1
|
Rottet S, Rourke LM, Pabuayon ICM, Phua SY, Yee S, Weerasooriya HN, Wang X, Mehra HS, Nguyen ND, Long BM, Moroney JV, Price GD. Engineering the cyanobacterial ATP-driven BCT1 bicarbonate transporter for functional targeting to C3 plant chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4926-4943. [PMID: 38776254 PMCID: PMC11349869 DOI: 10.1093/jxb/erae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
The ATP-driven bicarbonate transporter 1 (BCT1) from Synechococcus is a four-component complex in the cyanobacterial CO2-concentrating mechanism. BCT1 could enhance photosynthetic CO2 assimilation in plant chloroplasts. However, directing its subunits (CmpA, CmpB, CmpC, and CmpD) to three chloroplast sub-compartments is highly complex. Investigating BCT1 integration into Nicotiana benthamiana chloroplasts revealed promising targeting strategies using transit peptides from the intermembrane space protein Tic22 for correct CmpA targeting, while the transit peptide of the chloroplastic ABCD2 transporter effectively targeted CmpB to the inner envelope membrane. CmpC and CmpD were targeted to the stroma by RecA and recruited to the inner envelope membrane by CmpB. Despite successful targeting, expression of this complex in CO2-dependent Escherichia coli failed to demonstrate bicarbonate uptake. We then used rational design and directed evolution to generate new BCT1 forms that were constitutively active. Several mutants were recovered, including a CmpCD fusion. Selected mutants were further characterized and stably expressed in Arabidopsis thaliana, but the transformed plants did not have higher carbon assimilation rates or decreased CO2 compensation points in mature leaves. While further analysis is required, this directed evolution and heterologous testing approach presents potential for iterative modification and assessment of CO2-concentrating mechanism components to improve plant photosynthesis.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Loraine M Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Su Yin Phua
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Suyan Yee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xiaozhuo Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Himanshu S Mehra
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nghiem D Nguyen
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Benedict M Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - G Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Pulsford SB, Outram MA, Förster B, Rhodes T, Williams SJ, Badger MR, Price GD, Jackson CJ, Long BM. Cyanobacterial α-carboxysome carbonic anhydrase is allosterically regulated by the Rubisco substrate RuBP. SCIENCE ADVANCES 2024; 10:eadk7283. [PMID: 38728392 PMCID: PMC11086599 DOI: 10.1126/sciadv.adk7283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Cyanobacterial CO2 concentrating mechanisms (CCMs) sequester a globally consequential proportion of carbon into the biosphere. Proteinaceous microcompartments, called carboxysomes, play a critical role in CCM function, housing two enzymes to enhance CO2 fixation: carbonic anhydrase (CA) and Rubisco. Despite its importance, our current understanding of the carboxysomal CAs found in α-cyanobacteria, CsoSCA, remains limited, particularly regarding the regulation of its activity. Here, we present a structural and biochemical study of CsoSCA from the cyanobacterium Cyanobium sp. PCC7001. Our results show that the Cyanobium CsoSCA is allosterically activated by the Rubisco substrate ribulose-1,5-bisphosphate and forms a hexameric trimer of dimers. Comprehensive phylogenetic and mutational analyses are consistent with this regulation appearing exclusively in cyanobacterial α-carboxysome CAs. These findings clarify the biologically relevant oligomeric state of α-carboxysomal CAs and advance our understanding of the regulation of photosynthesis in this globally dominant lineage.
Collapse
Affiliation(s)
- Sacha B. Pulsford
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Megan A. Outram
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Timothy Rhodes
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Simon J. Williams
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Murray R. Badger
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - G. Dean Price
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Colin J. Jackson
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Benedict M. Long
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
3
|
Qin H, Sandrini G, Piel T, Slot PC, Huisman J, Visser PM. The harmful cyanobacterium Microcystis aeruginosa PCC7806 is more resistant to hydrogen peroxide at elevated CO 2. HARMFUL ALGAE 2023; 128:102482. [PMID: 37714576 DOI: 10.1016/j.hal.2023.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
Rising atmospheric CO2 can intensify harmful cyanobacterial blooms in eutrophic lakes. Worldwide, these blooms are an increasing environmental concern. Low concentrations of hydrogen peroxide (H2O2) have been proposed as a short-term but eco-friendly approach to selectively mitigate cyanobacterial blooms. However, sensitivity of cyanobacteria to H2O2 can vary depending on the available resources. To find out how cyanobacteria respond to H2O2 under elevated CO2, Microcystis aeruginosa PCC 7806 was cultured in chemostats with nutrient-replete medium under C-limiting and C-replete conditions (150 ppm and 1500 ppm CO2, respectively). Microcystis chemostats exposed to high CO2 showed higher cell densities, biovolumes, and microcystin contents, but a lower photosynthetic efficiency and pH compared to the cultures grown under low CO2. Subsamples of the chemostats were treated with different concentrations of H2O2 (0-10 mg·L-1 H2O2) in batch cultures under two different light intensities (15 and 100 μmol photons m-2·s-1) and the response in photosynthetic vitality was monitored during 24 h. Results showed that Microcystis was more resistant to H2O2 at elevated CO2 than under carbon-limited conditions. Both low and high CO2-adapted cells were more sensitive to H2O2 at high light than at low light. Microcystins (MCs) leaked out of the cells of cultures exposed to 2-10 mg·L-1 H2O2, while the sum of intra- and extracellular MCs decreased. Although both H2O2 and CO2 concentrations in lakes vary in response to many factors, these results imply that it may become more difficult to suppress cyanobacterial blooms in eutrophic lakes when atmospheric CO2 concentrations continue to rise.
Collapse
Affiliation(s)
- Hongjie Qin
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands; Department of Technology & Sources, Evides Water Company, Rotterdam, The Netherlands
| | - Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Pieter C Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Cabello-Yeves PJ, Scanlan DJ, Callieri C, Picazo A, Schallenberg L, Huber P, Roda-Garcia JJ, Bartosiewicz M, Belykh OI, Tikhonova IV, Torcello-Requena A, De Prado PM, Millard AD, Camacho A, Rodriguez-Valera F, Puxty RJ. α-cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats. THE ISME JOURNAL 2022; 16:2421-2432. [PMID: 35851323 PMCID: PMC9477826 DOI: 10.1038/s41396-022-01282-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) is one the most abundant enzymes on Earth. Virtually all food webs depend on its activity to supply fixed carbon. In aerobic environments, RuBisCO struggles to distinguish efficiently between CO2 and O2. To compensate, organisms have evolved convergent solutions to concentrate CO2 around the active site. The genetic engineering of such inorganic carbon concentrating mechanisms (CCMs) into plants could help facilitate future global food security for humankind. In bacteria, the carboxysome represents one such CCM component, of which two independent forms exist: α and β. Cyanobacteria are important players in the planet's carbon cycle and the vast majority of the phylum possess a β-carboxysome, including most cyanobacteria used as laboratory models. The exceptions are the exclusively marine Prochlorococcus and Synechococcus that numerically dominate open ocean systems. However, the reason why marine systems favor an α-form is currently unknown. Here, we report the genomes of 58 cyanobacteria, closely related to marine Synechococcus that were isolated from freshwater lakes across the globe. We find all these isolates possess α-carboxysomes accompanied by a form 1A RuBisCO. Moreover, we demonstrate α-cyanobacteria dominate freshwater lakes worldwide. Hence, the paradigm of a separation in carboxysome type across the salinity divide does not hold true, and instead the α-form dominates all aquatic systems. We thus question the relevance of β-cyanobacteria as models for aquatic systems at large and pose a hypothesis for the reason for the success of the α-form in nature.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain.
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980 Paterna, Valencia, Spain
| | | | - Paula Huber
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET., Av. Intendente Marino Km 8,200, 7130, Chascomús, Buenos Aires, Argentina
- Instituto Nacional de Limnología (INALI), CONICET-UNL., Ciudad Universitaria-Paraje el Pozo s/n, 3000, Santa Fé, Argentina
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Olga I Belykh
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | - Irina V Tikhonova
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | | | | | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980 Paterna, Valencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
5
|
Hong K, Beld J, Davis TD, Burkart MD, Palenik B. Screening and characterization of polyhydroxyalkanoate granules, and phylogenetic analysis of polyhydroxyalkanoate synthase gene PhaC in cyanobacteria. JOURNAL OF PHYCOLOGY 2021; 57:754-765. [PMID: 33350471 DOI: 10.1111/jpy.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/06/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Using Nile Red and BODIPY 493/503 dye-staining and fluorescence microscopy, twenty cyanobacterial strains, including ten commercially available strains and ten environmental isolates from estuaries, freshwater ponds, and lagoons, were screened for the accumulation of ecologically important and potentially biotechnologically significant carbon storage granules such as polyhydroxyalkanoates (PHA). Dye-staining granules were observed in six strains. Three Synechocystis, spp. strains WHSYN, LSNM, and CGF-1, and a Phormidium-like sp. CGFILA were isolated from environmental sources and found to produce granules of polyhydroxyalkanoate (PHA) according to PHA synthase gene (phaC) PCR screening and 1 H NMR analyses. The environmental isolate, Nodularia sp. Las Olas and commercially available Phormidium cf. iriguum CCALA 759 displayed granules but screened negative for PHA according to phaC PCR and 1 H NMR analyses. Partial polyhydroxyalkanoate synthase subunit C (phaC) and 16S rRNA gene sequences obtained from the PHA-accumulating strains and analyzed alongside publicly available phaC, phaE, 16S rRNA, and 23S rRNA data help in understanding the distribution and evolutionary history of PHA biosynthesis within the phylum Cyanobacteria. The data show that the presence of phaC is highly conserved within the genus Synechocystis, and present in at least one isolate of Phormidium. Maximum likelihood analyses and cophylogenetic modeling of PHA synthase gene sequences provide evidence of a recent horizontal gene transfer event between distant genera of cyanobacteria related to Pleurocapsa sp. PCC 7327 and Phormidium-like sp. CGFILA. These findings will help guide additional screening for PHA producers, and may explain why some Phormidium species produce PHAs, while others do not.
Collapse
Affiliation(s)
- Karl Hong
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Joris Beld
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Tony D Davis
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Michael D Burkart
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093-0202, USA
| |
Collapse
|
6
|
Paerl RW, Venezia RE, Sanchez JJ, Paerl HW. Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events. Sci Rep 2020; 10:22026. [PMID: 33328574 PMCID: PMC7744581 DOI: 10.1038/s41598-020-79157-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
Picophytoplankton (PicoP) are increasingly recognized as significant contributors to primary productivity and phytoplankton biomass in coastal and estuarine systems. Remarkably though, PicoP composition is unknown or not well-resolved in several large estuaries including the semi-lagoonal Neuse River Estuary (NRE), a tributary of the second largest estuary-system in the lower USA, the Pamlico-Albemarle Sound. The NRE is impacted by extreme weather events, including recent increases in precipitation and flooding associated with tropical cyclones. Here we examined the impacts of moderate to extreme (Hurricane Florence, September 2018) precipitation events on NRE PicoP abundances and composition using flow cytometry, over a 1.5 year period. Phycocyanin-rich Synechococcus-like cells were the most dominant PicoP, reaching ~ 106 cells mL-1, which highlights their importance as key primary producers in this relatively long residence-time estuary. Ephemeral "blooms" of picoeukaryotic phytoplankton (PEUK) during spring and after spikes in river flow were also detected, making PEUK periodically major contributors to PicoP biomass (up to ~ 80%). About half of the variation in PicoP abundance was explained by measured environmental variables. Temperature explained the most variation (24.5%). Change in total dissolved nitrogen concentration, an indication of increased river discharge, explained the second-most variation in PicoP abundance (15.9%). The short-term impacts of extreme river discharge from Hurricane Florence were particularly evident as PicoP biomass was reduced by ~ 100-fold for more than 2 weeks. We conclude that precipitation is a highly influential factor on estuarine PicoP biomass and composition, and show how 'wetter' future climate conditions will have ecosystem impacts down to the smallest of phytoplankton.
Collapse
Affiliation(s)
- Ryan W Paerl
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695-8208, USA.
| | - Rebecca E Venezia
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695-8208, USA
| | - Joel J Sanchez
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695-8208, USA
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina At Chapel Hill, Morehead City, NC, 28557, USA
| |
Collapse
|
7
|
Godoy MS, Mongili B, Fino D, Prieto MA. About how to capture and exploit the CO 2 surplus that nature, per se, is not capable of fixing. Microb Biotechnol 2017; 10:1216-1225. [PMID: 28805313 PMCID: PMC5609282 DOI: 10.1111/1751-7915.12805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022] Open
Abstract
Human activity has been altering many ecological cycles for decades, disturbing the natural mechanisms which are responsible for re-establishing the normal environmental balances. Probably, the most disrupted of these cycles is the cycle of carbon. In this context, many technologies have been developed for an efficient CO2 removal from the atmosphere. Once captured, it could be stored in large geological formations and other reservoirs like oceans. This strategy could present some environmental and economic problems. Alternately, CO2 can be transformed into carbonates or different added-value products, such as biofuels and bioplastics, recycling CO2 from fossil fuel. Currently different methods are being studied in this field. We classified them into biological, inorganic and hybrid systems for CO2 transformation. To be environmentally compatible, they should be powered by renewable energy sources. Although hybrid systems are still incipient technologies, they have made great advances in the recent years. In this scenario, biotechnology is the spearhead of ambitious strategies to capture CO2 and reduce global warming.
Collapse
Affiliation(s)
- Manuel S Godoy
- Polymer Biotechnology Lab, Centro de Investigaciones Biologicas (CIB), C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Beatrice Mongili
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
| | - Debora Fino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Centro de Investigaciones Biologicas (CIB), C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
8
|
Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3717-3737. [PMID: 28444330 DOI: 10.1093/jxb/erx133] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.
Collapse
Affiliation(s)
- Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Benedict M Long
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Wei Yih Hee
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Bratati Mukherjee
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
9
|
Abstract
Rising atmospheric CO2 concentrations are likely to affect many ecosystems worldwide. However, to what extent elevated CO2 will induce evolutionary changes in photosynthetic organisms is still a major open question. Here, we show rapid microevolutionary adaptation of a harmful cyanobacterium to changes in inorganic carbon (Ci) availability. We studied the cyanobacterium Microcystis, a notorious genus that can develop toxic cyanobacterial blooms in many eutrophic lakes and reservoirs worldwide. Microcystis displays genetic variation in the Ci uptake systems BicA and SbtA, where BicA has a low affinity for bicarbonate but high flux rate, and SbtA has a high affinity but low flux rate. Our laboratory competition experiments show that bicA + sbtA genotypes were favored by natural selection at low CO2 levels, but were partially replaced by the bicA genotype at elevated CO2 Similarly, in a eutrophic lake, bicA + sbtA strains were dominant when Ci concentrations were depleted during a dense cyanobacterial bloom, but were replaced by strains with only the high-flux bicA gene when Ci concentrations increased later in the season. Hence, our results provide both laboratory and field evidence that increasing carbon concentrations induce rapid adaptive changes in the genotype composition of harmful cyanobacterial blooms.
Collapse
|
10
|
Long BM, Rae BD, Rolland V, Förster B, Price GD. Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:1-8. [PMID: 26999306 DOI: 10.1016/j.pbi.2016.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 05/21/2023]
Abstract
Global population growth is projected to outpace plant-breeding improvements in major crop yields within decades. To ensure future food security, multiple creative efforts seek to overcome limitations to crop yield. Perhaps the greatest limitation to increased crop yield is photosynthetic inefficiency, particularly in C3 crop plants. Recently, great strides have been made toward crop improvement by researchers seeking to introduce the cyanobacterial CO2-concentrating mechanism (CCM) into plant chloroplasts. This strategy recognises the C3 chloroplast as lacking a CCM, and being a primordial cyanobacterium at its essence. Hence the collection of solute transporters, enzymes, and physical structures that make cyanobacterial CO2-fixation so efficient are viewed as a natural source of genetic material for C3 chloroplast improvement. Also we highlight recent outstanding research aimed toward the goal of introducing a cyanobacterial CCM into C3 chloroplasts and consider future research directions.
Collapse
Affiliation(s)
- Benedict M Long
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Benjamin D Rae
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Vivien Rolland
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Sandrini G, Tann RP, Schuurmans JM, van Beusekom SAM, Matthijs HCP, Huisman J. Diel Variation in Gene Expression of the CO2-Concentrating Mechanism during a Harmful Cyanobacterial Bloom. Front Microbiol 2016; 7:551. [PMID: 27148233 PMCID: PMC4840274 DOI: 10.3389/fmicb.2016.00551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Dense phytoplankton blooms in eutrophic waters often experience large daily fluctuations in environmental conditions. We investigated how this diel variation affects in situ gene expression of the CO2-concentrating mechanism (CCM) and other selected genes of the harmful cyanobacterium Microcystis aeruginosa. Photosynthetic activity of the cyanobacterial bloom depleted the dissolved CO2 concentration, raised pH to 10, and caused large diel fluctuations in the bicarbonate and O2 concentration. The Microcystis population consisted of three Ci uptake genotypes that differed in the presence of the low-affinity and high-affinity bicarbonate uptake genes bicA and sbtA. Expression of the bicarbonate uptake genes bicA, sbtA, and cmpA (encoding a subunit of the high-affinity bicarbonate uptake system BCT1), the CCM transcriptional regulator gene ccmR and the photoprotection gene flv4 increased at first daylight and was negatively correlated with the bicarbonate concentration. In contrast, genes of the two CO2 uptake systems were constitutively expressed, whereas expression of the RuBisCO chaperone gene rbcX, the carboxysome gene ccmM, and the photoprotection gene isiA was highest at night and down-regulated during daytime. In total, our results show that the harmful cyanobacterium Microcystis is very responsive to the large diel variations in carbon and light availability often encountered in dense cyanobacterial blooms.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Robert P. Tann
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - J. Merijn Schuurmans
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
- Department of Aquatic Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Sebastiaan A. M. van Beusekom
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Hans C. P. Matthijs
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
12
|
Benson PJ, Purcell-Meyerink D, Hocart CH, Truong TT, James GO, Rourke L, Djordjevic MA, Blackburn SI, Price GD. Factors Altering Pyruvate Excretion in a Glycogen Storage Mutant of the Cyanobacterium, Synechococcus PCC7942. Front Microbiol 2016; 7:475. [PMID: 27092129 PMCID: PMC4820439 DOI: 10.3389/fmicb.2016.00475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
Interest in the production of carbon commodities from photosynthetically fixed CO2 has focused attention on cyanobacteria as a target for metabolic engineering and pathway investigation. We investigated the redirection of carbon flux in the model cyanobacterial species, Synechococcus elongatus PCC 7942, under nitrogen deprivation, for optimized production of the industrially desirable compound, pyruvate. Under nitrogen limited conditions, excess carbon is naturally stored as the multi-branched polysaccharide, glycogen, but a block in glycogen synthesis, via knockout mutation in the gene encoding ADP-glucose pyrophosphorylase (glgC), results in the accumulation of the organic acids, pyruvate and 2-oxoglutarate, as overflow excretions into the extracellular media. The ΔglgC strain, under 48 h of N-deprivation was shown to excrete pyruvate for the first time in this strain. Additionally, by increasing culture pH, to pH 10, it was possible to substantially elevate excretion of pyruvate, suggesting the involvement of an unknown substrate/proton symporter for export. The ΔglgC mutant was also engineered to express foreign transporters for glucose and sucrose, and then grown photomixotrophically with exogenous organic carbon supply, as added 5 mM glucose or sucrose during N- deprivation. Under these conditions we observed a fourfold increase in extracellular pyruvate excretion when glucose was added, and a smaller increase with added sucrose. Although the magnitude of pyruvate excretion did not correlate with the capacity of the ΔglgC strain for bicarbonate-dependent photosynthetic O2 evolution, or with light intensity, there was, however, a positive correlation observed between the density of the starter culture prior to N-deprivation and the final extracellular pyruvate concentration. The factors that contribute to enhancement of pyruvate excretion are discussed, as well as consideration of whether the source of carbon for pyruvate excretion might be derived from photosynthetic CO2 fixation or from remobilisation of existing carbon stores.
Collapse
Affiliation(s)
- Phoebe J Benson
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Diane Purcell-Meyerink
- Research School of Biology, Plant Sciences, Australian National University, CanberraACT, Australia; North Australia Marine Research Alliance, Arafura Timor Research Facility, DarwinNT, Australia
| | - Charles H Hocart
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Thy T Truong
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Gabriel O James
- Research School of Biology, Plant Sciences, Australian National University, CanberraACT, Australia; Heliase Genomics, University of AucklandAuckland, New Zealand
| | - Loraine Rourke
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Michael A Djordjevic
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Susan I Blackburn
- CSIRO National Research Collections Australia, Hobart TAS, Australia
| | - G D Price
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| |
Collapse
|
13
|
Darus L, Ledezma P, Keller J, Freguia S. Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. PHOTOSYNTHESIS RESEARCH 2016; 127:347-354. [PMID: 26407568 DOI: 10.1007/s11120-015-0193-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
This work studies how extracellular electron transfer (EET) from cyanobacteria-dominated marine microbial biofilms to solid electrodes is affected by the availability of inorganic carbon (Ci). The EET was recorded chronoamperometrically in the form of electrical current by a potentiostat in two identical photo-electrochemical cells using carbon electrodes poised at a potential of +0.6 V versus standard hydrogen electrode under 12/12 h illumination/dark cycles. The Ci was supplied by the addition of NaHCO3 to the medium and/or by sparging CO2 gas. At high Ci conditions, EET from the microbial biofilm to the electrodes was observed only during the dark phase, indicating the occurrence of a form of night-time respiration that can use insoluble electrodes as the terminal electron acceptor. At low or no Ci conditions, however, EET also occurred during illumination suggesting that, in the absence of their natural electron acceptor, some cyanobacteria are able to utilise solid electrodes as an electron sink. This may be a natural survival mechanism for cyanobacteria to maintain redox balance in environments with limiting CO2 and/or high light intensity.
Collapse
Affiliation(s)
- Libertus Darus
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jürg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
14
|
Sandrini G, Jakupovic D, Matthijs HCP, Huisman J. Strains of the Harmful Cyanobacterium Microcystis aeruginosa Differ in Gene Expression and Activity of Inorganic Carbon Uptake Systems at Elevated CO2 Levels. Appl Environ Microbiol 2015; 81:7730-9. [PMID: 26319871 PMCID: PMC4616958 DOI: 10.1128/aem.02295-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/22/2015] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are generally assumed to be effective competitors at low CO2 levels because of their efficient CO2-concentrating mechanism (CCM), and yet how bloom-forming cyanobacteria respond to rising CO2 concentrations is less clear. Here, we investigate changes in CCM gene expression at ambient CO2 (400 ppm) and elevated CO2 (1,100 ppm) in six strains of the harmful cyanobacterium Microcystis. All strains downregulated cmpA encoding the high-affinity bicarbonate uptake system BCT1, whereas both the low- and high-affinity CO2 uptake genes were expressed constitutively. Four strains downregulated the bicarbonate uptake genes bicA and/or sbtA, whereas two strains showed constitutive expression of the bicA-sbtA operon. In one of the latter strains, a transposon insert in bicA caused low bicA and sbtA transcript levels, which made this strain solely dependent on BCT1 for bicarbonate uptake. Activity measurements of the inorganic carbon (Ci) uptake systems confirmed the CCM gene expression results. Interestingly, genes encoding the RuBisCO enzyme, structural carboxysome components, and carbonic anhydrases were not regulated. Hence, Microcystis mainly regulates the initial uptake of inorganic carbon, which might be an effective strategy for a species experiencing strongly fluctuating Ci concentrations. Our results show that CCM gene regulation of Microcystis varies among strains. The observed genetic and phenotypic variation in CCM responses may offer an important template for natural selection, leading to major changes in the genetic composition of harmful cyanobacterial blooms at elevated CO2.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dennis Jakupovic
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans C P Matthijs
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Ting CS, Dusenbury KH, Pryzant RA, Higgins KW, Pang CJ, Black CE, Beauchamp EM. The Prochlorococcus carbon dioxide-concentrating mechanism: evidence of carboxysome-associated heterogeneity. PHOTOSYNTHESIS RESEARCH 2015; 123:45-60. [PMID: 25193505 DOI: 10.1007/s11120-014-0038-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/28/2014] [Indexed: 06/03/2023]
Abstract
The ability of Prochlorococcus to numerically dominate open ocean regions and contribute significantly to global carbon cycles is dependent in large part on its effectiveness in transforming light energy into compounds used in cell growth, maintenance, and division. Integral to these processes is the carbon dioxide-concentrating mechanism (CCM), which enhances photosynthetic CO2 fixation. The CCM involves both active uptake systems that permit intracellular accumulation of inorganic carbon as the pool of bicarbonate and the system of HCO3 (-) conversion into CO2. The latter is located in the carboxysome, a microcompartment designed to promote the carboxylase activity of Rubisco. This study presents a comparative analysis of several facets of the Prochlorococcus CCM. Our analyses indicate that a core set of CCM components is shared, and their genomic organization is relatively well conserved. Moreover, certain elements, including carboxysome shell polypeptides CsoS1 and CsoS4A, exhibit striking conservation. Unexpectedly, our analyses reveal that the carbonic anhydrase (CsoSCA) and CsoS2 shell polypeptide have diversified within the lineage. Differences in csoSCA and csoS2 are consistent with a model of unequal rates of evolution rather than relaxed selection. The csoS2 and csoSCA genes form a cluster in Prochlorococcus genomes, and we identified two conserved motifs directly upstream of this cluster that differ from the motif in marine Synechococcus and could be involved in regulation of gene expression. Although several elements of the CCM remain well conserved in the Prochlorococcus lineage, the evolution of differences in specific carboxysome features could in part reflect optimization of carboxysome-associated processes in dissimilar cellular environments.
Collapse
Affiliation(s)
- Claire S Ting
- Department of Biology, Williams College, Thompson Biology Lab 214, Williamstown, MA, 01267, USA,
| | | | | | | | | | | | | |
Collapse
|
16
|
Du J, Förster B, Rourke L, Howitt SM, Price GD. Characterisation of cyanobacterial bicarbonate transporters in E. coli shows that SbtA homologs are functional in this heterologous expression system. PLoS One 2014; 9:e115905. [PMID: 25536191 PMCID: PMC4275256 DOI: 10.1371/journal.pone.0115905] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/02/2014] [Indexed: 11/23/2022] Open
Abstract
Cyanobacterial HCO3(-) transporters BCT1, SbtA and BicA are important components of cyanobacterial CO2-concentration mechanisms. They also show potential in applications aimed at improving photosynthetic rates and yield when expressed in the chloroplasts of C3 crop species. The present study investigated the feasibility of using Escherichia coli to assess function of a range of SbtA and BicA transporters in a heterologous expression system, ultimately for selection of transporters suitable for chloroplast expression. Here, we demonstrate that six β-forms of SbtA are active in E. coli, although other tested bicarbonate transporters were inactive. The sbtA clones were derived from Synechococcus sp. WH5701, Cyanobium sp. PCC7001, Cyanobium sp. PCC6307, Synechococcus elongatus PCC7942, Synechocystis sp. PCC6803, and Synechococcus sp. PCC7002. The six SbtA homologs varied in bicarbonate uptake kinetics and sodium requirements in E. coli. In particular, SbtA from PCC7001 showed the lowest uptake affinity and highest flux rate and was capable of increasing the internal inorganic carbon pool by more than 8 mM relative to controls lacking transporters. Importantly, we were able to show that the SbtB protein (encoded by a companion gene near sbtA) binds to SbtA and suppresses bicarbonate uptake function of SbtA in E. coli, suggesting a role in post-translational regulation of SbtA, possibly as an inhibitor in the dark. This study established E. coli as a heterologous expression and analysis system for HCO3(-) transporters from cyanobacteria, and identified several SbtA transporters as useful for expression in the chloroplast inner envelope membranes of higher plants.
Collapse
Affiliation(s)
- Jiahui Du
- Plant Science Division, Realizing Increased Photosynthetic Efficiency (RIPE) Network, Research School of Biology, Linnaeus Building #134, Australian National University, Canberra, ACT 2601, Australia
| | - Britta Förster
- Plant Science Division, Realizing Increased Photosynthetic Efficiency (RIPE) Network, Research School of Biology, Linnaeus Building #134, Australian National University, Canberra, ACT 2601, Australia
| | - Loraine Rourke
- Plant Science Division, Realizing Increased Photosynthetic Efficiency (RIPE) Network, Research School of Biology, Linnaeus Building #134, Australian National University, Canberra, ACT 2601, Australia
| | - Susan M. Howitt
- Plant Science Division, Realizing Increased Photosynthetic Efficiency (RIPE) Network, Research School of Biology, Linnaeus Building #134, Australian National University, Canberra, ACT 2601, Australia
| | - G. Dean Price
- Plant Science Division, Realizing Increased Photosynthetic Efficiency (RIPE) Network, Research School of Biology, Linnaeus Building #134, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Price GD, Howitt SM. Topology mapping to characterize cyanobacterial bicarbonate transporters: BicA (SulP/SLC26 family) and SbtA. Mol Membr Biol 2014; 31:177-82. [DOI: 10.3109/09687688.2014.953222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Sandrini G, Matthijs HCP, Verspagen JMH, Muyzer G, Huisman J. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. THE ISME JOURNAL 2014; 8:589-600. [PMID: 24132080 PMCID: PMC3930318 DOI: 10.1038/ismej.2013.179] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/09/2022]
Abstract
Rising CO2 levels may act as an important selective factor on the CO2-concentrating mechanism (CCM) of cyanobacteria. We investigated genetic diversity in the CCM of Microcystis aeruginosa, a species producing harmful cyanobacterial blooms in many lakes worldwide. All 20 investigated Microcystis strains contained complete genes for two CO2 uptake systems, the ATP-dependent bicarbonate uptake system BCT1 and several carbonic anhydrases (CAs). However, 12 strains lacked either the high-flux bicarbonate transporter BicA or the high-affinity bicarbonate transporter SbtA. Both genes, bicA and sbtA, were located on the same operon, and the expression of this operon is most likely regulated by an additional LysR-type transcriptional regulator (CcmR2). Strains with only a small bicA fragment clustered together in the phylogenetic tree of sbtAB, and the bicA fragments were similar in strains isolated from different continents. This indicates that a common ancestor may first have lost most of its bicA gene and subsequently spread over the world. Growth experiments showed that strains with sbtA performed better at low inorganic carbon (Ci) conditions, whereas strains with bicA performed better at high Ci conditions. This offers an alternative explanation of previous competition experiments, as our results reveal that the competition at low CO2 levels was won by a specialist with only sbtA, whereas a generalist with both bicA and sbtA won at high CO2 levels. Hence, genetic and phenotypic variation in Ci uptake systems provide Microcystis with the potential for microevolutionary adaptation to changing CO2 conditions, with a selective advantage for bicA-containing strains in a high-CO2 world.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans C P Matthijs
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jolanda M H Verspagen
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard Muyzer
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Sjostrand J, Tofigh A, Daubin V, Arvestad L, Sennblad B, Lagergren J. A Bayesian Method for Analyzing Lateral Gene Transfer. Syst Biol 2014; 63:409-20. [DOI: 10.1093/sysbio/syu007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
20
|
Rae BD, Long BM, Badger MR, Price GD. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 2013; 77:357-79. [PMID: 24006469 PMCID: PMC3811607 DOI: 10.1128/mmbr.00061-12] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are the globally dominant photoautotrophic lineage. Their success is dependent on a set of adaptations collectively termed the CO2-concentrating mechanism (CCM). The purpose of the CCM is to support effective CO2 fixation by enhancing the chemical conditions in the vicinity of the primary CO2-fixing enzyme, D-ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to promote the carboxylase reaction and suppress the oxygenase reaction. In cyanobacteria and some proteobacteria, this is achieved by encapsulation of RubisCO within carboxysomes, which are examples of a group of proteinaceous bodies called bacterial microcompartments. Carboxysomes encapsulate the CO2-fixing enzyme within the selectively permeable protein shell and simultaneously encapsulate a carbonic anhydrase enzyme for CO2 supply from a cytoplasmic bicarbonate pool. These bodies appear to have arisen twice and undergone a process of convergent evolution. While the gross structures of all known carboxysomes are ostensibly very similar, with shared gross features such as a selectively permeable shell layer, each type of carboxysome encapsulates a phyletically distinct form of RubisCO enzyme. Furthermore, the specific proteins forming structures such as the protein shell or the inner RubisCO matrix are not identical between carboxysome types. Each type has evolutionarily distinct forms of the same proteins, as well as proteins that are entirely unrelated to one another. In light of recent developments in the study of carboxysome structure and function, we present this review to summarize the knowledge of the structure and function of both types of carboxysome. We also endeavor to cast light on differing evolutionary trajectories which may have led to the differences observed in extant carboxysomes.
Collapse
Affiliation(s)
- Benjamin D Rae
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
21
|
From green to red: horizontal gene transfer of the phycoerythrin gene cluster between Planktothrix strains. Appl Environ Microbiol 2013; 79:6803-12. [PMID: 23995927 DOI: 10.1128/aem.01455-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer is common in cyanobacteria, and transfer of large gene clusters may lead to acquisition of new functions and conceivably niche adaption. In the present study, we demonstrate that horizontal gene transfer between closely related Planktothrix strains can explain the production of the same oligopeptide isoforms by strains of different colors. Comparison of the genomes of eight Planktothrix strains revealed that strains producing the same oligopeptide isoforms are closely related, regardless of color. We have investigated genes involved in the synthesis of the photosynthetic pigments phycocyanin and phycoerythrin, which are responsible for green and red appearance, respectively. Sequence comparisons suggest the transfer of a functional phycoerythrin gene cluster generating a red phenotype in a strain that is otherwise more closely related to green strains. Our data show that the insertion of a DNA fragment containing the 19.7-kb phycoerythrin gene cluster has been facilitated by homologous recombination, also replacing a region of the phycocyanin operon. These findings demonstrate that large DNA fragments spanning entire functional gene clusters can be effectively transferred between closely related cyanobacterial strains and result in a changed phenotype. Further, the results shed new light on the discussion of the role of horizontal gene transfer in the sporadic distribution of large gene clusters in cyanobacteria, as well as the appearance of red and green strains.
Collapse
|
22
|
Rae BD, Long BM, Whitehead LF, Förster B, Badger MR, Price GD. Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation. J Mol Microbiol Biotechnol 2013; 23:300-7. [PMID: 23920493 DOI: 10.1159/000351342] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carboxysomes are extraordinarily efficient proteinaceous microcompartments that encapsulate the primary CO2-fixing enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) in cyanobacteria and some proteobacteria. These microbodies form part of a CO2-concentrating mechanism (CCM), operating together with active CO2 and HCO3(-) uptake transporters which accumulate HCO3(-) in the cytoplasm of the cell. Cyanobacteria (also known as blue-green algae) are highly productive on a global scale, especially those species from open-ocean niches, which collectively contribute nearly 30% of global net primary fixation. This productivity would not be possible without a CCM which is dependent on carboxysomes. Two evolutionarily distinct forms of carboxysome are evident that encapsulate proteobacterial RuBisCO form-1A or higher-plant RuBisCO form- 1B, respectively. Based partly on RuBisCO phylogeny, the two carboxysome types are known either as α-carboxysomes, found in predominantly oceanic cyanobacteria (α-cyanobacteria) and some proteobacteria, or as β-carboxysomes, found mainly in freshwater/estuarine cyanobacteria (β-cyanobacteria). Both carboxysome types are believed to have evolved in parallel as a consequence of fluctuating atmospheric CO2 levels and evolutionary pressure acting via the poor enzymatic kinetics of RuBisCO. The three-dimensional structures and protein components of each carboxysome type reflect distinct evolutionarily strategies to the same major functions: subcellular compartmentalization and RuBisCO encapsulation, oxygen exclusion, and CO2 concentration and fixation.
Collapse
Affiliation(s)
- Benjamin D Rae
- Division of Plant Science, The Australian National University, Canberra, A.C.T., Australia
| | | | | | | | | | | |
Collapse
|
23
|
Price GD, Pengelly JJL, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:753-68. [PMID: 23028015 DOI: 10.1093/jxb/ers257] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Crop yields need to nearly double over the next 35 years to keep pace with projected population growth. Improving photosynthesis, via a range of genetic engineering strategies, has been identified as a promising target for crop improvement with regard to increased photosynthetic yield and better water-use efficiency (WUE). One approach is based on integrating components of the highly efficient CO(2)-concentrating mechanism (CCM) present in cyanobacteria (blue-green algae) into the chloroplasts of key C(3) crop plants, particularly wheat and rice. Four progressive phases towards engineering components of the cyanobacterial CCM into C(3) species can be envisaged. The first phase (1a), and simplest, is to consider the transplantation of cyanobacterial bicarbonate transporters to C(3) chloroplasts, by host genomic expression and chloroplast targeting, to raise CO(2) levels in the chloroplast and provide a significant improvement in photosynthetic performance. Mathematical modelling indicates that improvements in photosynthesis as high as 28% could be achieved by introducing both of the single-gene, cyanobacterial bicarbonate transporters, known as BicA and SbtA, into C(3) plant chloroplasts. Part of the first phase (1b) includes the more challenging integration of a functional cyanobacterial carboxysome into the chloroplast by chloroplast genome transformation. The later three phases would be progressively more elaborate, taking longer to engineer other functional components of the cyanobacterial CCM into the chloroplast, and targeting photosynthetic and WUE efficiencies typical of C(4) photosynthesis. These later stages would include the addition of NDH-1-type CO(2) pumps and suppression of carbonic anhydrase and C(3) Rubisco in the chloroplast stroma. We include a score card for assessing the success of physiological modifications gained in phase 1a.
Collapse
Affiliation(s)
- G Dean Price
- Molecular Plant Physiology Cluster, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rae BD, Long BM, Badger MR, Price GD. Structural determinants of the outer shell of β-carboxysomes in Synechococcus elongatus PCC 7942: roles for CcmK2, K3-K4, CcmO, and CcmL. PLoS One 2012; 7:e43871. [PMID: 22928045 PMCID: PMC3425506 DOI: 10.1371/journal.pone.0043871] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/27/2012] [Indexed: 02/02/2023] Open
Abstract
Cyanobacterial CO(2)-fixation is supported by a CO(2)-concentrating mechanism which improves photosynthesis by saturating the primary carboxylating enzyme, ribulose 1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), with its preferred substrate CO(2). The site of CO(2)-concentration is a protein bound micro-compartment called the carboxysome which contains most, if not all, of the cellular RuBisCO. The shell of β-type carboxysomes is thought to be composed of two functional layers, with the inner layer involved in RuBisCO scaffolding and bicarbonate dehydration, and the outer layer in selective permeability to dissolved solutes. Here, four genes (ccmK2-4, ccmO), whose products were predicted to function in the outer shell layer of β-carboxysomes from Synechococcus elongatus PCC 7942, were investigated by analysis of defined genetic mutants. Deletion of the ccmK2 and ccmO genes resulted in severe high-CO(2)-requiring mutants with aberrant carboxysomes, whilst deletion of ccmK3 or ccmK4 resulted in cells with wild-type physiology and normal ultrastructure. However, a tandem deletion of ccmK3-4 resulted in cells with wild-type carboxysome structure, but physiologically deficient at low CO(2) conditions. These results revealed the minimum structural determinants of the outer shell of β-carboxysomes from this strain: CcmK2, CcmO and CcmL. An accessory set of proteins was required to refine the function of the pre-existing shell: CcmK3 and CcmK4. These data suggested a model for the facet structure of β-carboxysomes with CcmL forming the vertices, CcmK2 forming the bulk facet, and CcmO, a "zipper protein," interfacing the edges of carboxysome facets.
Collapse
Affiliation(s)
- Benjamin D. Rae
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Benedict M. Long
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Murray R. Badger
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - G. Dean Price
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
25
|
Matsuda Y. Inorganic carbon utilization by aquatic photoautotrophs and potential usages of algal primary production. PHOTOSYNTHESIS RESEARCH 2011; 109:1-5. [PMID: 21909712 DOI: 10.1007/s11120-011-9683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
|