, 41 Lenina Av., 677000 Yakutsk, Russia
| | - Ekaterina R. Kotlova
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov str., 197376 St. Petersburg, Russia
| | - Alexander D. Misharev
- Chemical Analysis and Materials Research Centre, Saint-Petersburg State University, 198504 St. Petersburg, Russia
| | - Nadezhda K. Chirikova
- Institute of Natural Science, North-Eastern Federal University, 58 Belinsky str., 677027 Yakutsk, Russia
| | - Lyubov V. Dudareva
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, 132 Lermontova str., 664033 Irkutsk, Russia
| |
Collapse
|
12
|
Vergara-Barros P, Alcorta J, Casanova-Katny A, Nürnberg DJ, Díez B. Compensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain. Molecules 2022; 27:8515. [PMID: 36500606 PMCID: PMC9740203 DOI: 10.3390/molecules27238515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria.
Collapse
Affiliation(s)
- Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Temuco 4780000, Chile
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| |
Collapse
|
13
|
Langmuir monolayers as models of the lipid matrix of cyanobacterial thylakoid membranes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Giardi MT, Antonacci A, Touloupakis E, Mattoo AK. Investigation of Photosystem II Functional Size in Higher Plants under Physiological and Stress Conditions Using Radiation Target Analysis and Sucrose Gradient Ultracentrifugation. Molecules 2022; 27:5708. [PMID: 36080475 PMCID: PMC9457868 DOI: 10.3390/molecules27175708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
The photosystem II (PSII) reaction centre is the critical supramolecular pigment-protein complex in the chloroplast which catalyses the light-induced transfer of electrons from water to plastoquinone. Structural studies have demonstrated the existence of an oligomeric PSII. We carried out radiation inactivation target analysis (RTA), together with sucrose gradient ultracentrifugation (SGU) of PSII, to study the functional size of PSII in diverse plant species under physiological and stress conditions. Two PSII populations, made of dimeric and monomeric core particles, were revealed in Pisum sativum, Spinacea oleracea, Phaseulus vulgaris, Medicago sativa, Zea mais and Triticum durum. However, this core pattern was not ubiquitous in the higher plants since we found one monomeric core population in Vicia faba and a dimeric core in the Triticum durum yellow-green strain, respectively. The PSII functional sizes measured in the plant seedlings in vivo, as a decay of the maximum quantum yield of PSII for primary photochemistry, were in the range of 75-101 ± 18 kDa, 2 to 3 times lower than those determined in vitro. Two abiotic stresses, heat and drought, imposed individually on Pisum sativum, increased the content of the dimeric core in SGU and the minimum functional size determined by RTA in vivo. These data suggest that PSII can also function as a monomer in vivo, while under heat and drought stress conditions, the dimeric PSII structure is predominant.
Collapse
Affiliation(s)
- Maria Teresa Giardi
- Institute of Crystallography, CNR, Via Salaria Km 29.3, 00016 Monterotondo, Italy
- Biosensor Srl, Via Olmetti 44, 00060 Formello, Italy
| | - Amina Antonacci
- Institute of Crystallography, CNR, Via Salaria Km 29.3, 00016 Monterotondo, Italy
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Autar K. Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
15
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
16
|
Wu Y, Lv S, Zhao Y, Chang C, Hong W, Jiang J. SlHSP17.7 Ameliorates Chilling Stress-Induced Damage by Regulating Phosphatidylglycerol Metabolism and Calcium Signal in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1865. [PMID: 35890502 PMCID: PMC9324031 DOI: 10.3390/plants11141865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Tomatoes (Solanum lycopersicum L.) are sensitive to chilling temperatures between 0 °C and 12 °C owing to their tropical origin. SlHSP17.7, a cytoplasmic heat shock protein, interacts with cation/calcium exchanger 1-like (SlCCX1-like) protein and promotes chilling tolerance in tomato fruits (Zhang, et al., Plant Sci., 2020, 298, 1-12). The overexpression of SlHSP17.7 can also promote cold tolerance in tomato plants, but its specific mechanism remains unclear. In this study, we show that the overexpression of SlHSP17.7 in tomato plants enhances chilling tolerance with better activity of photosystem II (PSII). Metabolic analyses revealed that SlHSP17.7 improved membrane fluidity by raising the levels of polyunsaturated fatty acids. Transcriptome analyses showed that SlHSP17.7 activated Ca2+ signaling and induced the expression of C-repeat binding factor (CBF) genes, which in turn inhibited the production of reactive oxygen species (ROS). The gene coexpression network analysis showed that SlHSP17.7 is coexpressed with SlMED26b. SlMED26b silencing significantly lowered OE-HSP17.7 plants' chilling tolerance. Thus, SlHSP17.7 modulates tolerance to chilling via both membrane fluidity and Ca2+-mediated CBF pathway in tomato plants.
Collapse
Affiliation(s)
- Yuanyuan Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Institute of Vegetable Science, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Shuwen Lv
- Institute of Vegetable Science, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Yaran Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chenliang Chang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Hong
- Shenyang Institute of Technology, Shenyang 113122, China
| | - Jing Jiang
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang 110866, China
| |
Collapse
|
17
|
Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic Changes in Membrane Lipid Metabolism and Antioxidant Defense During Soybean ( Glycine max L. Merr.) Seed Aging. FRONTIERS IN PLANT SCIENCE 2022; 13:908949. [PMID: 35812982 PMCID: PMC9263854 DOI: 10.3389/fpls.2022.908949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Seed viability depends upon the maintenance of functional lipids; however, how membrane lipid components dynamically change during the seed aging process remains obscure. Seed storage is accompanied by the oxidation of membrane lipids and loss of seed viability. Understanding membrane lipid changes and their effect on the cell membrane during seed aging can contribute to revealing the mechanism of seed longevity. In this study, the potential relationship between oxidative stress and membrane lipid metabolism was evaluated by using a non-targeted lipidomics approach during artificial aging of Glycine max L. Merr. Zhongdou No. 27 seeds. We determined changes in reactive oxygen species, malondialdehyde content, and membrane permeability and assessed antioxidant system activity. We found that decreased non-enzymatic antioxidant contents and catalase activity might lead to reactive oxygen species accumulation, resulting in higher electrolyte leakage and lipid peroxidation. The significantly decreased phospholipids and increased glycerolipids and lysophospholipids suggested that hydrolysis of phospholipids to form glycerolipids and lysophospholipids could be the primary pathway of membrane metabolism during seed aging. Moreover, the ratio of phosphatidylcholine to phosphatidylethanolamine, double bond index, and acyl chain length of phospholipids were found to jointly regulate membrane function. In addition, the observed changes in lipid metabolism suggest novel potential hallmarks of soybean seed aging, such as diacylglycerol 36:4; phosphatidylcholine 34:2, 36:2, and 36:4; and phosphatidylethanolamine 34:2. This knowledge can be of great significance for elucidating the molecular mechanism underlying seed aging and germplasm conservation.
Collapse
Affiliation(s)
- Yi-xin Lin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Hai-jin Xu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Guang-kun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan-chang Zhou
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Xin-xiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Lambertz J, Liauw P, Whitelegge JP, Nowaczyk MM. Mass spectrometry analysis of the photosystem II assembly factor Psb27 revealed variations in its lipid modification. PHOTOSYNTHESIS RESEARCH 2022; 152:305-316. [PMID: 34910272 PMCID: PMC9458691 DOI: 10.1007/s11120-021-00891-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The assembly of large, multi-cofactor membrane protein complexes like photosystem II (PSII) requires a high level of coordination. The process is facilitated by a large network of auxiliary proteins that bind transiently to unassembled subunits, preassembled modules or intermediate states of PSII, which are comprised of a subset of subunits. However, analysis of these immature, partially assembled PSII complexes is hampered by their low abundance and intrinsic instability. In this study, PSII was purified from the thermophilic cyanobacterium Thermosynechococcus elongatus via Twin-Strep-tagged CP43 and further separated by ion exchange chromatography into mature and immature complexes. Mass spectrometry analysis of the immature Psb27-PSII intermediate revealed six different Psb27 proteoforms with distinct lipid modifications. The maturation and functional role of thylakoid localized lipoproteins are discussed.
Collapse
Affiliation(s)
- Jan Lambertz
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Pasqual Liauw
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
19
|
Monteiro JP, Costa E, Melo T, Domingues P, Fort A, Domingues MR, Sulpice R. Lipidome in-depth characterization highlights the nutritional value and species-specific idiosyncrasies of different Ulva species. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Endo K, Abe M, Kawanishi N, Jimbo H, Kobayashi K, Suzuki T, Nagata N, Miyoshi H, Wada H. Crucial importance of length of fatty-acyl chains bound to the sn-2 position of phosphatidylglycerol for growth and photosynthesis of Synechocystis sp. PCC 6803. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159158. [PMID: 35405321 DOI: 10.1016/j.bbalip.2022.159158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Phosphatidylglycerol (PG) in thylakoid membrane is essential for growth and photosynthesis of photosynthetic organisms. Although the sn-2 position of PG in thylakoid membrane is exclusively esterified with C16 fatty acids, the functional importance of the C16 fatty-acyl chains at the sn-2 position has not been clarified. In this study, we chemically synthesized non-metabolizable PG molecules: we introduced linoleic acid (18:2, fatty acid containing 18 carbons with 2 double bonds) and one of the saturated fatty acids with different chain length (12:0, 14:0, 16:0, 18:0 and 20:0) by ether linkage to the sn-1 and sn-2 positions, respectively. With the synthesized ether-linked PG molecules, we checked whether they could complement the growth and photosynthesis of pgsA mutant cells of Synechocystis sp. PCC 6803 to understand the importance of length of fatty chains at the sn-2 position of PG. The pgsA mutant is incapable of synthesizing PG, so it requires exogenous PG added to medium for growth. The growth rate and photosynthetic activity of mutant cells depended on the length of fatty chains: the PG molecular species binding 16:0 most effectively complemented the growth and photosynthesis of mutant cells, and other PG molecular species with fatty chains shorter or longer than 16:0 were less effective; especially, those binding 12:0 inhibited the growth and photosynthetic activity of the mutant cells. These data demonstrate that length of fatty chains bound to the sn-2 position of PG is critical for PG performance in growth and photosynthesis.
Collapse
Affiliation(s)
- Kaichiro Endo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Masato Abe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nobumasa Kawanishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruhiko Jimbo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomoko Suzuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
21
|
Hayes PE, Adem GD, Pariasca-Tanaka J, Wissuwa M. Leaf phosphorus fractionation in rice to understand internal phosphorus-use efficiency. ANNALS OF BOTANY 2022; 129:287-302. [PMID: 34875007 PMCID: PMC8835646 DOI: 10.1093/aob/mcab138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P). The overarching objective of this study was to understand how these key P fractions influence PUE. METHODS Three high-PUE and two low-PUE rice genotypes were grown in hydroponics with contrasting P supplies. We measured PUE, total P, P fractions, photosynthesis and biomass. KEY RESULTS Low investment in lipid-P was strongly associated with increased photosynthetic PUE (PPUE), achieved by reducing total leaf P concentration while maintaining rapid photosynthetic rates. All low-P plants exhibited a low investment in inorganic-P and lipid-P, but not nucleic acid-P. In addition, whole-plant PUE was strongly associated with reduced total P concentration, increased biomass and increased preferential allocation of resources to the youngest mature leaves. CONCLUSIONS Lipid remodelling has been shown in rice before, but we show for the first time that reduced lipid-P investment improves PUE in rice without reducing photosynthesis. This presents a novel pathway for increasing PUE by targeting varieties with reduced lipid-P investment. This will benefit rice production in low-P soils and in areas where fertilizer use is limited, improving global food security by reducing P fertilizer demands and food production costs.
Collapse
Affiliation(s)
- Patrick E Hayes
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Getnet D Adem
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Juan Pariasca-Tanaka
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Ivanov AG, Krol M, Savitch LV, Szyszka-Mroz B, Roche J, Sprott DP, Selstam E, Wilson KW, Gardiner R, Öquist G, Hurry VM, Hüner NPA. The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation. PLANTA 2022; 255:36. [PMID: 35015152 DOI: 10.1007/s00425-022-03819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Decreased PG constrains PSI activity due to inhibition of transcript and polypeptide abundance of light-harvesting and reaction center polypeptides generating a reversible, yellow phenotype during cold acclimation of pgp1. Cold acclimation of the Arabidopsis pgp1 mutant at 5 °C resulted in a pale-yellow phenotype with abnormal chloroplast ultrastructure compared to its green phenotype upon growth at 20 °C despite a normal cold-acclimation response at the transcript level. In contrast, wild type maintained its normal green phenotype and chloroplast ultrastructure irrespective of growth temperature. In contrast to cold acclimation of WT, growth of pgp1 at 5 °C limited the accumulation of Lhcbs and Lhcas assessed by immunoblotting. However, a novel 43 kD polypeptide of Lhcb1 as well as a 29 kD polypeptide of Lhcb3 accumulated in the soluble fraction which was absent in the thylakoid membrane fraction of cold-acclimated pgp1 which was not observed in WT. Cold acclimation of pgp1 destabilized the Chl-protein complexes associated with PSI and predisposed energy distribution in favor of PSII rather than PSI compared to the WT. Functionally, in vivo PSI versus PSII photochemistry was inhibited in cold-acclimated pgp1 to a greater extent than in WT relative to controls. Greening of the pale-yellow pgp1 was induced when cold-acclimated pgp1 was shifted from 5 to 20 °C which resulted in a marked decrease in excitation pressure to a level comparable to WT. Concomitantly, Lhcbs and Lhcas accumulated with a simultaneous decrease in the novel 43 and 29kD polypeptides. We conclude that the reduced levels of phosphatidyldiacylglycerol in the pgp1 limit the capacity of the mutant to maintain the structure and function of its photosynthetic apparatus during cold acclimation. Thus, maintenance of normal thylakoid phosphatidyldiacylglycerol levels is essential to stabilize the photosynthetic apparatus during cold acclimation.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Marianna Krol
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Leonid V Savitch
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Jessica Roche
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
- , 6/136 Austin St, Mt. Victoria, Wellington, 6011, New Zealand
| | - D P Sprott
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - Eva Selstam
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Kenneth W Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Gardiner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gunnar Öquist
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Vaughan M Hurry
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
23
|
Yang B, Yao H, Li D, Liu Z. The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface. Curr Res Struct Biol 2021; 3:312-323. [PMID: 34901881 PMCID: PMC8640168 DOI: 10.1016/j.crstbi.2021.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylglycerol is a crucial phospholipid found ubiquitously in biological membranes of prokaryotic and eukaryotic cells. The phosphatidylglycerol phosphate (PGP) synthase (PgsA), a membrane-embedded enzyme, catalyzes the primary reaction of phosphatidylglycerol biosynthesis. Mutations in pgsA frequently correlate with daptomycin resistance in Staphylococcus aureus and other prevalent infectious pathogens. Here we report the crystal structures of S. aureus PgsA (SaPgsA) captured at two distinct states of the catalytic process, with lipid substrate (cytidine diphosphate-diacylglycerol, CDP-DAG) or product (PGP) bound to the active site within a trifurcated amphipathic cavity. The hydrophilic head groups of CDP-DAG and PGP occupy two different pockets in the cavity, inducing local conformational changes. An elongated membrane-exposed surface groove accommodates the fatty acyl chains of CDP-DAG/PGP and opens a lateral portal for lipid entry/release. Remarkably, the daptomycin resistance-related mutations mostly cluster around the active site, causing reduction of enzymatic activity. Our results provide detailed mechanistic insights into the dynamic catalytic process of PgsA and structural frameworks beneficial for development of antimicrobial agents targeting PgsA from pathogenic bacteria. PgsA uses a trifurcated amphipathic cavity for binding of substrates or products. Conversion of CDP-DAG to PGP induces local conformational changes in PgsA. Daptomycin-resistant mutations of PgsA mostly lead to reduced catalytic activity. A structure-based five-state model is proposed for the synthesis of PGP by PgsA.
Collapse
Affiliation(s)
- Bowei Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hebang Yao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 201210, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 201210, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Dargel C, Gräbitz-Bräuer F, Geisler R, Fandrich P, Hannappel Y, Porcar L, Hellweg T. Stable DOPG/Glycyrrhizin Vesicles with a Wide Range of Mixing Ratios: Structure and Stability as Seen by Scattering Experiments and Cryo-TEM. Molecules 2021; 26:molecules26164959. [PMID: 34443547 PMCID: PMC8399256 DOI: 10.3390/molecules26164959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Phosphatidylglycerols represent a large share of the lipids in the plasmamembrane of procaryotes. Therefore, this study investigates the role of charged lipids in the plasma membrane with respect to the interaction of the antiviral saponin glycyrrhizin with such membranes. Glycyrrhizin is a natural triterpenic-based surfactant found in licorice. Vesicles made of 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1’-glycerol) (DOPG)/glycyrrhizin are characterized by small-angle scattering with neutrons and X-rays (SANS and SAXS). Small-angle scattering data are first evaluated by the model-independent modified Kratky–Porod method and afterwards fitted by a model describing the shape of small unilamellar vesicles (SUV) with an internal head-tail contrast. Complete miscibility of DOPG and glycyrrhizin was revealed even at a ratio of lipid:saponin of 1:1. Additional information about the chain-chain correlation distance of the lipid/saponin mixtures in the SUV structures is obtained from wide-angle X-ray scattering (WAXS).
Collapse
Affiliation(s)
- Carina Dargel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Friederike Gräbitz-Bräuer
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Ramsia Geisler
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Pascal Fandrich
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Yvonne Hannappel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Lionel Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, CEDEX 9, 38042 Grenoble, France;
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
- Correspondence: ; Tel.: +49-0521-106-2055
| |
Collapse
|
25
|
Hernández ML, Cejudo FJ. Chloroplast Lipids Metabolism and Function. A Redox Perspective. FRONTIERS IN PLANT SCIENCE 2021; 12:712022. [PMID: 34421962 PMCID: PMC8375268 DOI: 10.3389/fpls.2021.712022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Plant productivity is determined by the conversion of solar energy into biomass through oxygenic photosynthesis, a process performed by protein-cofactor complexes including photosystems (PS) II and I, and ATP synthase. These complexes are embedded in chloroplast thylakoid membrane lipids, which thus function as structural support of the photosynthetic machinery and provide the lipid matrix to avoid free ion diffusion. The lipid and fatty acid composition of thylakoid membranes are unique in chloroplasts and cyanobacteria, which implies that these molecules are specifically required in oxygenic photosynthesis. Indeed, there is extensive evidence supporting a relevant function of glycerolipids in chloroplast biogenesis and photosynthetic efficiency in response to environmental stimuli, such as light and temperature. The rapid acclimation of higher plants to environmental changes is largely based on thiol-based redox regulation and the disulphide reductase activity thioredoxins (Trxs), which are reduced by ferredoxin (Fdx) via an Fdx-dependent Trx reductase. In addition, chloroplasts harbour an NADPH-dependent Trx reductase C, which allows the use of NADPH to maintain the redox homeostasis of the organelle. Here, we summarise the current knowledge of chloroplast lipid metabolism and the function of these molecules as structural basis of the complex membrane network of the organelle. Furthermore, we discuss evidence supporting the relevant role of lipids in chloroplast biogenesis and photosynthetic performance in response to environmental cues in which the redox state of the organelle plays a relevant role.
Collapse
|
26
|
Sheridan KJ, Duncan EJ, Eaton-Rye JJ, Summerfield TC. The diversity and distribution of D1 proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2020; 145:111-128. [PMID: 32556852 DOI: 10.1007/s11120-020-00762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The psbA gene family in cyanobacteria encodes different forms of the D1 protein that is part of the Photosystem II reaction centre. We have identified a phylogenetically distinct D1 group that is intermediate between previously identified G3-D1 and G4-D1 proteins (Cardona et al. Mol Biol Evol 32:1310-1328, 2015). This new group contained two subgroups: D1INT, which was frequently in the genomes of heterocystous cyanobacteria and D1FR that was part of the far-red light photoacclimation gene cluster of cyanobacteria. In addition, we have identified subgroups within G3, the micro-aerobically expressed D1 protein. There are amino acid changes associated with each of the subgroups that might affect the function of Photosystem II. We show a phylogenetically broad range of cyanobacteria have these D1 types, as well as the genes encoding the G2 protein and chlorophyll f synthase. We suggest identification of additional D1 isoforms and the presence of multiple D1 isoforms in phylogenetically diverse cyanobacteria supports the role of these proteins in conferring a selective advantage under specific conditions.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth J Duncan
- Department of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
27
|
Horn PJ, Smith MD, Clark TR, Froehlich JE, Benning C. PEROXIREDOXIN Q stimulates the activity of the chloroplast 16:1 Δ3trans FATTY ACID DESATURASE4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:718-729. [PMID: 31856363 DOI: 10.1111/tpj.14657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Thylakoid membrane lipids, comprised of glycolipids and the phospholipid phosphatidylglycerol (PG), are essential for normal plant growth and development. Unlike other lipid classes, chloroplast PG in nearly all plants contains a substantial fraction of the unusual trans fatty acid 16:1Δ3trans or 16:1t. We determined that, in Arabidopsis thaliana, 16:1t biosynthesis requires both FATTY ACID DESATURASE4 (FAD4) and a thylakoid-associated redox protein, PEROXIREDOXIN Q (PRXQ), to produce wild-type levels of 16:1t. The FAD4-PRXQ biochemical relationship appears to be very specific in planta, as other fatty acids (FA) desaturases do not require peroxiredoxins for their activity, nor does FAD4 require other chloroplast peroxiredoxins under standard growth conditions. Although most of chloroplast PG assembly occurs at the inner envelope membrane, FAD4 was primarily associated with the thylakoid membranes facing the stroma. Furthermore, co-production of PRXQ with FAD4 was required to produce Δ3-desaturated FAs in yeast. Alteration of the redox state of FAD4 or PRXQ through site-directed mutagenesis of conserved cysteine residues impaired Δ3 FA production. However, these mutations did not appear to directly alter disulfide status of FAD4. These results collectively demonstrate that the production of 16:1t is linked to the redox status of the chloroplast through PRXQ associated with the thylakoids.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Montgomery D Smith
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Tessa R Clark
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John E Froehlich
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
28
|
He M, Ding NZ. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:562785. [PMID: 33013981 PMCID: PMC7500430 DOI: 10.3389/fpls.2020.562785] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 05/21/2023]
Abstract
Land plants are exposed to not only biotic stresses such as pathogen infection and herbivore wounding, but abiotic stresses such as cold, heat, drought, and salt. Elaborate strategies have been developed to avoid or abide the adverse effects, with unsaturated fatty acids (UFAs) emerging as general defenders. In higher plants, the most common UFAs are three 18-carbon species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds act as ingredients and modulators of cellular membranes in glycerolipids, reserve of carbon and energy in triacylglycerol, stocks of extracellular barrier constituents (e.g., cutin and suberin), precursors of various bioactive molecules (e.g., jasmonates and nitroalkenes), and regulators of stress signaling. Nevertheless, they are also potential inducers of oxidative stress. In this review, we will present an overview of these roles and then shed light on genetic engineering of FA synthetic genes for improving plant/crop stress tolerance.
Collapse
|
29
|
Filiz E, Aydın Akbudak M. Investigation of PIC1 (permease in chloroplasts 1) gene’s role in iron homeostasis: bioinformatics and expression analyses in tomato and sorghum. Biometals 2019; 33:29-44. [DOI: 10.1007/s10534-019-00228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
|
30
|
Xue M, Guo T, Ren M, Wang Z, Tang K, Zhang W, Wang M. Constitutive expression of chloroplast glycerol-3-phosphate acyltransferase from Ammopiptanthus mongolicus enhances unsaturation of chloroplast lipids and tolerance to chilling, freezing and oxidative stress in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:375-387. [PMID: 31542639 DOI: 10.1016/j.plaphy.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 05/02/2023]
Abstract
Chloroplast glycerol-3-phosphate acyltransferase (GPAT) is the first key enzyme determining the unsaturation of phosphatidylglycerol (PG) in thylakoid membranes and is involved in the tolerance of plants to chilling, heat and high salinity. However, whether the GPAT affects plant tolerance to other stressors has been scarcely reported. Ammopiptanthus mongolicus is the only evergreen broadleaf shrub growing in the central Asian desert, and it has a high tolerance to harsh environments, especially extreme cold. This study aimed to characterize the physiological function of AmGPAT from A. mongolicus. The transcription of AmGPAT was markedly induced by cold and drought but differentially suppressed by heat and high salinity in the laboratory-cultured seedlings. The gene also had the highest transcription levels in the leaves of shrubs naturally growing in the wild during the late autumn and winter months throughout the year. Moreover, AmGPAT was most abundantly expressed in leaves and immature pods rather than other organs of the shrubs. Constitutive expression of AmGPAT in Arabidopsis increased the levels of cis-unsaturated fatty acids, especially that of linolenic acid (18:3), mainly in PG but also in other chloroplast lipids in transgenic lines. More importantly, the transgene significantly increased the tolerance of the transgenics not only to chilling but also to freezing and oxidative stress at both the cellular and whole-plant levels. In contrast, this gene reduced heat tolerance of the transgenic plants. This study improves the current understanding of chloroplast GPAT in plant tolerance against abiotic stressors through regulating the unsaturation of chloroplast lipids, mainly that of PG.
Collapse
Affiliation(s)
- Min Xue
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Ting Guo
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Meiyan Ren
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Zhilin Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Kuangang Tang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Wenjun Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| | - Maoyan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| |
Collapse
|
31
|
Soria-Garcï A ÏN, Rubio MAC, Lagunas B, Lï Pez-Gomollï N S, Lujï N MADLÏN, Dï Az-Guerra RL, Picorel R, Alfonso M. Tissue Distribution and Specific Contribution of Arabidopsis FAD7 and FAD8 Plastid Desaturases to the JA- and ABA-Mediated Cold Stress or Defense Responses. PLANT & CELL PHYSIOLOGY 2019; 60:1025-1040. [PMID: 30690505 DOI: 10.1093/pcp/pcz017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
To overcome the difficulties to analyze membrane desaturases at the protein level, transgenic Arabidopsis plants expressing the plastidial AtFAD7 and AtFAD8 ω-3 desaturases fused to green fluorescent protein, under the control of their endogenous promoters, were generated and their tissue relative abundance was studied. Gene expression, glucuronidase promoter activity, immunoblot and confocal microscopy analyses indicated that AtFAD7 is the major ω-3 desaturase in leaves when compared to AtFAD8. This higher abundance of AtFAD7 was consistent with its higher promoter activity and could be related with its specificity for the abundant leaf galactolipids. AtFAD7 was also present in roots but at much lower level than leaves. AtFAD8 expression and protein abundance in leaves was consistent with its lower promoter activity, suggesting that transcriptional control modulates the abundance of both desaturases in leaves. AtFAD7 protein levels increased in response to wounding but not to jasmonate (JA), and decreased upon abscisic acid (ABA) treatment. Conversely, AtFAD8 protein levels increased upon cold or JA exposure and decreased at high temperatures, but did not respond to ABA or wounding. These results indicated specific and non-redundant roles for the plastidial ω-3 desaturases in defense, temperature stress or phytohormone mediated responses and a tight coordination of their activities between biotic and abiotic stress signaling pathways. Our data suggested that transcriptional regulation was crucial for this coordination. Finally, bimolecular fluorescence complementation analysis showed that both AtFAD7 and AtFAD8 interact with the AtFAD6 ω-6 desaturase in vivo, suggesting that quaternary complexes are involved in trienoic fatty acid production within the plastid membranes.
Collapse
Affiliation(s)
- Ï Ngel Soria-Garcï A
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Marï A C Rubio
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Sara Lï Pez-Gomollï N
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - Marï A de Los Ï Ngeles Lujï N
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Raï L Dï Az-Guerra
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Rafael Picorel
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| | - Miguel Alfonso
- Department of Plant Nutrition, Estaci�n Experimental Aula Dei (EEAD-CSIC), Avda. Monta�ana 1005, Zaragoza, Spain
| |
Collapse
|
32
|
He M, He CQ, Ding NZ. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1771. [PMID: 30581446 PMCID: PMC6292871 DOI: 10.3389/fpls.2018.01771] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 05/19/2023]
Abstract
Abiotic stresses, such as low or high temperature, deficient or excessive water, high salinity, heavy metals, and ultraviolet radiation, are hostile to plant growth and development, leading to great crop yield penalty worldwide. It is getting imperative to equip crops with multistress tolerance to relieve the pressure of environmental changes and to meet the demand of population growth, as different abiotic stresses usually arise together in the field. The feasibility is raised as land plants actually have established more generalized defenses against abiotic stresses, including the cuticle outside plants, together with unsaturated fatty acids, reactive species scavengers, molecular chaperones, and compatible solutes inside cells. In stress response, they are orchestrated by a complex regulatory network involving upstream signaling molecules including stress hormones, reactive oxygen species, gasotransmitters, polyamines, phytochromes, and calcium, as well as downstream gene regulation factors, particularly transcription factors. In this review, we aimed at presenting an overview of these defensive systems and the regulatory network, with an eye to their practical potential via genetic engineering and/or exogenous application.
Collapse
Affiliation(s)
| | | | - Nai-Zheng Ding
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Structural roles of lipid molecules in the assembly of plant PSII-LHCII supercomplex. BIOPHYSICS REPORTS 2018; 4:189-203. [PMID: 30310856 PMCID: PMC6153512 DOI: 10.1007/s41048-018-0068-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/22/2018] [Indexed: 01/26/2023] Open
Abstract
In plants, photosystem II (PSII) associates with light-harvesting complexes II (LHCII) to form PSII–LHCII supercomplexes. They are multi-subunit supramolecular systems embedded in the thylakoid membrane of chloroplast, functioning as energy-converting and water-splitting machinery powered by light energy. The high-resolution structure of a PSII–LHCII supercomplex, previously solved through cryo-electron microscopy, revealed 34 well-defined lipid molecules per monomer of the homodimeric system. Here we characterize the distribution of lipid-binding sites in plant PSII–LHCII supercomplex and summarize their arrangement pattern within and across the membrane. These lipid molecules have crucial roles in stabilizing the oligomerization interfaces of plant PSII dimer and LHCII trimer. Moreover, they also mediate the interactions among PSII core subunits and contribute to the assembly between peripheral antenna complexes and PSII core. The detailed information of lipid-binding sites within PSII–LHCII supercomplex may serve as a framework for future researches on the functional roles of lipids in plant photosynthesis.
Collapse
|
34
|
Dugail I, Kayser BD, Lhomme M. Specific roles of phosphatidylglycerols in hosts and microbes. Biochimie 2017; 141:47-53. [DOI: 10.1016/j.biochi.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/04/2017] [Indexed: 11/25/2022]
|
35
|
Meng Y, Cao X, Yao C, Xue S, Yang Q. Identification of the role of polar glycerolipids in lipid metabolism and their acyl attribution for TAG accumulation in Nannochloropsis oceanica. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Cañavate JP, Armada I, Hachero-Cruzado I. Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton. THE NEW PHYTOLOGIST 2017; 213:700-713. [PMID: 27605045 DOI: 10.1111/nph.14179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 05/10/2023]
Abstract
The response of marine microalgal lipids to phosphorus is of central importance in phytoplankton ecology but remains poorly understood. We determined how taxonomically diverse microalgal species remodelled their lipid class profile in response to phosphorus availability and whether these changes coincided with those already known to occur in land plants and in the limited number of phytoplankton species for which data are available. The complete lipid class profile and specific lipid ratios influenced by phosphorus availability were quantified in two green microalgae and seven Chromalveolates exposed to phosphorus repletion, deprivation and replenishment. Lipid class cell quota changes in the two green microalgae resembled the currently described pattern of betaine lipids substituting for phospholipids under phosphorus depletion, whereas only two of the studied Chromalveolates showed this pattern. Sulpholipids counterbalanced phosphatidylglycerol only in Picochlorum atomus. In all other species, both lipids decreased simultaneously under phosphorus deprivation, although sulpholipids declined more slowly. Phosphorus deprivation always induced a decrease in digalactosyl-diacylglycerol. However, the ratio of digalactosyl-diacylglycerol to total phospholipids increased in eight species and remained unchanged in Isochrysis galbana. Marine phytoplankton seems to have evolved a diversified mechanism for remodelling its lipid class profile under the influence of phosphorus, with cryptophytes and particularly haptophytes exhibiting previously unobserved lipid responses to phosphorus.
Collapse
Affiliation(s)
- José Pedro Cañavate
- IFAPA Centro El Toruño, Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa Maria, Cádiz, Spain
| | - Isabel Armada
- IFAPA Centro El Toruño, Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa Maria, Cádiz, Spain
| | - Ismael Hachero-Cruzado
- IFAPA Centro El Toruño, Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa Maria, Cádiz, Spain
| |
Collapse
|
37
|
Tovuu A, Zulfugarov IS, Wu G, Kang IS, Kim C, Moon BY, An G, Lee CH. Rice mutants deficient in ω-3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:525-535. [PMID: 27835850 DOI: 10.1016/j.plaphy.2016.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 05/24/2023]
Abstract
To investigate the role of ω-3 fatty acid (FA) desaturase (FAD8) during cold acclimation in higher plants, we characterized three independent T-DNA insertional knock-out mutants of OsFAD8 from rice (Oryza sativa L.). At room temperature (28 °C), osfad8 plants exhibited significant alterations in fatty acid (FA) unsaturation for all four investigated plastidic lipid classes. During a 5-d acclimation period at 4 °C, further changes in FA unsaturation in both wild-type (WT) and mutant plants varied according to the type of lipid. We also monitored the fluidity of the thylakoid membrane using a threshold temperature to represent the change in fluorescence. The values were altered significantly by both FAD8 mutation and cold acclimation, suggesting that factors other than FAD8 are involved in C18 FA unsaturation and fluctuations in membrane fluidity. Similarly, significant changes were noted for both the mutant and WT samples in terms of their FA compositions as well as activities related to photosystem (PS) I, PSII, and photoprotection. This included the development of non-photochemical quenching and increased zeaxanthin accumulation. Despite the relatively small changes in FA composition during cold acclimation, cold-inducible FAD8 knock-out mutants displayed strong differences in photoprotective activities and a further drop in membrane fluidity. The mutants were more sensitive than WT to short-term low-temperature stress that resulted in increased production of reactive oxygen species after 5 d of chilling. Taken together, our findings suggest that FA unsaturation by OsFAD8 is crucial for the acclimation of higher plants to low-temperature stress.
Collapse
Affiliation(s)
- Altanzaya Tovuu
- Department of Integrated Biological Science, Department of Molecular Biology, Pusan National University, Busan 609-735, Republic of Korea; Department of Biotechnology, Breeding, Mongolian University of Life Sciences, Zaisan 17024, Ulaanbaatar, Mongolia
| | - Ismayil S Zulfugarov
- Department of Integrated Biological Science, Department of Molecular Biology, Pusan National University, Busan 609-735, Republic of Korea; Department of Biology, North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677-027, Republic of Sakha (Yakutia), Russian Federation; Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, Baku, AZ 1073, Azerbaijan
| | - Guangxi Wu
- Department of Integrated Biological Science, Department of Molecular Biology, Pusan National University, Busan 609-735, Republic of Korea
| | - In Soon Kang
- Department of Biological Sciences, Inje University, Gimhae 621-749, Republic of Korea; Department of Pharmacology, School of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Choongrak Kim
- Department of Statistics, Pusan National University, Busan 609-735, Republic of Korea
| | - Byoung Yong Moon
- Department of Biological Sciences, Inje University, Gimhae 621-749, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Choon-Hwan Lee
- Department of Integrated Biological Science, Department of Molecular Biology, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
38
|
Shin H, Hong SJ, Yoo C, Han MA, Lee H, Choi HK, Cho S, Lee CG, Cho BK. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae. Sci Rep 2016; 6:37770. [PMID: 27883062 PMCID: PMC5121895 DOI: 10.1038/srep37770] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022] Open
Abstract
Temperature is a critical environmental factor that affects microalgal growth. However, microalgal coping mechanisms for temperature variations are unclear. Here, we determined changes in transcriptome, total carbohydrate, total fatty acid methyl ester, and fatty acid composition of Tetraselmis sp. KCTC12432BP, a strain with a broad temperature tolerance range, to elucidate the tolerance mechanisms in response to large temperature variations. Owing to unavailability of genome sequence information, de novo transcriptome assembly coupled with BLAST analysis was performed using strand specific RNA-seq data. This resulted in 26,245 protein-coding transcripts, of which 83.7% could be annotated to putative functions. We identified more than 681 genes differentially expressed, suggesting an organelle-specific response to temperature variation. Among these, the genes related to the photosynthetic electron transfer chain, which are localized in the plastid thylakoid membrane, were upregulated at low temperature. However, the transcripts related to the electron transport chain and biosynthesis of phosphatidylethanolamine localized in mitochondria were upregulated at high temperature. These results show that the low energy uptake by repressed photosynthesis under low and high temperature conditions is compensated by different mechanisms, including photosystem I and mitochondrial oxidative phosphorylation, respectively. This study illustrates that microalgae tolerate different temperature conditions through organelle specific mechanisms.
Collapse
Affiliation(s)
- HyeonSeok Shin
- Department of Biological Sciences, Korea advanced institute of Science and Technology, Daejon 305-701, Republic of Korea
| | - Seong-Joo Hong
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Chan Yoo
- Department of Biological Sciences, Korea advanced institute of Science and Technology, Daejon 305-701, Republic of Korea
| | - Mi-Ae Han
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon 406-840, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea advanced institute of Science and Technology, Daejon 305-701, Republic of Korea
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea advanced institute of Science and Technology, Daejon 305-701, Republic of Korea
| |
Collapse
|
39
|
Furse S. Is phosphatidylglycerol essential for terrestrial life? J Chem Biol 2016; 10:1-9. [PMID: 28101250 DOI: 10.1007/s12154-016-0159-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023] Open
Abstract
Lipids are of increasing importance in understanding biological systems. Lipids carrying an anionic charge are noted in particular for their electrostatic interactions with both proteins and divalent cations. However, the biological, analytical, chemical and biophysical data of such species are rarely considered together, limiting our ability to assess the true role of such lipids in vivo. In this review, evidence from a range of studies about the lipid phosphatidylglycerol is considered. This evidence supports the conclusions that this lipid is ubiquitous in living systems and generally of low abundance but probably fundamental for terrestrial life. Possible reasons for this are discussed and further questions posed.
Collapse
Affiliation(s)
- Samuel Furse
- Molekylærbiologisk institutt, Unversitetet i Bergen, Thormøhlens gate 55, 5006 Bergen, Norway
| |
Collapse
|
40
|
Kobayashi K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. JOURNAL OF PLANT RESEARCH 2016; 129:565-580. [PMID: 27114097 PMCID: PMC5897459 DOI: 10.1007/s10265-016-0827-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/13/2016] [Indexed: 05/19/2023]
Abstract
The lipid bilayer of the thylakoid membrane in plant chloroplasts and cyanobacterial cells is predominantly composed of four unique lipid classes; monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). MGDG and DGDG are uncharged galactolipids that constitute the bulk of thylakoid membrane lipids and provide a lipid bilayer matrix for photosynthetic complexes as the main constituents. The glycolipid SQDG and phospholipid PG are anionic lipids with a negative charge on their head groups. SQDG and PG substitute for each other to maintain the amount of total anionic lipids in the thylakoid membrane, with PG having indispensable functions in photosynthesis. In addition to biochemical studies, extensive analyses of mutants deficient in thylakoid lipids have revealed important roles of these lipids in photosynthesis and thylakoid membrane biogenesis. Moreover, recent studies of Arabidopsis thaliana suggest that thylakoid lipid biosynthesis triggers the expression of photosynthesis-associated genes in both the nucleus and plastids and activates the formation of photosynthetic machineries and chloroplast development. Meanwhile, galactolipid biosynthesis is regulated in response to chloroplast functionality and lipid metabolism at transcriptional and post-translational levels. This review summarizes the roles of thylakoid lipids with their biosynthetic pathways in plants and discusses the coordinated regulation of thylakoid lipid biosynthesis with the development of photosynthetic machinery during chloroplast biogenesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
41
|
Effect of Different Broad Waveband Lights on Membrane Lipids of a Cyanobacterium, Synechococcus sp., as Determined by UPLC-QToF-MS and Vibrational Spectroscopy. BIOLOGY 2016; 5:biology5020022. [PMID: 27223306 PMCID: PMC4929536 DOI: 10.3390/biology5020022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/17/2022]
Abstract
Differential profile of membrane lipids and pigments of a Synechococcus sp. cyanobacterial strain cells exposed to blue, green, red and white light are determined by means of liquid chromatography and mass spectrometry or diode array detection. Raman and ATR-IR spectra of intact cells under the diverse light wavebands are also reported. Blue light cells exhibited an increased content of photosynthetic pigments as well as specific species of membrane glycerolipids as compared to cells exposed to other wavebands. The A630/A680 ratio indicated an increased content of phycobilisomes (PBS) in the blue light-exposed cells. Some differences in the protein conformation between the four light waveband-exposed cells were deduced from the variable absorbance at specific wavenumbers in the FT-Raman and ATR-FTIR spectra, in particular bands assigned to amide I and amide II. Bands from 1180 to 950 cm(-1) in the ATR-FTIR spectrum suggest degraded outer membrane polysaccharide in the blue light-exposed cells.
Collapse
|
42
|
Légeret B, Schulz-Raffelt M, Nguyen HM, Auroy P, Beisson F, Peltier G, Blanc G, Li-Beisson Y. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. PLANT, CELL & ENVIRONMENT 2016; 39:834-47. [PMID: 26477535 DOI: 10.1111/pce.12656] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 05/18/2023]
Abstract
Studying how photosynthetic cells modify membrane lipids in response to heat stress is important to understand how plants and microalgae adapt to daily fluctuations in temperature and to investigate new lipid pathways. Here, we investigate changes occurring in lipid molecular species and lipid metabolism genes during early response to heat stress in the model photosynthetic microorganism Chlamydomonas reinhardtii. Lipid molecular species analyses revealed that, after 60 min at 42 °C, a strong decrease in specific polyunsaturated membrane lipids was observed together with an increase in polyunsaturated triacylglycerols (TAGs) and diacylglycerols (DAGs). The fact that decrease in the major chloroplastic monogalactosyldiacylglycerol sn1-18:3/sn2-16:4 was mirrored by an accumulation of DAG sn1-18:3/sn2-16:4 and TAG sn1-18:3/sn2-16:4/sn3-18:3 indicated that newly accumulated TAGs were formed via direct conversion of monogalactosyldiacylglycerols to DAGs then TAGs. Lipidomic analyses showed that the third fatty acid of a TAG likely originated from a phosphatidylethanolamine or a diacylglyceryl-O-4'-(N,N,N,-trimethyl)-homoserine betaine lipid species. Candidate genes for this TAG synthesis pathway were provided through comparative transcriptomic analysis and included a phospholipase A2 homolog and the DAG acyltransferase DGTT1. This study gives insights into the molecular events underlying changes in membrane lipids during heat stress and reveals an alternative route for TAG synthesis.
Collapse
Affiliation(s)
- B Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - M Schulz-Raffelt
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - H M Nguyen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - P Auroy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - F Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - G Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - G Blanc
- Laboratoire Information Génomique & Structurale, UMR7256 (IMM FR3479) CNRS Aix-Marseille Université, Marseille, France
| | - Y Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| |
Collapse
|
43
|
Kimura T, Jennings W, Epand RM. Roles of specific lipid species in the cell and their molecular mechanism. Prog Lipid Res 2016; 62:75-92. [PMID: 26875545 DOI: 10.1016/j.plipres.2016.02.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Abstract
Thousands of different molecular species of lipids are present within a single cell, being involved in modulating the basic processes of life. The vast number of different lipid species can be organized into a number of different lipid classes, which may be defined as a group of lipids with a common chemical structure, such as the headgroup, apart from the nature of the hydrocarbon chains. Each lipid class has unique biological roles. In some cases, a relatively small change in the headgroup chemical structure can result in a drastic change in function. Such phenomena are well documented, and largely understood in terms of specific interactions with proteins. In contrast, there are observations that the entire structural specificity of a lipid molecule, including the hydrocarbon chains, is required for biological activity through specific interactions with membrane proteins. Understanding of these phenomena represents a fundamental change in our thinking of the functions of lipids in biology. There are an increasing number of diverse examples of roles for specific lipids in cellular processes including: Signal transduction; trafficking; morphological changes; cell division. We are gaining knowledge and understanding of the underlying molecular mechanisms. They are of growing importance in both basic and applied sciences.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - William Jennings
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
44
|
Park SC, Moon JC, Kim NH, Kim EJ, Jeong JE, Nelson ADL, Jo BH, Jang MK, Lee JR. Algicidal effect of hybrid peptides as potential inhibitors of harmful algal blooms. Biotechnol Lett 2016; 38:847-54. [PMID: 26857607 DOI: 10.1007/s10529-016-2052-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To biochemically characterize synthetic peptides to control harmful algal blooms (HABs) that cause red tides in marine water ecosystems. RESULTS We present an analysis of several short synthetic peptides and their efficacy as algicidal agents. By altering the amino acid composition of the peptides we addressed the mode of algicidal action and determine the optimal balance of cationic and hydrophobic content for killing. In a controlled setting, these synthetic peptides disrupted both plasma and chloroplast membranes of several species known to result in HABs. This disruption was a direct result of the hydrophobic and cationic content of the peptide. Furthermore, by using an anti-HAB bioassay in scallops, we determined that these peptides were algicidal without being cytotoxic to other marine organisms. CONCLUSIONS These synthetic peptides may prove promising for general marine ecosystem remediation where HABs have become widespread and resulted in serious economic loss.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeollanam-do, 38286, Republic of Korea
| | - Jeong Chan Moon
- DNA Analysis Section, Busan Institute of National Forensic Service, 50 Kumoh-ro, Mulgumeup, Yangsan-Si, Gyeongsangnam-do, 50612, Republic of Korea
| | - Nam-Hong Kim
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeollanam-do, 38286, Republic of Korea
| | - Eun-Ji Kim
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeollanam-do, 38286, Republic of Korea
| | - Jae-Eun Jeong
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeollanam-do, 38286, Republic of Korea
| | | | - Beom-Ho Jo
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-Gun, Chungcheongnam-do, 33657, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeollanam-do, 38286, Republic of Korea.
| | - Jung Ro Lee
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-Gun, Chungcheongnam-do, 33657, Republic of Korea. .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
45
|
Bastien O, Botella C, Chevalier F, Block MA, Jouhet J, Breton C, Girard-Egrot A, Maréchal E. New Insights on Thylakoid Biogenesis in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:1-30. [DOI: 10.1016/bs.ircmb.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Kobayashi K, Endo K, Wada H. Multiple Impacts of Loss of Plastidic Phosphatidylglycerol Biosynthesis on Photosynthesis during Seedling Growth of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:336. [PMID: 27047516 PMCID: PMC4800280 DOI: 10.3389/fpls.2016.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/04/2016] [Indexed: 05/09/2023]
Abstract
Phosphatidylglycerol (PG) is the only major phospholipid in the thylakoid membrane in cyanobacteria and plant chloroplasts. Although PG accounts only for ~10% of total thylakoid lipids, it plays indispensable roles in oxygenic photosynthesis. In contrast to the comprehensive analyses of PG-deprived mutants in cyanobacteria, in vivo roles of PG in photosynthesis during plant growth remain elusive. In this study, we characterized the photosynthesis of an Arabidopsis thaliana T-DNA insertional mutant (pgp1-2), which lacks plastidic PG biosynthesis. In the pgp1-2 mutant, energy transfer from antenna pigments to the photosystem II (PSII) reaction center was severely impaired, which resulted in low photochemical efficiency of PSII. Unlike in the wild type, in pgp1-2, the PSII complexes were susceptible to photodamage by red light irradiation. Manganese ions were mostly dissociated from protein systems in pgp1-2, with oxygen-evolving activity of PSII absent in the mutant thylakoids. The oxygen-evolving complex may be disrupted in pgp1-2, which may accelerate the photodamage to PSII by red light. On the acceptor side of the mutant PSII, decreased electron-accepting capacity was observed along with impaired electron transfer. Although the reaction center of PSI was relatively active in pgp1-2 compared to the severe impairment in PSII, the cyclic electron transport was dysfunctional. Chlorophyll fluorescence analysis at 77K revealed that PG may not be needed for the self-organization of the macromolecular protein network in grana thylakoids but is essential for the assembly of antenna-reaction center complexes. Our data clearly show that thylakoid glycolipids cannot substitute for the role of PG in photosynthesis during plant growth.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Kaichiro Endo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
- *Correspondence: Hajime Wada
| |
Collapse
|
47
|
Garab G, Ughy B, Goss R. Role of MGDG and Non-bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes. Subcell Biochem 2016; 86:127-57. [PMID: 27023234 DOI: 10.1007/978-3-319-25979-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter we focus our attention on the enigmatic structural and functional roles of the major, non-bilayer lipid monogalactosyl-diacylglycerol (MGDG) in the thylakoid membrane. We give an overview on the state of the art on the role of MGDG and non-bilayer lipid phases in the xanthophyll cycles in different organisms. We also discuss data on the roles of MGDG and other lipid molecules found in crystal structures of different photosynthetic protein complexes and in lipid-protein assemblies, as well as in the self-assembly of the multilamellar membrane system. Comparison and critical evaluation of different membrane models--that take into account and capitalize on the special properties of non-bilayer lipids and/or non-bilayer lipid phases, and thus to smaller or larger extents deviate from the 'standard' Singer-Nicolson model--will conclude this review. With this chapter the authors hope to further stimulate the discussion about, what we think, is perhaps the most exciting question of membrane biophysics: the why and wherefore of non-bilayer lipids and lipid phases in, or in association with, bilayer biological membranes.
Collapse
Affiliation(s)
- Győző Garab
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Bettina Ughy
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Reimund Goss
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
48
|
Román Á, Hernández ML, Soria-García Á, López-Gomollón S, Lagunas B, Picorel R, Martínez-Rivas JM, Alfonso M. Non-redundant Contribution of the Plastidial FAD8 ω-3 Desaturase to Glycerolipid Unsaturation at Different Temperatures in Arabidopsis. MOLECULAR PLANT 2015; 8:1599-611. [PMID: 26079601 DOI: 10.1016/j.molp.2015.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 05/21/2023]
Abstract
Plastidial ω-3 desaturase FAD7 is a major contributor to trienoic fatty acid biosynthesis in the leaves of Arabidopsis plants. However, the precise contribution of the other plastidial ω-3 desaturase, FAD8, is poorly understood. Fatty acid and lipid analysis of several ω-3 desaturase mutants, including two insertion lines of AtFAD7 and AtFAD8, showed that FAD8 partially compensated the disruption of the AtFAD7 gene at 22 °C, indicating that FAD8 was active at this growth temperature, contrasting to previous observations that circumscribed the FAD8 activity at low temperatures. Our data revealed that FAD8 had a higher selectivity for 18:2 acyl-lipid substrates and a higher preference for lipids other than galactolipids, particularly phosphatidylglycerol, at any of the temperatures studied. Differences in the mechanism controlling AtFAD7 and AtFAD8 gene expression at different temperatures were also detected. Confocal microscopy and biochemical analysis of FAD8-YFP over-expressing lines confirmed the chloroplast envelope localization of FAD8. Co-localization experiments suggested that FAD8 and FAD7 might be located in close vicinity in the envelope membrane. FAD8-YFP over-expressing lines showed a specific increase in 18:3 fatty acids at 22 °C. Together, these results indicate that the function of both plastidial ω-3 desaturases is coordinated in a non-redundant manner.
Collapse
Affiliation(s)
- Ángela Román
- Estación Experimental de Aula Dei (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Building 46, Ctra. Utrera km. 1, 41013 Seville, Spain
| | - María L Hernández
- Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Building 46, Ctra. Utrera km. 1, 41013 Seville, Spain
| | - Ángel Soria-García
- Estación Experimental de Aula Dei (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Sara López-Gomollón
- Estación Experimental de Aula Dei (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Beatriz Lagunas
- Estación Experimental de Aula Dei (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Rafael Picorel
- Estación Experimental de Aula Dei (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - José Manuel Martínez-Rivas
- Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Building 46, Ctra. Utrera km. 1, 41013 Seville, Spain
| | - Miguel Alfonso
- Estación Experimental de Aula Dei (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain.
| |
Collapse
|
49
|
Gao J, Wallis JG, Browse J. Mutations in the Prokaryotic Pathway Rescue the fatty acid biosynthesis1 Mutant in the Cold. PLANT PHYSIOLOGY 2015; 169:442-452. [PMID: 26224803 PMCID: PMC4577428 DOI: 10.1104/pp.15.00931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/29/2015] [Indexed: 05/19/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant has increased levels of the saturated fatty acid 16:0 due to decreased activity of 3-ketoacyl-acyl carrier protein (ACP) synthase II. In fab1 leaves, phosphatidylglycerol, the major chloroplast phospholipid, contains up to 45% high-melting-point molecular species (molecules that contain only 16:0, 16:1-trans, and 18:0), a trait associated with chilling-sensitive plants, compared with less than 10% in wild-type Arabidopsis. Although they do not exhibit typical chilling sensitivity, when exposed to low temperatures (2°C-6°C) for long periods, fab1 plants do suffer collapse of photosynthesis, degradation of chloroplasts, and eventually death. A screen for suppressors of this low-temperature phenotype has identified 11 lines, some of which contain additional alterations in leaf-lipid composition relative to fab1. Here, we report the identification of two suppressor mutations, one in act1, which encodes the chloroplast acyl-ACP:glycerol-3-phosphate acyltransferase, and one in lpat1, which encodes the chloroplast acyl-ACP:lysophosphatidic acid acyltransferase. These enzymes catalyze the first two steps of the prokaryotic pathway for glycerolipid synthesis, so we investigated whether other mutations in this pathway would rescue the fab1 phenotype. Both the gly1 mutation, which reduces glycerol-3-phosphate supply to the prokaryotic pathway, and fad6, which is deficient in the chloroplast 16:1/18:1 fatty acyl desaturase, were discovered to be suppressors. Analyses of leaf-lipid compositions revealed that mutations at all four of the suppressor loci result in reductions in the proportion of high-melting-point molecular species of phosphatidylglycerol relative to fab1. We conclude that these reductions are likely the basis for the suppressor phenotypes.
Collapse
Affiliation(s)
- Jinpeng Gao
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
50
|
Enzymatic measurement of phosphatidylglycerol and cardiolipin in cultured cells and mitochondria. Sci Rep 2015; 5:11737. [PMID: 26122953 PMCID: PMC4485230 DOI: 10.1038/srep11737] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 06/02/2015] [Indexed: 11/08/2022] Open
Abstract
Phosphatidylglycerol (PG) and cardiolipin (CL) are synthesized in mitochondria and regulate numerous biological functions. In this study, a novel fluorometric method was developed for measuring PG and CL using combinations of specific enzymes and Amplex Red. This assay quantified the sum of PG and CL (PG + CL) regardless of the species of fatty acyl chain. The calibration curve for PG + CL measurement was linear, and the detection limit was 1 μM (10 pmol in the reaction mixture). This new method was applied to the determinations of PG + CL content in HEK293 cells and CL content in purified mitochondria, because the mitochondrial content of PG is negligible compared with that of CL. We demonstrated that the PG+CL content was greater at low cell density than at high cell density. The overexpression of phosphatidylglycerophosphate synthase 1 (PGS1) increased the cellular contents of PG + CL and phosphatidylcholine (PC), and reduced that of phosphatidic acid. PGS1 overexpression also elevated the mitochondrial contents of CL and PC, but had no effect on the number of mitochondria per cell. In addition to the enzymatic measurements of other phospholipids, this simple, sensitive and high-throughput assay for measuring PG + CL can be used to understand cellular, physiological and pathological processes.
Collapse
|