1
|
Pu K, Li N, Gao Y, Wang T, Zhang M, Sun W, Li J, Xie J. Mitigating effects of Methyl Jasmonate on photosynthetic inhibition and oxidative stress of pepper (Capsicum annuum L) seedlings under low temperature combined with low light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109843. [PMID: 40168861 DOI: 10.1016/j.plaphy.2025.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Low temperature combined with low light (LL) is a critical abiotic stress that restricting plant growth and yield of pepper (Capsicum annuum L.). Methyl jasmonate (MeJA) is considered with potential benefits for improving plant stress resistance; however, the physiological mechanisms underlying the adaptation of pepper to LL stress have not been explored. This study aimed to investigate the potential mitigating effects of foliar MeJA (200 μmol L-1) application on pepper seedlings subjected to LL stress (10/5 °C, 100 μmol m-2 s-1) for 168 h. Our results indicated that the application of exogenous MeJA reduced the negative effect on growth inhibition of pepper seedlings caused by LL stress, significantly increased chlorophyll contents and photosynthetic capacity as a result of improved photosynthesis rate. In addition, MeJA reduced the accumulation of reactive oxygen species and malondialdehyde contents induced by LL stress, while enhancing the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase as a result of upregulated expression levels of antioxidant enzyme genes (CaSOD, CaPOD, CaCAT, CaAPX, CaGR, CaDHAR, and CaMDHAR). Additionally, it increased the ascorbic acid and reduced glutathione content, while reducing oxidized glutathione content, thereby preventing membrane lipid peroxidation and protecting plants from oxidative damage under LL stress. Furthermore, seedlings treated with MeJA exhibited significantly enhanced soluble sugar and soluble protein contents in leaves. Taken together, present findings indicate that MeJA application may serve as an effective strategy for mitigating LL-induced oxidative stress by maintaining plant growth, enhancing chlorophyll fluorescence, upregulating the antioxidant defence system, optimizing ascorbate-glutathione cycle, and osmotic adjustment.
Collapse
Affiliation(s)
- Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Wenli Sun
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Pu K, Li N, Gao Y, Zhang M, Wang T, Xie J, Li J. Alleviating Effects of Methyl Jasmonate on Pepper ( Capsicum annuum L.) Seedlings under Low-Temperature Combined with Low-Light Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2694. [PMID: 39409564 PMCID: PMC11478966 DOI: 10.3390/plants13192694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Low temperature combined with low light (LL) is an important factor limiting pepper quality and yield. 'Hang Jiao No. 2' were used as experimental materials, and different concentrations of MeJA (T1 (0 μM), T2 (100 μM), T3 (150 μM), T4 (200 μM), T5 (250 μM) and T6 (300 μM)) were sprayed under LL stress to explore the positive effect of exogenous methyl jasmonate (MeJA) on peppers under LL stress. The photosynthetic properties, osmoregulatory substance, reactive oxygen species, antioxidant enzyme activities, and related gene expressions of the peppers were measured. Our results demonstrated that 200 μM MeJA treatment significantly increased chlorophyll content, light quantum flux per active RC electron transfer (Eto/RC), maximum captured photonic flux per active RC (TRo/RC), energy flux for electron transfer in the excitation cross section (Eto/CSm), energy flux captured by absorption in the excitation cross section (TRo/CSm), soluble protein, and soluble sugar content. Moreover, it significantly improved the maximum photochemical efficiency of PSII (Fv/Fm) and performance index based on absorbed light energy (PI (abs)) by 56.77% and 67.00%, respectively, and significantly decreased malondialdehyde (MDA) content and relative conductivity by 30.55% and 28.17%, respectively. Additionally, antioxidant enzyme activities were elevated, and the expression of the related genes was activated in pepper seedlings under stress, leading to a significant reduction in reactive oxygen species content. In conclusion, our findings confirmed that 200 μM MeJA could reduce the injury of LL to pepper leaves to the photosynthetic organs of pepper leaves, protect the integrity of the cell membrane, and further improve the tolerance of pepper seedlings to LL.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| |
Collapse
|
3
|
He Y, Lu C, Jiang Z, Sun Y, Liu H, Yin Z. NADH dehydrogenase-like complex L subunit improves salt tolerance by enhancing photosynthetic electron transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108420. [PMID: 38324953 DOI: 10.1016/j.plaphy.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.
Collapse
Affiliation(s)
- Yonghui He
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chengcheng Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zifan Jiang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yu Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Huanhuan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhitong Yin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/ Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education/ Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands) of the Ministry of Agriculture and Rural Affairs, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Hameed A, Maqsood W, Hameed A, Qayyum MA, Ahmed T, Farooq T. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: an ecofriendly and sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8917-8929. [PMID: 38182953 DOI: 10.1007/s11356-023-31768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
Over-accumulating salts in soil are hazardous materials that interfere with the biochemical pathways in growing plants drastically affecting their physiological attributes, growth, and productivity. Soil salinization poses severe threats to highly-demanded and important crops directly challenging food security and sustainable productivity. Recently, there has been a great demand to exploit natural sources for the development of nontoxic nanoformulations of growth enhancers and stress emulators. The chitosan (CS) has growth-stimulating properties and widespread use as nanocarriers, while curcumin (CUR) has a well-established high ROS scavenging potential. Herein, we use CS and CUR for the preparation of CSNPs encapsulating CUR as an ecofriendly nanopriming agent. The hydroprimed, nanoprimed (0.02 and 0.04%), and unprimed (control) wheat seeds were germinated under salt stress (150 mM NaCl) and normal conditions. The seedlings established from the aforementioned seeds were employed for germination studies and biochemical analyses. Priming imprints mitigated the ionic toxicity by upregulating the machinery of antioxidants (CAT, POD, APX, and SOD), photosynthetic pigments (Chl a, Chl b, total Chl, and lycopene), tannins, flavonoids, and protein contents in wheat seedlings under salt stress. It controlled ROS production and avoided structural injuries, thus reducing MDA contents and regulating osmoregulation. The nanopriming-induced readjustments in biochemical attributes counteracted the ionic toxicity and positively influenced the growth parameters including final germination, vigor, and germination index. It also reduced the mean germination time, significantly validating the growth-stimulating and stress-emulating role of the prepared nanosystem. Hence, the nanopriming conferred tolerance against salt stress during germination and seedling development, ensuring sustainable growth.
Collapse
Affiliation(s)
- Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waqas Maqsood
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Hameed
- Plant Breeding & Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
5
|
Silva Filho AM, Costa DS, Gheyi HR, Melo AS, Silva AARD, Nunes KG, Bonou SI, Souza AR, Ferraz RLS, Nascimento R. Photosynthetic pigments and quantum yield of West Indian cherry under salt stress and NPK combinations. BRAZ J BIOL 2023; 83:e277329. [PMID: 38055508 DOI: 10.1590/1519-6984.277329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
West Indian cherry cultivation has proved to be an important economic activity in northeastern Brazil. However, irrigation with brackish waters limits cultivation, requiring new strategies to minimize the effect of salt stress. In this context, the present study aimed to evaluate the effect of nitrogen (N), phosphorus (P), and potassium (K) combinations on the photosynthetic pigments and quantum yield of West Indian cherry cultivated under salt stress, in the second year of production. The assay was conducted in a protected environment by adopting an experimental design in randomized blocks, with treatments distributed in a 2×10 factorial arrangement referring to two electrical conductivity levels of irrigation water - ECw (0.6 and 4.0 dS m-1) and 10 NPK fertilization combinations - FC (80-100-100; 100-100-100; 120-100-100; 140-100-100; 100-80-100; 100-120-100; 100-140-100; 100-100-80; 100-100-120, and 100-100-140% of the recommendation, in the second year of production), with three replications, each consisting of one plant. Irrigation with the electrical conductivity of 4.0 dS m-1 negatively affected the synthesis of photosynthetic pigments and the photochemical efficiency of the West Indian cherry cv. Flor Branca. The NPK combinations did not attenuate the effects of salt stress on the analyzed variables. However, the combinations referring to 120-100-100%, 140-100-100%, and 100-120-100% of NPK recommendation improved the quantum yield of photosystem II by reducing the initial fluorescence and increasing the maximum fluorescence of the West Indian cherry cv. Flor Branca.
Collapse
Affiliation(s)
- A M Silva Filho
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campus Campina Grande, Campina Grande, PB, Brasil
| | - D S Costa
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campus Campina Grande, Campina Grande, PB, Brasil
| | - H R Gheyi
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campus Campina Grande, Campina Grande, PB, Brasil
| | - A S Melo
- Universidade Estadual da Paraíba - UEPB, Programa de Pós-graduação em Ciências Agrárias - PPGCA, Campus Campina Grande, Campina Grande, PB, Brasil
| | - A A R da Silva
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campus Campina Grande, Campina Grande, PB, Brasil
| | - K G Nunes
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campus Campina Grande, Campina Grande, PB, Brasil
| | - S I Bonou
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campus Campina Grande, Campina Grande, PB, Brasil
| | - A R Souza
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campus Campina Grande, Campina Grande, PB, Brasil
| | - R L S Ferraz
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Tecnologia do Desenvolvimento, Campus Sumé, Sumé, PB, Brasil
| | - R Nascimento
- Universidade Federal de Campina Grande - UFCG, Unidade Acadêmica de Engenharia Agrícola - UAEA, Campus Campina Grande, Campina Grande, PB, Brasil
| |
Collapse
|
6
|
Sarita, Mehrotra S, Dimkpa CO, Goyal V. Survival mechanisms of chickpea (Cicer arietinum) under saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108168. [PMID: 38008005 DOI: 10.1016/j.plaphy.2023.108168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/28/2023]
Abstract
Salinity is a significant abiotic stress that is steadily increasing in intensity globally. Salinity is caused by various factors such as use of poor-quality water for irrigation, poor drainage systems, and increasing spate of drought that concentrates salt solutions in the soil; salinity is responsible for substantial agricultural losses worldwide. Chickpea (Cicer arietinum) is one of the crops most sensitive to salinity stress. Salinity restricts chickpea growth and production by interfering with various physiological and metabolic processes, downregulating genes linked to growth, and upregulating genes encoding intermediates of the tolerance and avoidance mechanisms. Salinity, which also leads to osmotic stress, disturbs the ionic equilibrium of plants. Survival under salinity stress is a primary concern for the plant. Therefore, plants adopt tolerance strategies such as the SOS pathway, antioxidative defense mechanisms, and several other biochemical mechanisms. Simultaneously, affected plants exhibit mechanisms like ion compartmentalization and salt exclusion. In this review, we highlight the impact of salinity in chickpea, strategies employed by the plant to tolerate and avoid salinity, and agricultural strategies for dealing with salinity. With the increasing spate of salinity spurred by natural events and anthropogenic agricultural activities, it is pertinent to explore and exploit the underpinning mechanisms for salinity tolerance to develop mitigation and adaptation strategies in globally important food crops such as chickpea.
Collapse
Affiliation(s)
- Sarita
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Shweta Mehrotra
- Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States.
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India.
| |
Collapse
|
7
|
Sobrinho TG, da Silva AAR, de Lima GS, de Lima VLA, Borges VE, Nunes KG, Soares LADA, Saboya LMF, Gheyi HR, Gomes JP, Fernandes PD, de Azevedo CAV. Foliar Applications of Salicylic Acid on Boosting Salt Stress Tolerance in Sour Passion Fruit in Two Cropping Cycles. PLANTS (BASEL, SWITZERLAND) 2023; 12:2023. [PMID: 37653940 PMCID: PMC10222615 DOI: 10.3390/plants12102023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 08/13/2023]
Abstract
Brazil stands out as the largest producer of sour passion fruit; however, the water available for irrigation is mostly saline, which can limit its cultivation. This study was carried out with the objective of evaluating the effects of salicylic acid in the induction of tolerance in sour passion fruit to salt stress. The assay was conducted in a protected environment, using a completely randomized design in a split-plot scheme, with the levels of electrical conductivity of the irrigation water (0.8, 1.6, 2.4, 3.2, and 4.0 dS m-1) considering the plots and concentrations of salicylic acid (0, 1.2, 2.4, and 3.6 mM) the subplots, with three replications. The physiological indices, production components, and postharvest quality of sour passion fruit were negatively affected by the increase in the electrical conductivity of irrigation water, and the effects of salt stress were intensified in the second cycle. In the first cycle, the foliar application of salicylic acid at concentrations between 1.0 and 1.4 mM partially reduced the harmful effects of salt stress on the relative water content of leaves, electrolyte leakage, gas exchange, and synthesis of photosynthetic pigments, in addition to promoting an increase in the yield and quality parameters of sour passion fruit.
Collapse
Affiliation(s)
- Thiago Galvão Sobrinho
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - André Alisson Rodrigues da Silva
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - Geovani Soares de Lima
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - Vera Lúcia Antunes de Lima
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - Vitória Ediclécia Borges
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - Kheila Gomes Nunes
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | | | - Luciano Marcelo Fallé Saboya
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - Hans Raj Gheyi
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - Josivanda Palmeira Gomes
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - Pedro Dantas Fernandes
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| | - Carlos Alberto Vieira de Azevedo
- Post Graduate Program Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil; (T.G.S.); (A.A.R.d.S.); (V.L.A.d.L.); (V.E.B.); (K.G.N.); (L.M.F.S.); (H.R.G.); (P.D.F.); (C.A.V.d.A.)
| |
Collapse
|
8
|
Hunt L, Lhotáková Z, Neuwirthová E, Klem K, Oravec M, Kupková L, Červená L, Epstein HE, Campbell P, Albrechtová J. Leaf Functional Traits in Relation to Species Composition in an Arctic-Alpine Tundra Grassland. PLANTS (BASEL, SWITZERLAND) 2023; 12:1001. [PMID: 36903862 PMCID: PMC10005651 DOI: 10.3390/plants12051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The relict arctic-alpine tundra provides a natural laboratory to study the potential impacts of climate change and anthropogenic disturbance on tundra vegetation. The Nardus stricta-dominated relict tundra grasslands in the Krkonoše Mountains have experienced shifting species dynamics over the past few decades. Changes in species cover of the four competing grasses-Nardus stricta, Calamagrostis villosa, Molinia caerulea, and Deschampsia cespitosa-were successfully detected using orthophotos. Leaf functional traits (anatomy/morphology, element accumulation, leaf pigments, and phenolic compound profiles), were examined in combination with in situ chlorophyll fluorescence in order to shed light on their respective spatial expansions and retreats. Our results suggest a diverse phenolic profile in combination with early leaf expansion and pigment accumulation has aided the expansion of C. villosa, while microhabitats may drive the expansion and decline of D. cespitosa in different areas of the grassland. N. stricta-the dominant species-is retreating, while M. caerulea did not demonstrate significant changes in territory between 2012 and 2018. We propose that the seasonal dynamics of pigment accumulation and canopy formation are important factors when assessing potential "spreader" species and recommend that phenology be taken into account when monitoring grass species using remote sensing.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Eva Neuwirthová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic
| | - Lucie Kupková
- Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Lucie Červená
- Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, 12800 Prague, Czech Republic
| | - Howard E. Epstein
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Petya Campbell
- Goddard Earth Science Technology and Research (GESTAR) II, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- Biospheric Sciences Laboratory, Building 33, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| |
Collapse
|
9
|
Farag HAS, Ibrahim MFM, El-Yazied AA, El-Beltagi HS, El-Gawad HGA, Alqurashi M, Shalaby TA, Mansour AT, Alkhateeb AA, Farag R. Applied Selenium as a Powerful Antioxidant to Mitigate the Harmful Effects of Salinity Stress in Snap Bean Seedlings. AGRONOMY 2022; 12:3215. [DOI: 10.3390/agronomy12123215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Selenium (Se) plays several significant roles in regulating growth, development and plant responses to various abiotic stresses. However, its influence on sulfate transporters (SULTRS) and achieving the harmony with other salt-tolerance features is still limited in the previous literatures. This study elucidated the effect of Se supplementation (5, 10 and 20 µM) on salt-stressed (50 mM NaCl) snap bean seedlings. Generally, the results indicated that Se had dual effects on the salt stressed seedlings according to its concentration. At a low level (5 µM), plants demonstrated a significant improvement in shoot (13.8%) and root (22.8%) fresh weight, chlorophyll a (7.4%), chlorophyll b (14.7%), carotenoids (23.2%), leaf relative water content (RWC; 8.5%), proline (17.2%), total soluble sugars (34.3%), free amino acids (FAA; 18.4%), K (36.7%), Ca (33.4%), K/Na ratio (77.9%), superoxide dismutase (SOD; 18%), ascorbate peroxidase (APX;12.8%) and guaiacol peroxidase (G-POX; 27.1%) compared to the untreated plants. Meanwhile, most of these responses as well as sulfur (S), Se and catalase (CAT) were obviously decreased in parallel with increasing the applied Se up to 20 µM. The molecular study revealed that three membrane sulfate transporters (SULTR1, SULTR2 and SULTR 3) in the root and leaves and salinity responsive genes (SOS1, NHX1 and Osmotin) in leaves displayed different expression patterns under various Se treatments. Conclusively, Se at low doses can be beneficial in mitigating salinity-mediated damage and achieving the functioning homeostasis to tolerance features.
Collapse
|
10
|
Zou QQ, Liu DH, Sang M, Jiang CD. Sunflower Leaf Structure Affects Chlorophyll a Fluorescence Induction Kinetics In Vivo. Int J Mol Sci 2022; 23:ijms232314996. [PMID: 36499324 PMCID: PMC9738131 DOI: 10.3390/ijms232314996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Chlorophyll a fluorescence induction kinetics (CFI) is an important tool that reflects the photosynthetic function of leaves, but it remains unclear whether it is affected by leaf structure. Therefore, in this study, the leaf structure and CFI curves of sunflower and sorghum seedlings were analyzed. Results revealed that there was a significant difference between the structures of palisade and spongy tissues in sunflower leaves. Their CFI curves, measured on both the adaxial and abaxial sides, also differed significantly. However, the differences in the leaf structures and CFI curves between both sides of sorghum leaves were not significant. Further analysis revealed that the differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves almost disappeared due to reduced incident light scattering and refraction in the leaf tissues; more importantly, changes in the CFI curves of the abaxial side were greater than the adaxial side. Compared to leaves grown under full sunlight, weak light led to decreased differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves; of these, changes in the CFI curves and palisade tissue structure on the adaxial side were more obvious than on the abaxial side. Therefore, it appears that large differences in sunflower leaf structures may affect the shape of CFI curves. These findings lay a foundation for enhancing our understanding of CFI from a new perspective.
Collapse
Affiliation(s)
- Qing-Qing Zou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Huan Liu
- China National Botanical Garden, Beijing 100093, China
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China
| | - Min Sang
- China National Botanical Garden, Beijing 100093, China
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China
| | - Chuang-Dao Jiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Correspondence:
| |
Collapse
|
11
|
Mousavi SS, Karami A, Maggi F. Photosynthesis and chlorophyll fluorescence of Iranian licorice ( Glycyrrhiza glabra l.) accessions under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:984944. [PMID: 36275588 PMCID: PMC9585319 DOI: 10.3389/fpls.2022.984944] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
While salinity is increasingly becoming a prominent concern in arable farms around the globe, various treatments can be used for the mitigation of salt stress. Here, the effective presence of Azotobacter sp. inoculation (A1) and absence of inoculation (A0) was evaluated on Iranian licorice plants under NaCl stress (0 and 200 mM) (S0 and S1, respectively). In this regard, 16 Iranian licorice (Glycyrrhiza glabra L.) accessions were evaluated for the effects on photosynthesis and chlorophyll fluorescence. Leaf samples were measured for photosynthetic pigments (via a spectrophotometer), stomatal and trichome-related features (via SEM), along with several other morphological and biochemical features. The results revealed an increase in the amount of carotenoids that was caused by bacterial inoculation, which was 28.3% higher than the non-inoculated treatment. Maximum initial fluorescence intensity (F0) (86.7) was observed in the 'Bardsir' accession. Meanwhile, the highest variable fluorescence (Fv), maximal fluorescence intensity (Fm), and maximum quantum yield (Fv/Fm) (0.3, 0.4, and 0.8, respectively) were observed in the 'Eghlid' accession. Regarding anatomical observations of the leaf structure, salinity reduced stomatal density but increased trichome density. Under the effect of bacterial inoculation, salinity stress was mitigated. With the effect of bacterial inoculation under salinity stress, stomatal length and width increased, compared to the condition of no bacterial inoculation. Minimum malondialdehyde content was observed in 'Mahabad' accession (17.8 μmol/g FW). Principle component analysis (PCA) showed that 'Kashmar', 'Sepidan', 'Bajgah', 'Kermanshah', and 'Taft' accessions were categorized in the same group while being characterized by better performance in the aerial parts of plants. Taken together, the present results generally indicated that selecting the best genotypes, along with exogenous applications of Azotobacter, can improve the outcomes of licorice cultivation for industrial purposes under harsh environments.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
12
|
Schansker G. Determining photosynthetic control, a probe for the balance between electron transport and Calvin-Benson cycle activity, with the DUAL-KLAS-NIR. PHOTOSYNTHESIS RESEARCH 2022; 153:191-204. [PMID: 35844008 DOI: 10.1007/s11120-022-00934-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic Control is defined as the control imposed on photosynthetic electron transport by the lumen-pH-sensitive re-oxidation of plastoquinol (PQH2) by cytochrome b6f. Photosynthetic Control leads at higher actinic light intensities to an electron transport chain with a (relatively) reduced photosystem (PS) II and PQ pool and a (relatively) oxidized PS I. Making Light Curves of more than 33 plant species with the recently introduced DUAL-KLAS-NIR (Chl a fluorescence + the redox states of plastocyanin (PC), P700, and ferredoxin (Fd)) the light intensity-dependent induction of Photosynthetic Control was probed and characterized. It was observed that PC became completely oxidized at light intensities ≤ 400 µmol photons m-2 s-1 (at lower light intensities in shade than in sun leaves). The relationship between qP and P700(red) was used to determine the extent of Photosynthetic Control. Instead of measuring the whole Light Curve, it was shown that a single moderate light intensity can be used to characterize the status of a leaf relative to that of other leaves. It was further found that in some shade-acclimated leaves Fd becomes again more oxidized at high light intensities indicating that electron transfer from the PQ pool to P700 cannot keep up with the outflow of electrons on the acceptor side of PS I. It was observed as well that for NPQ-induction a lower light intensity (less acidified lumen) was needed than for the induction of Photosynthetic Control. The measurements were also used to make a comparison between the parameters qP and qL, a comparison suggesting that qP was the more relevant parameter.
Collapse
Affiliation(s)
- Gert Schansker
- Heinz Walz GmbH, Eichenring 6, 91090, Effeltrich, Germany.
| |
Collapse
|
13
|
Yang Y, Xie J, Li J, Zhang J, Zhang X, Yao Y, Wang C, Niu T, Bakpa EP. Trehalose alleviates salt tolerance by improving photosynthetic performance and maintaining mineral ion homeostasis in tomato plants. FRONTIERS IN PLANT SCIENCE 2022; 13:974507. [PMID: 36035709 PMCID: PMC9412767 DOI: 10.3389/fpls.2022.974507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
Trehalose (Tre), which was an osmoprotective or stabilizing molecule, played a protective role against different abiotic stresses in plants and showed remarkable perspectives in salt stress. In this study, the potential role of Tre in improving the resistance to salt stress in tomato plants was investigated. Tomato plants (Micro Tom) were treated with Hoagland nutrient solution (CK), 10 mM Tre (T), 150 mM sodium chloride (NaCl, S), and 10 mM Tre+150 mM NaCl (S+T) for 5 days. Our results showed that foliar application of Tre alleviated the inhibition of tomato plant growth under salt stress. In addition, salt stress decreased the values of net photosynthetic rate (Pn, 85.99%), stomata conductance (gs, 57.3%), and transpiration rate (Tr, 47.97%), but increased that of intercellular carbon dioxide concentration (Ci, 26.25%). However, exogenous application of Tre significantly increased photosynthetic efficiency, increased the activity of Calvin cycle enzymes [ribulose diphosphate carboxylase/oxygenase (Rubisco), fructose-1,6-bisphosphate aldolase (FBA), fructose-1, 6-bisphosphatase (FBPase), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and transketolase (TK)], up-regulated the expression of genes encoding enzymes, induced stomatal opening, and alleviated salt-induced damage to the chloroplast membrane and structure. In the saline environment, photosynthetic electron transport was restricted, resulting the J-I-P phase to decrease. At the same time, the absorption, capture, and transport energies per excited cross-section and per active reaction center decreased, and the dissipation energy increased. Conversely, Tre reversed these values and enhanced the photosystem response to salt stress by protecting the photosynthetic electron transport system. In addition, foliage application with Tre significantly increased the potassium to sodium transport selectivity ratio (S K-Na ) by 16.08%, and increased the levels of other ions to varying degrees. Principal component analysis (PCA) analysis showed that exogenous Tre could change the distribution of elements in different organs and affect the expressions of SlSOS1, SlNHX, SlHKT1.1, SlVHA, and SlHA-A at the transcriptional level under salt stress, thereby maintaining ion homeostasis. This study demonstrated that Tre was involved in the process of mitigating salt stress toxicity in tomato plants and provided specific insights into the effectiveness of Tre in mediating salt tolerance.
Collapse
|
14
|
Schansker G, Ohnishi M, Furutani R, Miyake C. Identification of Twelve Different Mineral Deficiencies in Hydroponically Grown Sunflower Plants on the Basis of Short Measurements of the Fluorescence and P700 Oxidation/Reduction Kinetics. FRONTIERS IN PLANT SCIENCE 2022; 13:894607. [PMID: 35720579 PMCID: PMC9201956 DOI: 10.3389/fpls.2022.894607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2022] [Indexed: 05/31/2023]
Abstract
The photosynthetic electron transport chain is mineral rich. Specific mineral deficiencies can modify the electron transport chain specifically. Here, it is shown that on the basis of 2 short Chl fluorescence and P700+ measurements (approx. 1 s each), it is possible to discriminate between 10 out of 12 different mineral deficiencies: B, Ca, Cu, Fe, K, Mg, Mn, Mo, N, P, S, and Zn. B- and Mo-deficient plants require somewhat longer measurements to detect the feedback inhibition they induce. Eight out of twelve deficiencies mainly affect PS I and NIR measurements are, therefore, very important for this analysis. In Cu- and P-deficient plants, electron flow from the plastoquinone pool to PS I, is affected. In the case of Cu-deficiency due to the loss of plastocyanin and in the case of P-deficiency probably due to a fast and strong generation of Photosynthetic Control. For several Ca-, K-, and Zn-deficient plant species, higher levels of reactive oxygen species have been measured in the literature. Here, it is shown that this not only leads to a loss of Pm (maximum P700 redox change) reflecting a lower PS I content, but also to much faster P700+ re-reduction kinetics during the I2-P (~30-200 ms) fluorescence rise phase. The different mineral deficiencies affect the relation between the I2-P and P700+ kinetics in different ways and this is used to discuss the nature of the relationship between these two parameters.
Collapse
Affiliation(s)
| | - Miho Ohnishi
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, Kobe, Japan
| | - Riu Furutani
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, Kobe, Japan
| | - Chikahiro Miyake
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
15
|
Alsamadany H, Mansour H, Elkelish A, Ibrahim MFM. Folic Acid Confers Tolerance against Salt Stress-Induced Oxidative Damages in Snap Beans through Regulation Growth, Metabolites, Antioxidant Machinery and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111459. [PMID: 35684231 PMCID: PMC9182733 DOI: 10.3390/plants11111459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Although the effect of folic acid (FA) and its derivatives (folates) have been extensively studied in humans and animals, their effects are still unclear in most plant species, specifically under various abiotic stress conditions. Here, the impact of FA as a foliar application at 0, 0.1, and 0.2 mM was studied on snap bean seedlings grown under non-saline and salinity stress (50 mM NaCl) conditions. The results indicated that under salinity stress, FA-treated plants revealed a significant (p ≤ 0.05) increase in growth parameters (fresh and dry weight of shoot and root). A similar trend was observed in chlorophyll (Chl b), total chlorophyll, carotenoids, leaf relative water content (RWC), proline, free amino acids (FAA), soluble sugars, cell membrane stability index (CMSI), and K, Ca, and K/Na ratio compared to the untreated plants. In contrast, a significant decrease was observed in Na and salinity-induced oxidative damage as indicated by reduced H2O2 production (using biochemical and histochemical detection methods) and rate of lipid peroxidation (malondialdehyde; MDA). This enhancement was correlated by increasing the activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX). Gene expression analyses conducted using qRT-PCR demonstrated that genes coding for the Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1), the tonoplast-localized Na+/H+ antiporter protein (NHX1), and the multifunctional osmotic protective protein (Osmotin) were significantly up-regulated in the FA-treated plants under both saline and non-saline treatments. Generally, treatment with 0.2 mM FA was more potent than 0.1 mM and can be recommended to improve snap bean tolerance to salinity stress.
Collapse
Affiliation(s)
- Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hassan Mansour
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
16
|
Chtouki M, Naciri R, Garré S, Nguyen F, Oukarroum A. Chickpea plant responses to polyphosphate fertiliser forms and drip fertigation frequencies: effect on photosynthetic performance and phenotypic traits. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:505-516. [PMID: 34147138 DOI: 10.1071/fp21035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Photosynthesis is the main biophysiological process that governs plant growth and development. Under nutrient deficiency in crops and soils, many photosynthetic reactions can be disturbed. We compared two polyphosphates (Poly-A and Poly-B) and an orthophosphate fertiliser (Ortho-P) to an unfertilised treatment under three drip fertigation frequencies. Results showed that the electron transport chain between PSII and PSI was significantly enhanced in fertigated chickpea plants compared with the control treatment. The polyphosphate fertiliser (Poly-A) enhanced the number of electron acceptors of the photosynthetic linear electron transport chain compared with the other fertiliser forms. Furthermore, the time for reaching the maximum intensity F m was shortened in the fertilised chickpea plant indicating that the rate of light trapping and electron transport was enhanced under phosphorus drip fertigation. Also, the energy needed to close all reaction centres was decreased with P fertigated treatments, as revealed by the electron acceptor pool size of PSII (Sm/tFmax ). However, no significant effects of fertiliser forms or fertigation frequencies were observed on the energetic demand for reaction centres closure. Plants grown under polyphosphate fertigation absorbed significantly more phosphorus. Positive correlations between phosphorus uptake, photosynthetic yield, chickpea podding dynamic, and grain yield showed the beneficial effects of adequate phosphorus nutrition on chickpea growth and productivity.
Collapse
Affiliation(s)
- Mohamed Chtouki
- Mohammed VI Polytechnic University - AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir 43150, Morocco; and University of Liege - Gembloux Agro-Bio Tech Faculty, Gembloux B-5030, Belgium
| | - Rachida Naciri
- Mohammed VI Polytechnic University - AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir 43150, Morocco
| | - Sarah Garré
- University of Liege - Gembloux Agro-Bio Tech Faculty, Gembloux B-5030, Belgium
| | - Frederic Nguyen
- University of Liege - UR UEE, School of Engineering, Liege B-4000, Belgium
| | - Abdallah Oukarroum
- Mohammed VI Polytechnic University - AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir 43150, Morocco; and Mohammed VI Polytechnic University, High Throughput Multidisciplinary Research Laboratory, Benguerir 43150, Morocco; and Corresponding author
| |
Collapse
|
17
|
Saha I, Ghosh A, Dolui D, Fujita M, Hasanuzzaman M, Adak MK. Differential Impact of Nitric Oxide and Abscisic Acid on the Cellular and Physiological Functioning of sub1A QTL Bearing Rice Genotype under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081084. [PMID: 35448812 PMCID: PMC9029218 DOI: 10.3390/plants11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 05/13/2023]
Abstract
Hydroponic culture containing 200 mM NaCl was used to induce oxidative stress in seedlings of cultivars initially primed with 1 mM SNP and 10 µM ABA. Exogenous application of sodium nitroprusside (SNP - a nitric oxide donor) and abscisic acid (ABA) was well sensitized more in cv. Swarna Sub1 than cv. Swarna and also reflected in different cellular responses. The major effects of salinity, irrespective of the cultivar, were lowering the water relation, including relative water content and osmotic potential, and decreasing the compatible solutes like alanine, gamma-aminobutyric acid, and glycine betaine. The accumulated polyamines were reduced more in cv. Swarna with a concomitant decrease in photosynthetic reserves. NADP-malic enzyme activity, sucrose accumulation, ascorbate peroxidase, and glutathione S-transferase activities gradually declined under NaCl stress and the catabolizing enzymes like invertase (both wall and cytosolic forms) also declined. On the contrary, plants suffered from oxidative stress through superoxide, hydrogen peroxide, and their biosynthetic enzymes like NADP(H) oxidase. Moderation of Na+/K+ by both SNP and ABA were correlated with other salt sensitivities in the plants. The maximum effects of SNP and ABA were found in the recovery of antioxidation pathways, osmotic tolerance, and carbohydrate metabolism. Findings predict the efficacy of SNP and ABA either independently or cumulatively in overcoming NaCl toxicity in rice.
Collapse
Affiliation(s)
- Indraneel Saha
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Debabrata Dolui
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| |
Collapse
|
18
|
Khan N, Essemine J, Hamdani S, Qu M, Lyu MJA, Perveen S, Stirbet A, Govindjee G, Zhu XG. Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. PHOTOSYNTHESIS RESEARCH 2021; 150:137-158. [PMID: 33159615 DOI: 10.1007/s11120-020-00794-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the "O" level, whereas Fm is the intensity at the P level, and Fv (= Fm - Fo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I-P phase (AI-P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (AO-J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (AJ-I and AI-P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.
Collapse
Affiliation(s)
- Naveed Khan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Institute of Nutrition and Health, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jemaa Essemine
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saber Hamdani
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Ju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin-Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Mishra M, Wungrampha S, Kumar G, Singla-Pareek SL, Pareek A. How do rice seedlings of landrace Pokkali survive in saline fields after transplantation? Physiology, biochemistry, and photosynthesis. PHOTOSYNTHESIS RESEARCH 2021; 150:117-135. [PMID: 32632535 DOI: 10.1007/s11120-020-00771-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Rice, one of the most important staple food crops in the world, is highly sensitive to soil salinity at the seedling stage. The ultimate yield of this crop is a function of the number of seedlings surviving after transplantation in saline water. Oryza sativa cv. IR64 is a high-yielding salinity-sensitive variety, while Pokkali is a landrace traditionally cultivated by the local farmers in the coastal regions in India. However, the machinery responsible for the seedling-stage tolerance in Pokkali is not understood. To bridge this gap, we subjected young seedlings of these contrasting genotypes to salinity and performed detailed investigations about their growth parameters, ion homeostasis, biochemical composition, and photosynthetic parameters after every 24 h of salinity for three days. Taken together, all the physiological and biochemical indicators, such as proline accumulation, K+/Na+ ratio, lipid peroxidation, and electrolyte leakage, clearly revealed significant differences between IR64 and Pokkali under salinity, establishing their contrasting nature at this stage. In response to salinity, the Fv/Fm ratio (maximum quantum efficiency of Photosystem II as inferred from Chl a fluorescence) and the energy conserved for the electron transport after the reduction of QA (the primary electron acceptor of PSII), to QA-, and reduction of the end electron acceptor molecules towards the PSI (Photosystem I) electron acceptor side was higher in Pokkali than IR64 plants. These observations reflect a direct contribution of photosynthesis towards seedling-stage salinity tolerance in rice. These findings will help to breed high-yielding crops for salinity prone agricultural lands.
Collapse
Affiliation(s)
- Manjari Mishra
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Silas Wungrampha
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gautam Kumar
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
Wang X, Dingxuan Q, Shi M. Calcium amendment for improved germination, plant growth, and leaf photosynthetic electron transport in oat (Avena sativa) under NaCl stress. PLoS One 2021; 16:e0256529. [PMID: 34428242 PMCID: PMC8384207 DOI: 10.1371/journal.pone.0256529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca2+) is an essential nutrient element for plants as it stabilizes the membrane system structure and controls enzyme activity. To investigate the effects of Ca2+ on plant growth and leaf photosynthetic electron transport in oat (Avena sativa) under NaCl stress, oat seeds and plants were cultivated in nutrient solutions with single NaCl treatment and NaCl treatment with CaCl2 amendment. By measuring the seed germination rate, plant growth, Na+ and Cl- accumulation in leaves, ion leakage in seedlings and leaves, prompt chlorophyll a fluorescence (PF) transient (OJIP), delayed chlorophyll a fluorescence (DF), and modulated 820 nm reflection (MR) values of the leaves at different growth phases, we observed that Ca2+ alleviated the inhibition of germination and plant growth and decreased Na+ and Cl- accumulation and ion leakage in the leaves under NaCl stress. NaCl stress changed the curves of the OJIP transient, induced PF intensity at P-step (FP) decrease and PF intensity at J-step (FJ) increase, resulted in obvious K and L bands, and altered the performance index of absorption (PIABS), the absorption of antenna chlorophyll (ABS/RC), electron movement efficiency (ETo/TRo), and potential maximum photosynthetic capacity (FV/FM) values. With the time extension of NaCl stress, I1 and I2 in the DF curve showed a decreasing trend, the lowest values of MR/MRO curve increased, and the highest points of the MR/MRO curve decreased. Compared with NaCl treatment, the extent of change induced by NaCl in the values of OJIP, DF and MR was reduced in the NaCl treatment with CaCl2 amendment. These results revealed that Ca2+ might improve the photosynthetic efficiency and the growth of salt-stressed plants by maintaining the integrity of oxygen-evolving complexes and electron transporters on the side of the PSI receptor and enhancing the relationship between the functional units of the photosynthetic electron transport chain. The findings from this study could be used for improving crop productivity in saline alkali lands.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Department of Grassland Science, College of Animal Science and Technology, Yangzhou University, Yangzhou City, Jiangsu Province, The People’s Republic of China
| | - Qiyue Dingxuan
- Department of Grassland Science, College of Animal Science and Technology, Yangzhou University, Yangzhou City, Jiangsu Province, The People’s Republic of China
| | - Mengmeng Shi
- Department of Grassland Science, College of Animal Science and Technology, Yangzhou University, Yangzhou City, Jiangsu Province, The People’s Republic of China
| |
Collapse
|
21
|
Mendes Bezerra AC, da Cunha Valença D, da Gama Junqueira NE, Moll Hüther C, Borella J, Ferreira de Pinho C, Alves Ferreira M, Oliveira Medici L, Ortiz-Silva B, Reinert F. Potassium supply promotes the mitigation of NaCl-induced effects on leaf photochemistry, metabolism and morphology of Setaria viridis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:193-210. [PMID: 33513466 DOI: 10.1016/j.plaphy.2021.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Soil salinity has the potential to severely affect crop performance. To maintain cell functioning and improve salt tolerance, the maintenance of K+ homeostasis is crucial in several plant metabolism processes. Besides, potassium fertilization can efficiently alleviate the perilous effects of salinity. We characterized impacts in Setaria viridis exposed to NaCl and KCl to underlying photochemistry mechanisms, K+ and Na+ shoot contents, enzymatic activity, electrolytic leakage, and morphological responses focusing on non-stomatal limitation of photosynthesis. Plants were exposed to sodium chloride (NaCl; 0, 150 and 250 mM) and potassium chloride (KCl; 0, 5, 9 mM). The exposure to NaCl affected S. viridis leaves morphological and physiologically. Plants submitted to 150 mM showed reductions in performance indexes (PIabs and PItotal; JIP-test), and the presence of positive K- and L-bands. Plants exposed to 250 mM exhibited blockage in electron flow further than QA within 48h and permanent photoinhibition at 96 h. The presence of 9 and 5 mM of KCl counteracted the effects of NaCl on plants submitted to 150 mM, concomitant with increases in K+ accumulation and cell turgidity conservation, causing positive effects in plant growth and metabolism. Neither KCl concentrations were effective in reducing NaCl-induced effects on plants exposed to 250 mM of NaCl. Our results support the conclusion that greater availability of K+ alleviates the harmful effects of salinity in S. viridis under moderate stress and that application of KCl as means of lightning saline stress has a concentration and a salt level limit that must be experimentally determined.
Collapse
Affiliation(s)
- Ana Carolina Mendes Bezerra
- Universidade Federal Do Rio de Janeiro/IB -Dept. of Botany, Av. Carlos Chagas Filho, 373 - Ilha Do Fundão -21941-902, Rio de Janeiro, RJ, Brazil.
| | - David da Cunha Valença
- Universidade Federal Do Rio de Janeiro/IB -Dept. of Botany, Av. Carlos Chagas Filho, 373 - Ilha Do Fundão -21941-902, Rio de Janeiro, RJ, Brazil.
| | - Nicia Eloísa da Gama Junqueira
- Universidade Federal Do Rio de Janeiro/IB -Dept. of Botany, Av. Carlos Chagas Filho, 373 - Ilha Do Fundão -21941-902, Rio de Janeiro, RJ, Brazil.
| | - Cristina Moll Hüther
- Universidade Federal Fluminense - Dept. of Agricultural and Environmental Engineering, R. Passo da Pátria 156, São Domingos - 24210-240 - Niterói, RJ, Brazil.
| | - Junior Borella
- Universidade Federal Do Rio Grande - Institute of Biological Sciences, Av. Itália, Km 8, Bairro Carreiros - 96203-900 - Rio Grande, RS, Brazil.
| | - Camila Ferreira de Pinho
- Universidade Federal Rural Do Rio de Janeiro - Dept. of Plant Sciences, Rod. BR 465, Km 7 - 23897-000, Seropédica, RJ, Brazil.
| | - Marcio Alves Ferreira
- Universidade Federal Do Rio de Janeiro/IB - Dept. of Genetics, Av. Carlos Chagas Filho, 373 - Ilha Do Fundão - 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Leonardo Oliveira Medici
- Universidade Federal Rural Do Rio de Janeiro - Dept. of Physiological Sciences, Rod. BR 465, Km 7 - 23897-000, Seropédica, RJ, Brazil.
| | - Bianca Ortiz-Silva
- Universidade Federal Do Rio de Janeiro- NUMPEX-Bio, Estrada de Xerém, 27- Duque de Caxias - 25245-390, Rio de Janeiro, RJ, Brazil.
| | - Fernanda Reinert
- Universidade Federal Do Rio de Janeiro/IB -Dept. of Botany, Av. Carlos Chagas Filho, 373 - Ilha Do Fundão -21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
Chen X, Zhou Y, Cong Y, Zhu P, Xing J, Cui J, Xu W, Shi Q, Diao M, Liu HY. Ascorbic Acid-Induced Photosynthetic Adaptability of Processing Tomatoes to Salt Stress Probed by Fast OJIP Fluorescence Rise. FRONTIERS IN PLANT SCIENCE 2021; 12:594400. [PMID: 34484251 PMCID: PMC8415309 DOI: 10.3389/fpls.2021.594400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/14/2021] [Indexed: 05/04/2023]
Abstract
In this study, the protective role of exogenous ascorbic acid (AsA) on salt-induced inhibition of photosynthesis in the seedlings of processing tomatoes under salt stress has been investigated. Plants under salt stress (NaCl, 100 mmol/L) were foliar-sprayed with AsA (0.5 mmol/L), lycorine (LYC, 0.25 mmol/L, an inhibitor of key AsA synthesis enzyme l-galactono-γ-lactone dehydrogenase activity), or AsA plus LYC. The effects of AsA on fast OJIP fluorescence rise curve and JIP parameters were then examined. Our results demonstrated that applying exogenous AsA significantly changed the composition of O-J-I-P fluorescence transients in plants subjected to salt stress both with and without LYC. An increase in basal fluorescence (F o) and a decrease in maximum fluorescence (F m) were observed. Lower K- and L-bands and higher I-band were detected on the OJIP transient curves compared, respectively, with salt-stressed plants with and without LYC. AsA application also significantly increased the values of normalized total complementary area (Sm), relative variable fluorescence intensity at the I-step (VI), absorbed light energy (ABS/CSm), excitation energy (TRo/CSm), and reduction energy entering the electron transfer chain beyond QA (ETo/CSm) per reaction centre (RC) and electron transport flux per active RC (ETo/RC), while decreasing some others like the approximated initial slope of the fluorescence transient (Mo), relative variable fluorescence intensity at the K-step (VK), average absorption (ABS/RC), trapping (TRo/RC), heat dissipation (DIo/RC) per active RC, and heat dissipation per active RC (DIo/CSm) in the presence or absence of LYC. These results suggested that exogenous AsA counteracted salt-induced photoinhibition mainly by modulating the endogenous AsA level and redox state in the chloroplast to promote chlorophyll synthesis and alleviate the damage of oxidative stress to photosynthetic apparatus. AsA can also raise the efficiency of light utilization as well as excitation energy dissipation within the photosystem II (PSII) antennae, thus increasing the stability of PSII and promoting the movement of electrons among PS1 and PSII in tomato seedling leaves subjected to salt stress.
Collapse
Affiliation(s)
- Xianjun Chen
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Yan Zhou
- Department of Biological Science, Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Yundan Cong
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Pusheng Zhu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Jiayi Xing
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Jinxia Cui
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Wei Xu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Qinghua Shi
- Department of Vegetables, Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ming Diao
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
- Ming Diao
| | - Hui-ying Liu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
- *Correspondence: Hui-ying Liu
| |
Collapse
|
23
|
Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:64-77. [PMID: 32906023 DOI: 10.1016/j.plaphy.2020.08.042] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/28/2020] [Accepted: 08/23/2020] [Indexed: 05/18/2023]
Abstract
Salinity is one of the major threats to sustainable agriculture that globally decreases plant production by impairing various physiological, biochemical, and molecular function. In particular, salinity hampers germination, growth, photosynthesis, transpiration, and stomatal conductance. Salinity decreases leaf water potential and turgor pressure and generates osmotic stress. Salinity enhances reactive oxygen species (ROS) content in the plant cell as a result of ion toxicity and disturbs ion homeostasis. Thus, it imbalances nutrient uptake, disintegrates membrane, and various ultrastructure. Consequently, salinity leads to osmotic and ionic stress. Plants respond to salinity by modulating various morpho-physiological, anatomical, and biochemical traits by regulating ion homeostasis and compartmentalization, antioxidant machinery, and biosynthesis of osmoprotectants and phytohormones, i. e, auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, salicylic acid, jasmonic acid, and polyamines. Thus, this further modulates plant osmoticum, decreases ion toxicity, and scavenges ROS. Plants upregulate various genes and proteins that participate in salinity tolerance. They also promote the production of various phytohormones and metabolites that mitigate the toxic effect of salinity. Based on recent papers, the deleterious effect of salinity on plant physiology is discussed. Furthermore, it evaluates the physiological and biochemical responses of the plant to salinity along with phytohormone response. This review paper also highlights omics (genomics, transcriptomics, proteomics, and metabolomics) approach to understand salt stress tolerance.
Collapse
Affiliation(s)
- Yamshi Arif
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Priyanka Singh
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Husna Siddiqui
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Andrzej Bajguz
- University of Bialystok, Faculty of Biology, Department of Biology and Plant Ecology, Konstantego Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| | - Shamsul Hayat
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| |
Collapse
|
24
|
Guo Y, Lu Y, Goltsev V, Strasser RJ, Kalaji HM, Wang H, Wang X, Chen S, Qiang S. Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR 820 signal. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:39-48. [PMID: 32906020 DOI: 10.1016/j.plaphy.2020.08.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 05/13/2023]
Abstract
In this study, the comparative effect of TeA, DCMU, bentazone, DBMIB and MV on prompt fluorescence and the MR820 signal was simultaneously analyzed to provide an insight into how to elucidate their precise influence on Ageratina adenophora photosystems. The herbicides that interrupt electron transport beyond QA, such as TeA, DCMU and bentazone, mainly increased the J-step level of fluorescence rise kinetics as a result of accumulation of QA-, but showed differences in detail. The IP phase disappeared in the presence of DCMU and bentazone with a significant increase in FO value. TeA treatment retained the IP phase with lowering FM. As an inhibitor of plastoquinone re-oxidation, DBMIB increased the I-step (IP phase almost unnoticable) without changing FO and FM values. MV blocking PSI electron transfer through intercepting electrons from the FeS clusters suppressed the IP phase by decreasing the P level. Considering the WIP kinetics, TeA and DBMIB also affected PSI activity. After DCMU and MV treatment, the major change in the MR820 kinetics was the loss of the slow phase due to the complete prevention of electron movement from PSII to re-reduce PC+ and P700+. TeA, bentazone and DBMIB clearly suppressed the MR820 slow phase and decreased the re-reduction rate of PC+ and P700+ (Vred), significantly. However, there were still parts of electrons being donated to PC+ and P700+, showing a smaller slow phase and PC+ and P700+ re-reduction rate. Additionally, TeA and DBMIB also somewhat declined the fast phase and PC and P700 oxidation rate (Vox).
Collapse
Affiliation(s)
- Yanjing Guo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuping Lu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria
| | - Reto Jörg Strasser
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy, Geneva, Switzerland
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiong Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Plant Protection and Quarantine Station, Yangcheng Agricultural and Rural Bureau, Yangcheng, 048100, China
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Pollastrini M, Salvatori E, Fusaro L, Manes F, Marzuoli R, Gerosa G, Brüggemann W, Strasser RJ, Bussotti F. Selection of tree species for forests under climate change: is PSI functioning a better predictor for net photosynthesis and growth than PSII? TREE PHYSIOLOGY 2020; 40:1561-1571. [PMID: 32597979 DOI: 10.1093/treephys/tpaa084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
A chlorophyll fluorescence (ChlF) assessment was carried out on oak seedlings (Quercus ilex L., Quercus pubescens Willd., Quercus frainetto Ten.) of Italian and Greek provenance, during the years 2017 and 2018, in a common garden in central Italy planted in 2017. This trial aimed to test the relative performances of the oak species in the perspective of assisted migration as part of the actions for the adaptation of forests to climate change. The assessment of the photosynthetic performance of the tree species included the analysis of the prompt chlorophyll fluorescence (PF) transient and the modulated reflection (MR) at 820 nm, leaf chlorophyll content, leaf gas exchange (net photosynthesis, stomatal conductance), plant growth (i.e., height) and mortality rate after 2 years from the beginning of the experiment. The assessment of the performance of the three oak species was carried out 'in vivo'. Plants were generated from seeds and exposed to several environmental factors, including changing seasonal temperature, water availability, and soil biological and physical functionality. The results of PF indicate a stable functionality of the photosynthetic system PSII (expressed as FV/FM) across species and provenances and a decline in photochemistry functionality at the I-P phase (ΔVIP) in Q. frainetto, thus indicating a decline of the content of PSI in this species. This result was confirmed by the findings of MR analysis, with the speed of reduction and subsequent oxidation of PSI (VRED and VOX) strongly correlated to the amplitude of ΔVIP. The photosynthetic rates (net photosynthesis, PN) and growth were correlated with the parameters associated with PSI content and function, rather than those related to PSII. The low performance of Q. frainetto in the common garden seems to be related to early foliar senescence with the depletion of nitrogen, due to suboptimal climatic and edaphic conditions. Chlorophyll fluorescence allowed discrimination of populations of oak species and individuation of the less (or/and best) suitable species for future forest ecology and management purposes.
Collapse
Affiliation(s)
- Martina Pollastrini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Firenze, Piazzale delle Cascine 28, 50144, Firenze, Italy
| | - Elisabetta Salvatori
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, R.C. Casaccia, Rome, Italy
| | - Lina Fusaro
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Fausto Manes
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Riccardo Marzuoli
- Department of Mathematics and Physics, Catholic University of Sacred Heart, Via Musei 41, 25121, Brescia, Italy
| | - Giacomo Gerosa
- Department of Mathematics and Physics, Catholic University of Sacred Heart, Via Musei 41, 25121, Brescia, Italy
| | - Wolfgang Brüggemann
- Department of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main and Senckenberg Biodiversity and Climate Research Center Frankfurt am Main, Biologicum (Flügel D, 1. OG, Raum 1.420) Campu Riedberg, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Reto Jorg Strasser
- Bioenergetics and Microbiology Laboratory, University of Geneva, Jussy-Geneva CH-1254, Switzerland
- North West University South Africa, Potchefstroom, North-West Province, South Africa
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Firenze, Piazzale delle Cascine 28, 50144, Firenze, Italy
| |
Collapse
|
26
|
Hayat K, Zhou Y, Menhas S, Bundschuh J, Hayat S, Ullah A, Wang J, Chen X, Zhang D, Zhou P. Pennisetum giganteum: An emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114876. [PMID: 32512425 DOI: 10.1016/j.envpol.2020.114876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity is a global threat to the environmental sustainability, in particular to the developing countries due to their limited resources for soil reclamation. In a greenhouse pot experiment, Pennisetum giganteum, was investigated for its tolerance to salt stress and simultaneous phytoremediation capability. 4 weeks post-germination, NaCl (10, 50, 150, 250, 350, 450 and 550 mM) and tap water (control) was applied after every 2 consecutive days for two weeks in a completely randomized design and their effects were established in the growth and physico-chemical aspects of these plants. Our results indicated that P. giganteum withstood high salt stress (with 550 mM NaCl tolerance threshold level). Interestingly, the plants grown under saline conditions had higher biomass yield when compared to the control. Furthermore, the antioxidant activity and proline content of plants under saline conditions were significantly (p < 0.05) higher than those of control plants, indicating their adaptability to high salt stress. Biochemical analysis such as chlorophyll contents, total soluble sugar, total phenol and protein contents revealed considerable differences between plants grown under higher NaCl stress compared to the control conditions. Additionally, significantly different ionic flux along with high K+/Na+ ratio was observed in plants grown under a range of saline conditions. The results obtained are therefore of value to indicate P. giganteum an eco-friendly alternate source for the phytoremediation of saline soils and may be used as base for future research on this plant. Effective strategies need to be adopted with this plant to reclaim saline-degraded as well as marginal soils.
Collapse
Affiliation(s)
- Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development & Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Sikandar Hayat
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Abid Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, 18800, Khyber Pakhtunkhwa, IR, Pakistan
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
27
|
Huang X, Zhu F, He Z, Chen X, Wang G, Liu M, Xu H. Photosynthesis Performance and Antioxidative Enzymes Response of Melia azedarach and Ligustrum lucidum Plants Under Pb-Zn Mine Tailing Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571157. [PMID: 33042188 PMCID: PMC7522552 DOI: 10.3389/fpls.2020.571157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Lead-zinc (Pb-Zn) mine tailings pose a great risk to the natural environment and human health because of their high toxicity. In this study, the responses of photosynthesis, chlorophyll fluorescence, and antioxidative enzyme of Melia azedarach and Ligustrum lucidum in the soil contaminated by Pb-Zn mine tailings were investigated. Results showed that Pb-Zn mine tailings significantly reduced net photosynthetic rates and leaf photosynthetic pigment content of both trees, and the reduction of net photosynthetic rates was mainly caused by their biochemical limitation (BL). The chlorophyll fluorescence parameters from Pb-Zn tailing stressed leaves indicated that Pb-Zn tailings affected PSII activity which was evident from the change values of energy fluxes per reaction center (RC): probability that an electron moves further than QA - (ETO/TRO), maximum quantum yield for primary photochemistry (TRO/ABS), the density of PSII RC per excited cross-section (RC/CSO), the absorption of antenna chlorophylls per PSII RC (ABS/RC), and the turnover number of QA reduction events (N). Pb-Zn mine tailings also affected the oxidation and reduction of PSI, which resulted in a great increase of reactive oxygen species (ROS) contents and then stimulated the rate of lipid peroxidation. Both trees exhibited certain antioxidative defense mechanisms as elevated superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, then declined under high level of Pb-Zn tailing treatment. Comparatively, L. lucidum showed less extent effect on photosynthesis and higher antioxidative enzyme activities than M. azedarach; thus L. lucidum was more tolerant than M. azedarach at least under the described Pb-Zn tailing treatment. These results indicate that the effect of Pb-Zn mine tailings on photosynthesis performance mainly related to imbalance of the PSII activity and PSI redox state in both trees. We propose that M. azedarach and L. lucidum could relieve the oxidative stress for phytoremediation under the appropriate Pb-Zn mine tailing content.
Collapse
Affiliation(s)
- XinHao Huang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Fan Zhu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha, China
| | - ZhiXiang He
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - XiaoYong Chen
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha, China
- College of Arts and Sciences, Governors State University, University Park, IL, United States
| | - GuangJun Wang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha, China
| | - MengShan Liu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha, China
| | - HongYang Xu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
28
|
Ghassemi-Golezani K, Hosseinzadeh-Mahootchi A, Farhangi-Abriz S. Chlorophyll a fluorescence of safflower affected by salt stress and hormonal treatments. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3133-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Kaltrina R, Kristi B, Dea Z, Lulezim S, René H, Jakob S, Reinhard B. Alpine ecology, plant biodiversity and photosynthetic performance of marker plants in a nitrogen gradient induced by Alnus bushes. BMC Ecol 2020; 20:23. [PMID: 32312274 PMCID: PMC7171859 DOI: 10.1186/s12898-020-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/11/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Alpine alder vegetation acts upon the nearby grass and dwarf shrub vegetation by the nitrogen supply from the symbiotic bacteria Frankia alni of Alnus viridis. This has been studied in two transects concerning plant distribution, plant diversity, nitrate concentration in soil and photosynthetic performance of specific marker plants. RESULTS Away from the alder stand, a band of some meters was dominated by Calamagrostis varia which then was followed by alpine dwarf shrub vegetation. Nitrate in the soil showed a concentration decrease away from the alder stand leading to values near the detection limit in the dwarf shrub zone. Within these three zones, plant species were distributed according to their N-index, given in the ecological literature. Three dominant species, Calamagrostis varia, Rhododendron ferrugineum and Vaccinium myrtillus were examined at sites of different N-availability in the horizontal transect for their photosynthetic performance, by measuring the prompt fluorescence, the OJIP named polyphasic rise of chlorophyll-a fluorescence. All three plant species showed signs of stress in the fluorescence rise kinetics at decreased nitrate availability. These are similar to other known stress effects such as faster reduction of the primary acceptor or an electron supply limitation on the donor site of photosystem II. CONCLUSION Prompt chlorophyll-a fluorescence data of the examined leaves in a natural vegetation system showed the effects of a decrease in the essential nutrient nitrogen and in a manner parallel to changes in plant diversity. The selected marker plants behaved differently towards decreasing nitrogen concentrations in soil.
Collapse
Affiliation(s)
- Rexha Kaltrina
- Faculty of Natural Sciences, University of "Hasan Prishtina", Prishtina, Kosovo
| | - Bego Kristi
- Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Zyruku Dea
- Faculty of Natural Sciences, University of "Hasan Prishtina", Prishtina, Kosovo
| | - Shuka Lulezim
- Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Husi René
- Dept. of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Schneller Jakob
- Dept. of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Bachofen Reinhard
- Dept. of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
30
|
Huang L, Li Z, Pan S, Liu Q, Pu G, Zhang Y, Li J. Ameliorating effects of exogenous calcium on the photosynthetic physiology of honeysuckle (Lonicera japonica) under salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1103-1113. [PMID: 31581977 DOI: 10.1071/fp19116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Calcium (Ca2+) plays pivotal roles in modulating plant growth, development and stress responses. This work was conducted to study the effects of 20 mM calcium on the biomass, malondialdehyde content, chlorophyll content, ion ratio, chlorophyll a fluorescence and gas-exchange parameters, gene expression of annual honeysuckle under 50, 100 and 200 mM NaCl. At the end of treatment, Na+ concentration was increased with the mounting salinity, but a higher ratio of K+/Na2+, Ca2+/Na+, Mg2+/Na+ were obtained after calcium addition. Salinity exerted an adverse effect on the dry weights and chlorophyll content, whereas CaCl2 played a positive role. Consistent with biomass reduction, the photosynthetic rate and stomatal conductance declined in leaves of honeysuckle exposed to elevated salinity. However, the extent of reduction was much less under CaCl2 combination treatments than one caused by NaCl treatments. Exogenous calcium also protects the photochemical activity of PSII by protecting reaction centre from inactivation and maintaining electron transport from QA- to QB-. Further, exogenous calcium promoted the overexpression of LHCB coding gene Cab and Rubisco large subunit coding gene rbcL under short-term stress. In conclusion, exogenous calcium was effective in improving the salt tolerance of honeysuckle in the photosynthetic base, thereby improving the growth of plants.
Collapse
Affiliation(s)
- Luyao Huang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhuangzhuang Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shaobin Pan
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Gaobin Pu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; and Corresponding author.
| |
Collapse
|
31
|
Felipe SHS, Batista DS, Vital CE, Chagas K, Silva PO, Silva TD, Fortini EA, Correia LNDF, Ávila RT, Maldaner J, Festucci-Buselli RA, DaMatta FM, Otoni WC. Salinity-induced modifications on growth, physiology and 20-hydroxyecdysone levels in Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen]. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:43-54. [PMID: 31078783 DOI: 10.1016/j.plaphy.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
- Salinity is a major threat to agriculture. However, depending on the concentration of soluble salts in soil, increased secondary metabolite levels can occur with no major damages to plant growth and development. The phytoecdysteroid (PE) 20-hydroxyecdysone (20E) is a secondary metabolite with biotechnological, medicinal, pharmaceutical and agrochemical applicability. Here, we characterize the responses (growth and physiology) of Pfaffia glomerata under different NaCl concentrations and examine the production of 20E as affected by salinity. Forty-day-old plants grown in greenhouse were exposed to 0, 120, 240, 360 or 480 mM of NaCl for 11 days. Moderate salinity (i.e., 120 mM of NaCl) led to increased 20E concentrations in leaves (47%) relative to the control with no significant effect on photosynthesis and biomass accumulation, thus allowing improved 20E contents on a per whole-plant basis. In contrast, plants under high salinity (i.e., 240-480 mM of NaCl) displayed similar 20E concentrations in leaves compared to the control, but with marked impairments to biomass accumulation and photosynthetic performance (coupled with decreased sucrose and starch levels) in parallel to nutritional imbalance. High salinity also strongly increased salicylic acid levels, antioxidant enzyme activities, and osmoregulatory status. Regardless of stress severity, 20E production was accompanied by the upregulation of Spook and Phantom genes. Our findings suggest that P. glomerata cultivation in moderate salinity soils can be considered as a suitable agricultural option to increase 20E levels, since metabolic and structural complexity that makes its artificial synthesis very difficult.
Collapse
Affiliation(s)
| | - Diego Silva Batista
- PPG em Agricultura e Ambiente, Universidade Estadual do Maranhão, Av. Lourenço Vieira da Silva, s/nº, Cidade Universitária Paulo VI, São Luís, MA, Brazil
| | - Camilo Elber Vital
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Kristhiano Chagas
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Priscila Oliveira Silva
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, 69800-000, Humaitá, AM, Brazil
| | - Tatiane Dulcineia Silva
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Joseila Maldaner
- Centro de Pesquisa em Florestas/DDPA/SEAPI, Santa Maria, RS, Brazil
| | | | - Fábio Murilo DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
32
|
Zhong X, Che X, Zhang Z, Li S, Li Q, Li Y, Gao H. Slower development of PSI activity limits photosynthesis during Euonymus japonicus leaf development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:13-21. [PMID: 30639785 DOI: 10.1016/j.plaphy.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
This study primarily explored the limiting factor for photosynthesis during the development of Euonymus japonicus leaves. The analysis of the chlorophyll fluorescence transient, pulse-modulated fluorescence, 820-nm reflection, and expression of core proteins for photosystems demonstrated that photosystem II (PSII) activity developed more rapidly than did photosystem I (PSI) activity. The slower development of the PSI activity restricted linear and cyclic electron transport and thus inhibited the production of ATP and NADPH, which inhibits the activation of Rubisco, resulting in low activity of carboxylation efficiency. The application of exogenous NADPH (50 μM) and ATP (100 μM) to leaves remarkably increased the Pn and CE in the youngest leaf but not in the fully expanded leaf, which indicated that an inadequate supply of the assimilatory power significantly inhibited CE and Pn. We concluded that the slower development of the PSI activity was one of the most important limiting factors for photosynthesis during the development of E. japonicus leaves.
Collapse
Affiliation(s)
- Xin Zhong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xingkai Che
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Zishan Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Shuhao Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Qingming Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, 271018, China.
| | - Yuting Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Huiyuan Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
33
|
Zsiros O, Nagy V, Párducz Á, Nagy G, Ünnep R, El-Ramady H, Prokisch J, Lisztes-Szabó Z, Fári M, Csajbók J, Tóth SZ, Garab G, Domokos-Szabolcsy É. Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. PHOTOSYNTHESIS RESEARCH 2019; 139:449-460. [PMID: 30374728 DOI: 10.1007/s11120-018-0599-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/17/2018] [Indexed: 05/24/2023]
Abstract
Selenium (Se) is a natural trace element, which shifts its action in a relatively narrow concentration range from nutritional role to toxicity. Although it has been well established that in plants chloroplasts are among the primary targets, the mechanism of toxicity on photosynthesis is not well understood. Here, we compared selenate and red-allotrope elemental selenium nanoparticles (red nanoSe) in in vitro tobacco cultures to investigate their effects on the structure and functions of the photosynthetic machinery. Selenate at 10 mg/L concentration retarded plant growth; it also led to a decreased chlorophyll content, accompanied with an increase in the carotenoid-to-chlorophyll ratio. Structural examinations of the photosynthetic machinery, using electron microscopy, small-angle neutron scattering and circular dichroism spectroscopy, revealed significant perturbation in the macro-organization of the pigment-protein complexes and sizeable shrinkage in the repeat distance of granum thylakoid membranes. As shown by chlorophyll a fluorescence transient measurements, these changes in the ultrastructure were associated with a significantly diminished photosystem II activity and a reduced performance of the photosynthetic electron transport, and an enhanced capability of non-photochemical quenching. These changes in the structure and function of the photosynthetic apparatus explain, at least in part, the retarded growth of plantlets in the presence of 10 mg/L selenate. In contrast, red nanoSe, even at 100 mg/L and selenate at 1 mg/L, exerted no negative effect on the growth of plantlets and affected only marginally the thylakoid membrane ultrastructure and the photosynthetic functions.
Collapse
Affiliation(s)
- Ottó Zsiros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, POB 521, Szeged, 6701, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, POB 521, Szeged, 6701, Hungary
| | - Árpád Párducz
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, POB 521, Szeged, 6701, Hungary
| | - Gergely Nagy
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, POB 521, Szeged, 6701, Hungary
- Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, POB 49, Budapest, 1525, Hungary
| | - Renáta Ünnep
- Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, POB 49, Budapest, 1525, Hungary
| | - Hassan El-Ramady
- Department of Soil and Water Sciences, Faculty of Agriculture, Kafrelsheikh Uni, 33516, Kafr El-Sheikh, Egypt
- Department of Agricultural Botany, Plant Physiology and Biotechnology, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| | - József Prokisch
- Bio- and Environmental Enegetics Inst., Nano Food Lab, Debrecen University, Boszormenyi 138, Debrecen, 4032, Hungary
| | - Zsuzsa Lisztes-Szabó
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, 4026, Hungary
| | - Miklós Fári
- Department of Agricultural Botany, Plant Physiology and Biotechnology, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| | - József Csajbók
- Department of Crop Production and Applied Ecology, University of Debrecen, Boszormenyi 138, Debrecen, 4032, Hungary
| | - Szilvia Zita Tóth
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, POB 521, Szeged, 6701, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, POB 521, Szeged, 6701, Hungary
- Department of Physics, Faculty of Science, Ostrava University, Chittussiho 10, 710 0, Ostrava - Slezská Ostrava, Czech Republic
| | - Éva Domokos-Szabolcsy
- Department of Agricultural Botany, Plant Physiology and Biotechnology, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary.
| |
Collapse
|
34
|
Rabhi NEH, Silini A, Cherif-Silini H, Yahiaoui B, Lekired A, Robineau M, Esmaeel Q, Jacquard C, Vaillant-Gaveau N, Clément C, Aït Barka E, Sanchez L. Pseudomonas knackmussii MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in Arabidopsis thaliana. J Appl Microbiol 2018; 125:1836-1851. [PMID: 30142236 DOI: 10.1111/jam.14082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS The study aimed for evaluate the efficacy of Pseudomonas knackmussii MLR6 on growth promotion, photosynthetic responses, pigment contents and gene expression of the plant model Arabidopsis thaliana under NaCl stress. METHODS AND RESULTS The strain MLR6 was isolated from the rhizopshere of the halophyte Salsola tetrandra collected from a natural saline Algerian soil. Results showed the ability of MLR6 to induce plant growth promoting traits even under NaCl stress. The inoculation with MLR6 improved the stomatal conductance, the transpiration rate, the total chlorophyll and carotenoids contents under salt stress. It conferred also an increase of fresh/dry weight as well as plant height. MLR6 inoculation further provided a positive effect on cell membrane stability by reducing the electrolyte leakage and priming the ROS accumulation after the salt exposition. Additionally, the expression of NHX1, HKT1, SOS2, and SOS3 as well as SAG13 and PR1 was maintained in MLR6-bacterized plant at a similar level of controls. CONCLUSIONS The inoculation of Arabidopsis thaliana with MLR6 improves plant growth and reduces damages caused by salt stress. SIGNIFICANCE AND IMPACT OF STUDY The use of Pseudomonas knackmussii MLR6 appears as a promising strategy to improve the sustainable agriculture under saline conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nour El Houda Rabhi
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Allaoua Silini
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Hafssa Cherif-Silini
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Bilal Yahiaoui
- Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, Sétif-1, Algérie
| | - Abdelmalek Lekired
- Laboratoire Microorganismes et Biomolécules Actives LMBA, Université de Tunis El Manar
| | - Mathilde Robineau
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Qassim Esmaeel
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Essaïd Aït Barka
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Unité de Recherche EA, 4707 Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|