1
|
Sage RF, Edwards EJ, Heyduk K, Cushman JC. Crassulacean acid metabolism (CAM) at the crossroads: a special issue to honour 50 years of CAM research by Klaus Winter. ANNALS OF BOTANY 2023; 132:553-561. [PMID: 37856823 PMCID: PMC10799977 DOI: 10.1093/aob/mcad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada–Reno, Reno, NV 89557, USA
| |
Collapse
|
2
|
Angelovici R, Kliebenstein D. A plant balancing act: Meshing new and existing metabolic pathways towards an optimized system. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102173. [PMID: 35144143 DOI: 10.1016/j.pbi.2022.102173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Specialized metabolic pathways evolve from existing pathways, creating new functionality potentially boosting fitness. However, how these pathways are integrated into a pre-existing working and well-balanced metabolic system is unclear. They could be integrated to the system as a functional appendage, or they could be fully embedded into primary metabolism by establishing new biochemical and regulatory connections. A full integration into the primary metabolic system requires substantial system re-wiring and because of this complexity, the latter is often not experimentally pursued. New studies provide evidence that some specialized metabolic pathways are fully embedded in primary metabolism with extensive new regulatory and biochemical connections. This suggests, that we should consider whether other specialized metabolic pathways could be fully integrated rather than being simple appendages. In this mini review, we survey compelling evidence supporting that some specialized metabolic pathways are fully integrated and ask if these metabolites now act as de-facto primary metabolites?
Collapse
Affiliation(s)
- Ruthie Angelovici
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Dan Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Liu Y, Maimaitijiang T, Zhang J, Ma Y, Lan H. The Developmental Enhancement of a C 4 System With Non-Typical C 4 Physiological Characteristics in Salsola ferganica (Kranz Anatomy), an Annual Desert Halophyte. FRONTIERS IN PLANT SCIENCE 2020; 11:152. [PMID: 32210984 PMCID: PMC7069449 DOI: 10.3389/fpls.2020.00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/31/2020] [Indexed: 05/27/2023]
Abstract
Variations of photosynthetic structures in different tissues or cells are in coordination with changes in various aspects, e.g. physiology, biochemistry, gene expression, etc. Most C4 plant species undergo developmental enhancement of the photosynthetic system, which may present different modes of changes between anatomy and physiology/biochemistry. In the current study, we investigated a Kranz-type C4 species Salsola ferganica with the progressive development of photosynthetic (PS) structure, performance of PS physiology, induction of PS enzymes, and transcriptional and translational regulation of PS genes, results revealed that S. ferganica presented C3 type anatomy in cotyledons but C4 type in leaves (C3/L4), with the C4 system separation of initial carbon fixation in the palisade mesophyll (M) cells and the following incorporation into triosephosphates and sugars in the bundle sheath (BS) cells, respectively. The BS cells continuously surrounded the vascular bundles and water storage cells in leaf anatomic structure. Compared to the single-cell C4 species Suaeda aralocaspica, S. ferganica exhibited similar developmental enhancement of C4 syndrome temporally and spatially in anatomic structures, enzyme activities, and gene expression, which suggests that completion of differentiation of the photosynthetic system is necessary for a C4 assimilation pathway. Besides, S. ferganica also displayed some different characteristics compared to S. aralocaspica in photosynthetic physiology, e.g. a more flexible δ13C value, much lower phosphoenolpyruvate carboxylase (PEPC) activity, and an insensitive response to stimuli, etc., which were not typical C4 characteristics. We speculate that this may suggest a different status of these two species in the evolutionary process of the photosynthesis pathway. Our findings will contribute to further understanding of the diversity of photosynthesis systems in Kranz-type C4 species and the Salsola genus.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
4
|
Bohley K, Schröder T, Kesselmeier J, Ludwig M, Kadereit G. C4-like photosynthesis and the effects of leaf senescence on C4-like physiology in Sesuvium sesuvioides (Aizoaceae). JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1553-1565. [PMID: 30689935 PMCID: PMC6411375 DOI: 10.1093/jxb/erz011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/07/2019] [Indexed: 05/10/2023]
Abstract
Sesuvium sesuvioides (Sesuvioideae, Aizoaceae) is a perennial, salt-tolerant herb distributed in flats, depressions, or disturbed habitats of southern Africa and the Cape Verdes. Based on carbon isotope values, it is considered a C4 species, despite a relatively high ratio of mesophyll to bundle sheath cells (2.7:1) in the portulacelloid leaf anatomy. Using leaf anatomy, immunocytochemistry, gas exchange measurements, and enzyme activity assays, we sought to identify the biochemical subtype of C4 photosynthesis used by S. sesuvioides and to explore the anatomical, physiological, and biochemical traits of young, mature, and senescing leaves, with the aim to elucidate the plasticity and possible limitations of the photosynthetic efficiency in this species. Assays indicated that S. sesuvioides employs the NADP-malic enzyme as the major decarboxylating enzyme. The activity of C4 enzymes, however, declined as leaves aged, and the proportion of water storage tissue increased while air space decreased. These changes suggest a functional shift from photosynthesis to water storage in older leaves. Interestingly, S. sesuvioides demonstrated CO2 compensation points ranging between C4 and C3-C4 intermediate values, and immunocytochemistry revealed labeling of the Rubisco large subunit in mesophyll cells. We hypothesize that S. sesuvioides represents a young C4 lineage with C4-like photosynthesis in which C3 and C4 cycles are running simultaneously in the mesophyll.
Collapse
Affiliation(s)
- Katharina Bohley
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz, Germany
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Till Schröder
- Philipps-Universität, FB 16–Pharmazie, Marburg, Germany
| | - Jürgen Kesselmeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Martha Ludwig
- School of Molecular Sciences [310], University of Western Australia, Crawley, Western Australia, Australia
| | - Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz, Germany
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
5
|
Bayat S, Schranz ME, Roalson EH, Hall JC. Lessons from Cleomaceae, the Sister of Crucifers. TRENDS IN PLANT SCIENCE 2018; 23:808-821. [PMID: 30006074 DOI: 10.1016/j.tplants.2018.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 05/21/2023]
Abstract
Cleomaceae is a diverse group well-suited to addressing fundamental genomic and evolutionary questions as the sister group to Brassicaceae, facilitating transfer of knowledge from the model Arabidopsis thaliana. Phylogenetic and taxonomic revisions provide a framework for examining the evolution of substantive morphological and physiology diversity in Cleomaceae, but not necessarily in Brassicaceae. The investigation of both nested and contrasting whole-genome duplications (WGDs) between Cleomaceae and Brassicaceae allows comparisons of independently duplicated genes and investigation of whether they may be drivers of the observed innovations. Further, a wealth of outstanding genetic research has provided insight into how the important alternative carbon fixation pathway, C4 photosynthesis, has evolved via differential expression of a suite of genes, of which the underlying mechanisms are being elucidated.
Collapse
Affiliation(s)
- Soheila Bayat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; RG Plant Cytogenomics, Central European Institute of Technology, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
6
|
Igamberdiev AU, Bykova NV. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radic Biol Med 2018; 122:74-85. [PMID: 29355740 DOI: 10.1016/j.freeradbiomed.2018.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/11/2022]
Abstract
Organic acids play a crucial role in numerous metabolic processes accompanied by transfer of electrons and protons and linked to the reduction/oxidation of major redox couples in plant cells, such as NAD, NADP, glutathione, and ascorbate. Fluxes through the pathways metabolizing organic acids modulate redox states in cell compartments, contribute to generation of reactive oxygen and nitrogen species, and mediate signal transduction processes. Organic acid metabolism not only functions to equilibrate the redox potential in plant cells but also to transfer redox equivalents between cell compartments supporting various metabolic processes. The most important role in this transfer belongs to different forms of malate dehydrogenase interconverting malate and oxaloacetate or forming pyruvate (malic enzymes). During photosynthesis malate serves as a major form of transfer of redox equivalents from chloroplasts to the cytosol and other compartments via the malate valve. On the other hand, mitochondria, via alterations of their redox potential, become a source of citrate that can be transported to the cytosol and support biosynthesis of amino acids. Citrate is also an important retrograde signalling compound that regulates transcription of several genes including those encoding the alternative oxidase. The alternative oxidase, which is activated by increased redox potential and by pyruvate, is, in turn, important for the maintenance of redox potential in mitochondria. The roles of organic acids in establishing redox equilibrium, supporting ionic gradients on membranes, acidification of the extracellular medium, and regulation of production of reactive oxygen and nitrogen species are discussed.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | - Natalia V Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada R6M 1Y5
| |
Collapse
|
7
|
Stata M, Sage TL, Hoffmann N, Covshoff S, Ka-Shu Wong G, Sage RF. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria. PLANT & CELL PHYSIOLOGY 2016; 57:904-918. [PMID: 26985020 DOI: 10.1093/pcp/pcw015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function.
Collapse
Affiliation(s)
- Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Natalie Hoffmann
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada Department of Medicine, University of Alberta, Edmonton AB, T6G 2E1, Canada BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| |
Collapse
|
8
|
Koteyeva NK, Voznesenskaya EV, Berry JO, Cousins AB, Edwards GE. The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2587-601. [PMID: 26957565 PMCID: PMC4861011 DOI: 10.1093/jxb/erw082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Temporal and spatial patterns of photosynthetic enzyme expression and structural maturation of chlorenchyma cells along longitudinal developmental gradients were characterized in young leaves of two single cell C4 species, Bienertia sinuspersici and Suaeda aralocaspica Both species partition photosynthetic functions between distinct intracellular domains. In the C4-C domain, C4 acids are formed in the C4 cycle during capture of atmospheric CO2 by phosphoenolpyruvate carboxylase. In the C4-D domain, CO2 released in the C4 cycle via mitochondrial NAD-malic enzyme is refixed by Rubisco. Despite striking differences in origin and intracellular positioning of domains, these species show strong convergence in C4 developmental patterns. Both progress through a gradual developmental transition towards full C4 photosynthesis, with an associated increase in levels of photosynthetic enzymes. Analysis of longitudinal sections showed undeveloped domains at the leaf base, with Rubisco rbcL mRNA and protein contained within all chloroplasts. The two domains were first distinguishable in chlorenchyma cells at the leaf mid-regions, but still contained structurally similar chloroplasts with equivalent amounts of rbcL mRNA and protein; while mitochondria had become confined to just one domain (proto-C4-D). The C4 state was fully formed towards the leaf tips, Rubisco transcripts and protein were compartmentalized specifically to structurally distinct chloroplasts in the C4-D domains indicating selective regulation of Rubisco expression may occur by control of transcription or stability of rbcL mRNA. Determination of CO2 compensation points showed young leaves were not functionally C4, consistent with cytological observations of the developmental progression from C3 default to intermediate to C4 photosynthesis.
Collapse
Affiliation(s)
- Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, VL Komarov Botanical Institute of Russian Academy of Sciences, St Petersburg, 197376, Russia
| | - Elena V Voznesenskaya
- Laboratory of Anatomy and Morphology, VL Komarov Botanical Institute of Russian Academy of Sciences, St Petersburg, 197376, Russia
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
9
|
Washburn JD, Schnable JC, Davidse G, Pires JC. Phylogeny and photosynthesis of the grass tribe Paniceae. AMERICAN JOURNAL OF BOTANY 2015; 102:1493-505. [PMID: 26373976 DOI: 10.3732/ajb.1500222] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/18/2015] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY The grass tribe Paniceae includes important food, forage, and bioenergy crops such as switchgrass, napiergrass, various millet species, and economically important weeds. Paniceae are also valuable for answering scientific and evolutionary questions about C4 photosynthetic evolution, drought tolerance, and spikelet variation. However, the phylogeny of the tribe remains incompletely resolved. METHODS Forty-five taxa were selected from across the tribe Paniceae and outgroups for genome survey sequencing (GSS). These data were used to build a phylogenetic tree of the Paniceae based on 102 markers (78 chloroplast, 22 mitochondrial, 2 nrDNA). Ancestral state reconstruction analyses were also performed within the Paniceae using both the traditional and two subtype classification systems to test hypotheses of C4 subtype evolution. KEY RESULTS The phylogenetic tree resolves many areas of the Paniceae with high support and provides insight into the origin and number of C4 evolution events within the tribe. The recovered phylogeny and ancestral state reconstructions support between four and seven independent origins of C4 photosynthesis within the tribe and indicate which species are potentially the closest C3 sister taxa of each of these events. CONCLUSIONS Although the sequence of evolutionary events that produced multiple C4 subtypes within the Paniceae remains undetermined, the results presented here are consistent with only a subset of currently proposed models. The species used in this study constitute a panel of C3 and C4 grasses that are suitable for further studies on C4 photosynthesis, bioenergy, food and forage crops, and various developmental features of the Paniceae.
Collapse
Affiliation(s)
- Jacob D Washburn
- Division of Biological Sciences, University of Missouri, 311 Bond Life Sciences Center, Columbia, Missouri 65211 USA
| | - James C Schnable
- Agronomy & Horticulture, University of Nebraska-Lincoln, Beadle Center E207, Lincoln, Nebraska 68583-0660 USA
| | - Gerrit Davidse
- Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299 USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, 371b Bond Life Sciences Center, Columbia, Missouri 65211 USA
| |
Collapse
|
10
|
Sage RF, Stata M. Photosynthetic diversity meets biodiversity: the C4 plant example. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:104-19. [PMID: 25264020 DOI: 10.1016/j.jplph.2014.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 05/16/2023]
Abstract
Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada M5S3B2.
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada M5S3B2
| |
Collapse
|
11
|
Sage RF, Khoshravesh R, Sage TL. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3341-56. [PMID: 24803502 DOI: 10.1093/jxb/eru180] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this review, we examine how the specialized "Kranz" anatomy of C4 photosynthesis evolved from C3 ancestors. Kranz anatomy refers to the wreath-like structural traits that compartmentalize the biochemistry of C4 photosynthesis and enables the concentration of CO2 around Rubisco. A simplified version of Kranz anatomy is also present in the species that utilize C2 photosynthesis, where a photorespiratory glycine shuttle concentrates CO2 into an inner bundle-sheath-like compartment surrounding the vascular tissue. C2 Kranz is considered to be an intermediate stage in the evolutionary development of C4 Kranz, based on the intermediate branching position of C2 species in 14 evolutionary lineages of C4 photosynthesis. In the best-supported model of C4 evolution, Kranz anatomy in C2 species evolved from C3 ancestors with enlarged bundle sheath cells and high vein density. Four independent lineages have been identified where C3 sister species of C2 plants exhibit an increase in organelle numbers in the bundle sheath and enlarged bundle sheath cells. Notably, in all of these species, there is a pronounced shift of mitochondria to the inner bundle sheath wall, forming an incipient version of the C2 type of Kranz anatomy. This incipient version of C2 Kranz anatomy is termed proto-Kranz, and is proposed to scavenge photorespiratory CO2. By doing so, it may provide fitness benefits in hot environments, and thus represent a critical first stage of the evolution of both the C2 and C4 forms of Kranz anatomy.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, On M5S3B2 Canada
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, On M5S3B2 Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, On M5S3B2 Canada
| |
Collapse
|
12
|
Oakley JC, Sultmanis S, Stinson CR, Sage TL, Sage RF. Comparative studies of C3 and C4 Atriplex hybrids in the genomics era: physiological assessments. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3637-47. [PMID: 24675672 PMCID: PMC4085961 DOI: 10.1093/jxb/eru106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We crossed the C3 species Atriplex prostrata with the C4 species Atriplex rosea to produce F1 and F2 hybrids. All hybrids exhibited C3-like δ(13)C values, and had reduced rates of net CO2 assimilation compared with A. prostrata. The activities of the major C4 cycle enzymes PEP carboxylase, NAD-malic enzyme, and pyruvate-Pi dikinase in the hybrids were at most 36% of the C4 values. These results demonstrate the C4 metabolic cycle was disrupted in the hybrids. Photosynthetic CO2 compensation points (Г) of the hybrids were generally midway between the C3 and C4 values, and in most hybrids were accompanied by low, C3-like activities in one or more of the major C4 cycle enzymes. This supports the possibility that most hybrids use a photorespiratory glycine shuttle to concentrate CO2 into the bundle sheath cells. One hybrid exhibited a C4-like Г of 4 µmol mol(-1), indicating engagement of a C4 metabolic cycle. Consistently, this hybrid had elevated activities of all measured C4 cycle enzymes relative to the C3 parent; however, C3-like carbon isotope ratios indicate the low Г is mainly due to a photorespiratory glycine shuttle. The anatomy of the hybrids resembled that of C3-C4 intermediate species using a glycine shuttle to concentrate CO2 in the bundle sheath, and is further evidence that this physiology is the predominant, default condition of the F2 hybrids. Progeny of these hybrids should further segregate C3 and C4 traits and in doing so assist in the discovery of C4 genes using high-throughput methods of the genomics era.
Collapse
Affiliation(s)
- Jason C Oakley
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Stefanie Sultmanis
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Corey R Stinson
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| |
Collapse
|