1
|
Sharma A, Kashyap S, Singh S. Exploring the advances in quinoa processing: A comprehensive review enhancing nutritional quality and health benefits along with industrial feasibility of quinoa. Food Res Int 2025; 206:116093. [PMID: 40058932 DOI: 10.1016/j.foodres.2025.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
The global dietary trend is shifting toward gluten-free crops with high nutritional value, driven by growing consumer awareness of environmental and health benefits of foods and food ingredients. Quinoa, a potential functional dietary ingredient, is rich in fiber, vitamins, and minerals. This review examines the impact of various processing methods, including thermal treatments (boiling, steaming, roasting), non-thermal techniques (germination, fermentation, microwave treatment, gamma irradiation, high hydrostatic pressure, and atmospheric pressure cold plasma), on the quality parameters of quinoa. Additionally, the health benefits of quinoa are explored in relation to human well-being. The review highlights recent advances in quinoa applications across industries, showcasing its versatility as an ingredient in functional foods and feeds. The effects of treatments vary widely, with each offering distinct advantages and limitations. Quinoa-based functional foods demonstrate the potential for developing health-promoting products, as quinoa's bioactive components exhibit antioxidant, antidiabetic, antihypertensive, anti-inflammatory, anticancer, and anti-obesity properties.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India.
| | - Shweta Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India
| |
Collapse
|
2
|
He Y, Deng Z, Chai T, Yang M, Liu J, Liu H. Germination affects structural and techno-functional properties of proteins from quinoa seeds with increased realease of antioxidant peptides by gastrointestinal digestion. Food Chem 2025; 469:142532. [PMID: 39708642 DOI: 10.1016/j.foodchem.2024.142532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the impact of germination on quinoa protein (QP) composition, techno-functional properties, and the release of antioxidant peptides during gastrointestinal digestion. Germinated QP (GQP) at 36 and 48 h showed significant degradation of storage proteins. GQP12 and GQP24 exhibited increased surface hydrophobicity but decreased solubility, foaming, and emulsifying properties, while that of GQP60 and GQP72 were improved. Both QP and GQP demonstrated good digestibility, with over 90 % of their gastrointestinal digests smaller than 1 kDa. Gastrointestinal digests of GQP12 (QPGI12) exhibited excellent antioxidant activity, attributed to higher hydrophobic amino acid content of GQP12 and peptides of QPGI12 digests. Eight antioxidant peptides with strong binding affinity to Keap1 were identified, with peptides FGDL, FGGL, and FDGL interacting through hydrogen bonding and hydrophobic interactions. Findings gained in this study indicated that germination might serve as an efficient strategy for improving techno-functionality and bioactivity of QP for antioxidant peptides production.
Collapse
Affiliation(s)
- Yanan He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tingxuan Chai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miao Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Khaled Y, AbdElgawad H, Hegab MM, Okla MK, AlGarawi AM, Tawfik WZ, Sayed M. Priming with multiwalled carbon nanotubes improved biomass accumulation, biological activity and metabolism of four horticultural plants during the sprouting stage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2086-2100. [PMID: 39520146 DOI: 10.1002/jsfa.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND It is imperative to enhance the quality of sprouts since they are a rich source of various primary and secondary metabolites. The objective of this work was to examine how multiwalled carbon nanotubes (MWCNTs) priming at various concentrations affected the nutritional qualities of four horticultural plants (T. foenum-graecum, L. grandiflorum, L. sativum and A. graveolens) and their sprouting processes. RESULTS Among the four applied concentrations (10-60 mgL-1), MWCNTs at 10 and 40 mg L⁻¹ induced the highest biomass accumulation in L. grandiflorum and T. foenum-graecum, respectively, while 60 mg L⁻¹ was most effective for L. sativum and A. graveolent. MWCNTs induced growth by enhancing photosynthesis, as shown by increased chlorophyll content and rubisco activity, which rose by 27%, 17%, 23% and 12% in T. foenum-graecum, L. grandiflorum, L. sativum, and A. graveolens, respectively. Enhanced photosynthesis by MWCNTs improved sugar metabolism as indicated by increased activity of sugar metabolic enzymes such as amylase, starch synthase and invertase. This also supplied the carbon necessary for the production of primary (amino acids, fatty acids and organic acids) and secondary (flavonoids and polyphenols) metabolites. There was consistently higher activity of antioxidant enzymes (catalase and peroxidase). Interestingly, species-specific reactions to MWCNT priming were observed, where L. sativum sprouts showed the highest antioxidant activity, followed by A. graveolens. CONCLUSION MWCNT priming improves sprout growth and nutritional quality by boosting metabolic processes and antioxidant activity, presenting a promising approach for sustainable agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yasmen Khaled
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerpen, Belgium
| | - Momtaz M Hegab
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal Mohamed AlGarawi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wael Z Tawfik
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mona Sayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Zheng X, Wang Q, Li L, Liu C, Ma X. Recent advances in germinated cereal and pseudo-cereal starch: Properties and challenges in its modulation on quality of starchy foods. Food Chem 2024; 458:140221. [PMID: 38943963 DOI: 10.1016/j.foodchem.2024.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Germination is an environmentally friendly process with no use of additives, during which only water spraying is done to activate endogenous enzymes for modification. Furthermore, it could induce bioactive phenolics accumulation. Controlling endogenous enzymes' activity is essential to alleviate granular disruption, crystallinity loss, double helices' dissociation, and molecular degradation of cereal and pseudo-cereal starch. Post-treatments (e.g. thermal and high-pressure technology) make it possible for damaged starch to reassemble towards well-packed structure. These contribute to alleviated loss of solubility and pasting viscosity, improved swelling power, or enhanced resistant starch formation. Cereal or pseudo-cereal flour (except that with robust structure) modified by early germination is more applicable to produce products with desirable texture and taste. Besides shortening duration, germination under abiotic stress is promising to mitigate starch damage for better utilization in staple foods.
Collapse
Affiliation(s)
- Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Qingfa Wang
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| | - Xiaoyan Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Yuekainan Street, Baoding, Hebei 071001, China
| |
Collapse
|
5
|
Jiménez MD, Salinas Alcón CE, Lobo MO, Sammán N. Andean Crops Germination: Changes in the Nutritional Profile, Physical and Sensory Characteristics. A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:551-562. [PMID: 38976203 DOI: 10.1007/s11130-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.
Collapse
Affiliation(s)
- M D Jiménez
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - C E Salinas Alcón
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - M O Lobo
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - N Sammán
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina.
| |
Collapse
|
6
|
Wang X, Fan B, Li Y, Fei C, Xiong Y, Li L, Liu Y, Tong L, Huang Y, Wang F. Effect of Germination on the Digestion of Legume Proteins. Foods 2024; 13:2655. [PMID: 39272421 PMCID: PMC11394037 DOI: 10.3390/foods13172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
As one of the main sources of plant protein, it is important to improve the protein digestibility of legumes. Faced with population growth and increasing environmental pressures, it is essential to find a green approach. Germination meets this requirement, and in the process of natural growth, some enzymes are activated to make dynamic changes in the protein itself; at the same time, other substances (especially anti-nutrient factors) can also be degraded by enzymes or their properties (water solubility, etc.), thereby reducing the binding with protein, and finally improving the protein digestibility of beans under the combined influence of these factors The whole process is low-carbon, environmentally friendly and safe. Therefore, this paper summarizes this process to provide a reference for the subsequent development of soybean functional food, especially the germination of soybean functional food.
Collapse
Affiliation(s)
- Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
7
|
Vicente-Sánchez ML, Castro-Alija MJ, Jiménez JM, María LV, María Jose C, Pastor R, Albertos I. Influence of salinity, germination, malting and fermentation on quinoa nutritional and bioactive profile. Crit Rev Food Sci Nutr 2024; 64:7632-7647. [PMID: 36960631 DOI: 10.1080/10408398.2023.2188948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The depletion of freshwater resources, as well as climate change and population growth, are threatening the livelihoods of thousands of people around the world. The introduction of underutilized crops such as quinoa may be important in countries with limited productivity and/or limited access to water due to its resistance to different abiotic stresses and its high nutritional value. The aim of this review is to assess whether techniques such as germination, malting and fermentation would improve the nutritional and bioactive profile of quinoa. The use of nitrogen oxide-donating, oxygen-reactive and calcium-source substances increases germination. The ecotype used, temperature, humidity and germination time are determining factors in germination. The presence of lactic acid bacteria of the rust-type phenotype can improve the volume and texture during baking of the doughs, increase the fiber content and act as a prebiotic. These techniques produce a significant increase in the content of proteins, amino acids and bioactive compounds, as well as a decrease in anti-nutritional compounds. Further studies are needed to determine which conditions are the most suitable to achieve the best nutritional, functional, technological, and organoleptic quinoa properties.
Collapse
Affiliation(s)
| | - María José Castro-Alija
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - José María Jiménez
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - López-Valdecillo María
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - Cao María Jose
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| | - Rosario Pastor
- Faculty of Health Sciences, Universidad Católica de Ávila (UCAV), Ávila, Spain
| | - Irene Albertos
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles, University of Valladolid, Valladolid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| |
Collapse
|
8
|
Barakat H, Al-Qabba MM, Algonaiman R, Radhi KS, Almutairi AS, Al Zhrani MM, Mohamed A. Impact of Sprouting Process on the Protein Quality of Yellow and Red Quinoa ( Chenopodium quinoa). Molecules 2024; 29:404. [PMID: 38257317 PMCID: PMC10821386 DOI: 10.3390/molecules29020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The demand for plant-based proteins has increased remarkably over the last decade. Expanding the availability and variety of plant-based protein options has shown positive potential. This study aimed to investigate the qualitative and quantitative changes in amino acids of yellow and red quinoa seeds (YQ and RQ) during a 9-day germination period. The results showed that the germination process led to an increase in the total amino acids by 7.43% and 14.36% in the YQ and RQ, respectively. Both varieties exhibited significant (p < 0.05) increases in non-essential and essential amino acids, including lysine, phenylalanine, threonine, and tyrosine. The content of non-essential amino acids nearly reached the standard values found in chicken eggs. These results were likely attributed to the impact of the germination process in increasing enzymes activity and decreasing anti-nutrient content (e.g., saponins). A linear relationship between increased seeds' hydration and decreased saponins content was observed, indicating the effect of water absorption in changing the chemical composition of the plant. Both sprouts showed positive germination progression; however, the sprouted RQ showed a higher germination rate than the YQ (57.67% vs. 43.33%, respectively). Overall, this study demonstrates that germination is a promising technique for enhancing the nutritional value of quinoa seeds, delivering sprouted quinoa seeds as a highly recommended source of high-protein grains with notable functional properties.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Maryam M. Al-Qabba
- Maternity and Children Hospital, Qassim Health Cluster, Ministry of Health, Buraydah 52384, Saudi Arabia;
| | - Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khadija S. Radhi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Abdulkarim S. Almutairi
- Al Rass General Hospital, Qassim Health Cluster, Ministry of Health, Ibn Sina Street, King Khalid District, Al Rass 58883, Saudi Arabia;
| | - Muath M. Al Zhrani
- Department of Applied Medical Science, College of Applied, Bishah University, Bishah 67714, Saudi Arabia;
| | - Ahmed Mohamed
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt;
| |
Collapse
|
9
|
Giovanelli G, Bresciani A, Benedetti S, Chiodaroli G, Ratti S, Buratti S, Marti A. Reformulating Couscous with Sprouted Buckwheat: Physico-Chemical Properties and Sensory Characteristics Assessed by E-Senses. Foods 2023; 12:3578. [PMID: 37835230 PMCID: PMC10572695 DOI: 10.3390/foods12193578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In the frame of reformulating food products for valorizing underutilized crops and enhancing both the nutritional and sensory characteristics of traditional foods, this study explored the potential impact of sprouting on some features of couscous prepared from buckwheat. Specifically, the impact of two sprouting times (48 h and 72 h) and two enrichment levels (25% and 50%) on physical properties (bulk density, hydration properties), cooking behavior (e.g., texture), chemical features (e.g., total phenolic content, rutin and quercetin), antioxidant activity (DPPH assay), and sensory traits (by means of electronic nose, tongue, and eye) was considered. Results showed that the replacement of 50% of pre-gelatinized buckwheat flour with 72 h-sprouted buckwheat flour resulted in a couscous with a higher content of phenolic compounds (including rutin and quercetin) and antioxidant activity; the related values further increased upon cooking. Moreover, except for the hardness and gumminess that were worsened (i.e., their values increased), cohesiveness and resilience improved in the presence of sprouted buckwheat (i.e., their values increased). Finally, the overall sensory traits improved with the addition of 50% sprouted buckwheat, since both bitterness and astringency decreased in the reformulated couscous.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Buratti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano via G. Celoria 2, 20133 Milan, Italy; (G.G.); (A.B.); (S.B.); (G.C.); (S.R.); (A.M.)
| | | |
Collapse
|
10
|
Lin Y, Zhou C, Li D, Wu Y, Dong Q, Jia Y, Yu H, Miao P, Pan C. Integrated non-targeted and targeted metabolomics analysis reveals the mechanism of inhibiting lignification and optimizing the quality of pea sprouts by combined application of nano-selenium and lentinans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5096-5107. [PMID: 36974656 DOI: 10.1002/jsfa.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignification causes a detrimental impact on the quality of edible sprouts. However, the mechanism of inhibition of lignification of edible sprouts by nano-selenium and lentinans remains unclear. RESULTS To reveal the mechanism of lignification regulation of sprouts by nano-selenium and lentinans, this study investigated the changes in antioxidant indicators, phytohormones, polyphenols, and metabolites in the lignin biosynthesis in pea sprouts following sprays of nano-selenium or/and lentinans twice. There was an overall increase in the aforementioned indices following treatment. In particular, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans was more effective than their individual applications in enhancing peroxidase, catalase, DPPH free-radical scavenging rate, luteolin, and sinapic acid, as well as inhibiting malondialdehyde generation and lignin accumulation. Combined with the results from correlation analysis, nano-selenium and lentinans may inhibit lignification by enhancing antioxidant systems, inducing phytohormone-mediated signaling, and enriching precursor metabolites (caffeyl alcohol, sinapyl alcohol, 4-coumaryl alcohol). In terms of the results of non-targeted metabolomics, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans mainly affected biosynthesis of plant secondary metabolites, biosynthesis of phenylpropanoids, phenylpropanoid biosynthesis, arginine and proline metabolism, and linoleic acid metabolism pathways, which supported and complemented results from targeted screenings. CONCLUSION Overall, the combined sprays of nano-selenium and lentinans showed synergistic effects in delaying lignification and optimizing the quality of pea sprouts. This study provides a novel and practicable technology for delaying lignification in the cultivation of edible sprouts. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Lin Y, Zhou C, Li D, Jia Y, Dong Q, Yu H, Wu T, Pan C. Mitigation of Acetamiprid Residue Disruption on Pea Seed Germination by Selenium Nanoparticles and Lentinans. PLANTS (BASEL, SWITZERLAND) 2023; 12:2781. [PMID: 37570938 PMCID: PMC10420818 DOI: 10.3390/plants12152781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The use of pesticides for pest control during the storage period of legume seeds is a common practice. This study evaluated the disruptive effects on pea seed germination and the repair effects of selenium nanoparticles (SeNPs) and lentinans (LNTs) This study examined the biomass, nutrient content, antioxidant indicators, plant hormones, phenolic compounds, and metabolites associated with the lignin biosynthesis pathway in pea sprouts. The application of acetamiprid resulted in a significant decrease in yield, amino-acid content, and phenolic compound content of pea sprouts, along with observed lignin deposition. Moreover, acetamiprid residue exerted a notable level of stress on pea sprouts, as evidenced by changes in antioxidant indicators and plant hormones. During pea seed germination, separate applications of 5 mg/L SeNPs or 20 mg/L LNTs partially alleviated the negative effects induced by acetamiprid. When used in combination, these treatments restored most of the aforementioned indicators to levels comparable to the control group. Correlation analysis suggested that the regulation of lignin content in pea sprouts may involve lignin monomer levels, reactive oxygen species (ROS) metabolism, and plant hormone signaling mediation. This study provides insight into the adverse impact of acetamiprid residues on pea sprout quality and highlights the reparative mechanism of SeNPs and LNTs, offering a quality assurance method for microgreens, particularly pea sprouts. Future studies can validate the findings of this study from the perspective of gene expression.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
- Huizhou Yinnong Technology Co., Ltd., Huizhou 516057, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Tong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| |
Collapse
|
12
|
Borgonovi SM, Chiarello E, Pasini F, Picone G, Marzocchi S, Capozzi F, Bordoni A, Barbiroli A, Marti A, Iametti S, Di Nunzio M. Effect of Sprouting on Biomolecular and Antioxidant Features of Common Buckwheat ( Fagopyrum esculentum). Foods 2023; 12:foods12102047. [PMID: 37238865 DOI: 10.3390/foods12102047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Buckwheat is a pseudo-cereal widely grown and consumed throughout the world. Buckwheat is recognized as a good source of nutrients and, in combination with other health-promoting components, is receiving increasing attention as a potential functional food. Despite the high nutritional value of buckwheat, a variety of anti-nutritional features makes it difficult to exploit its full potential. In this framework, sprouting (or germination) may represent a process capable of improving the macromolecular profile, including reducing anti-nutritional factors and/or synthesizing or releasing bioactives. This study addressed changes in the biomolecular profile and composition of buckwheat that was sprouted for 48 and 72 h. Sprouting increased the content of peptides and free-phenolic compounds and the antioxidant activity, caused a marked decline in the concentration of several anti-nutritional components, and affected the metabolomic profile with an overall improvement in the nutritional characteristics. These results further confirm sprouting as a process suitable for improving the compositional traits of cereals and pseudo-cereals, and are further steps towards the exploitation of sprouted buckwheat as a high-quality ingredient in innovative products of industrial interest.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Federica Pasini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Silvia Marzocchi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
13
|
Lan Y, Zhang W, Liu F, Wang L, Yang X, Ma S, Wang Y, Liu X. Recent advances in physiochemical changes, nutritional value, bioactivities, and food applications of germinated quinoa: A comprehensive review. Food Chem 2023; 426:136390. [PMID: 37307740 DOI: 10.1016/j.foodchem.2023.136390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/28/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Abstract
The production and consumption of functional foods has become an essential food industry trend. Due to its high nutritional content, quinoa is regarded as a super pseudocereal for the development of nutritious foods. However, the presence of antinutritional factors and quinoa's distinctive grassy flavor limit its food applications. Due to its benefits in enhancing the nutritional bioavailability and organoleptic quality of quinoa, germination has garnered significant interest. To date, there is no systematic review of quinoa germination and the health benefits of germinated quinoa. This review details the nutritional components and bioactivities of germinated quinoa, as well as the potential mechanisms for the accumulation of bioactive compounds during the germination process. Additionally, evidence supporting the health benefits of germinated quinoa, the current status of related product development, and perspectives for future research are presented. Thus, our research is likely to provide theoretical support for the use of germinated quinoa resources.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China; Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Xining 810016, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xijuan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China; Academy of Agriculture and Forestry Sciences, Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Xining 810016, China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Rizzo AJ, Palacios MB, Vale EM, Zelada AM, Silveira V, Burrieza HP. Snapshot of four mature quinoa ( Chenopodium quinoa) seeds: a shotgun proteomics analysis with emphasis on seed maturation, reserves and early germination. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:319-334. [PMID: 37033760 PMCID: PMC10073371 DOI: 10.1007/s12298-023-01295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Chenopodium quinoa Willd. is a crop species domesticated over 5000 years ago. This species is highly diverse, with a geographical distribution that covers more than 5000 km from Colombia to Chile, going through a variety of edaphoclimatic conditions. Quinoa grains have great nutritional quality, raising interest at a worldwide level. In this work, by using shotgun proteomics and in silico analysis, we present an overview of mature quinoa seed proteins from a physiological context and considering the process of seed maturation and future seed germination. For this purpose, we selected grains from four contrasting quinoa cultivars (Amarilla de Maranganí, Chadmo, Sajama and Nariño) with different edaphoclimatic and geographical origins. The results give insight on the most important metabolic pathways for mature quinoa seeds including: starch synthesis, protein bodies and lipid bodies composition, reserves and their mobilization, redox homeostasis, and stress related proteins like heat-shock proteins (HSPs) and late embryogenesis abundant proteins (LEAs), as well as evidence for capped and uncapped mRNA translation. LEAs present in our analysis show a specific pattern of expression matching that of other species. Overall, this work presents a complete snapshot of quinoa seeds physiological context, providing a reference point for further studies. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01295-8.
Collapse
Affiliation(s)
- Axel Joel Rizzo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Belén Palacios
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ellen Moura Vale
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ Brazil
| | - Alicia Mercedes Zelada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, RJ Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Campos Dos Goytacazes, RJ Brazil
| | - Hernán Pablo Burrieza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Biología del Desarrollo de las Plantas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
15
|
Jiang X, Xu Q, Zhang J, Li Z, Tang H, Cao D, Zhang D. Nutrient transfer and antioxidant effect of adzuki bean before and after GABA enrichment. Front Nutr 2023; 10:1123075. [PMID: 36776599 PMCID: PMC9909224 DOI: 10.3389/fnut.2023.1123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
In order to study the nutritional changes of γ-aminobutyric acid (GABA) enrichment in adzuki bean germination, vacuum combined with monosodium glutamate (MSG) was used as the germination stress of adzuki bean. The nutrient transfer before and after GABA enrichment in adzuki bean germination under vacuum combined with MSG stress were studied by means of chromatography and scanning electron microscope (SEM). The antioxidant activity and hypoglycemic effect of different solvent extracts before and after germination of adzuki bean were evaluated by experiments in vitro. The results showed that the nutritional characteristics of adzuki bean rich in GABA changed significantly (P < 0.05), the total fatty acids decreased significantly (P < 0.05), and the 21 amino acids detected increased significantly. After germination, the starch granules of adzuki bean became smaller and the surface was rough Germination stress significantly increased the antioxidant and hypoglycemic activities of the extracts from different solvents (P < 0.05), and the water extracts had the best effect on DPPH and ⋅OH radical scavenging rates of 88.52 and 83.56%, respectively. The results indicated that the germinated adzuki bean rich in GABA was more nutritious than the raw adzuki bean and had good antioxidant activity. It hoped to provide technical reference for rich food containing GABA.
Collapse
Affiliation(s)
- Xiujie Jiang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingpeng Xu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiayu Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huacheng Tang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongmei Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China,National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China,*Correspondence: Dongjie Zhang,
| |
Collapse
|
16
|
Liu M, Childs M, Loos M, Taylor A, Smart LB, Abbaspourrad A. The effects of germination on the composition and functional properties of hemp seed protein isolate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Abstract
Quinoa is an Andean grain, classified as pseudocereal and the exploitation of its nutritional profile is of great interest for the cereal-based industry. The germination of quinoa seeds (white and red royal) was tested at 20 °C for different times (0, 18, 24 and 48 h) to select the best conditions for improving the nutritional quality of their flours. Changes in proximal composition, total phenolic compounds, antioxidant activity, mineral content, unsaturated fatty acids and essential amino acids profiles of germinated quinoa seeds were determined. In addition, changes in structure and thermal properties of the starch and proteins as consequence of germination process were analyzed. In white quinoa, germination produced an increase in the content of lipids and total dietary fiber, at 48 h, the levels of linoleic and α-linolenic acids and antioxidant activity increase, while in red quinoa, the component that was mostly increased was total dietary fiber and, at 24 h, increased the levels of oleic and α-linolenic acids, essential amino acids (Lys, His and Met) and phenolic compounds; in addition, a decrease in the amount of sodium was detected. On the basis of the best nutritional composition, 48 h and 24 h of germination were selected for white and red quinoa seeds, respectively. Two protein bands were mostly observed at 66 kDa and 58 kDa, being in higher proportion in the sprouts. Changes in macrocomponents conformation and thermal properties were observed after germination. Germination was more positive in nutritional improvement of white quinoa, while the macromolecules (proteins and starch) of red quinoa presented greater structural changes. Therefore, germination of both quinoa seeds (48 h-white quinoa and 24 h-red quinoa) improves the nutritional value of flours producing the structural changes of proteins and starch necessary for obtaining high quality breads.
Collapse
|
18
|
Kheto A, Das R, Deb S, Bist Y, Kumar Y, Tarafdar A, Saxena DC. Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. Int J Biol Macromol 2022; 222:636-651. [PMID: 36174856 DOI: 10.1016/j.ijbiomac.2022.09.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The Chenopodium genus includes >250 species, among which only quinoa, pigweed, djulis, and kaniwa have been explored for starches. Chenopodium is a non-conventional and rich source of starch, which has been found effective in producing different classes of food. Chenopodium starches are characterized by their smaller granule size (0.4-3.5 μm), higher swelling index, shorter/lower gelatinization regions/temperature, good emulsifying properties, and high digestibility, making them suitable for food applications. However, most of the investigations into Chenopodium starches are in the primary stages (isolation, modification, and characterization), except for quinoa. This review comprehensively explores the major developments in Chenopodium starch research, emphasizing isolation, structural composition, functionality, hydrolysis, modification, and application. A critical analysis of the trends, limitations, and scope of these starches for novel food applications has also been provided to promote further scientific advancement in the field.
Collapse
Affiliation(s)
- Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India; Department of Food Technology, Vignan Foundation for Science Technology and Research, AP, India
| | - Rahul Das
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Saptashish Deb
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India.
| | - D C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| |
Collapse
|
19
|
De-La-Cruz-Yoshiura S, Vidaurre-Ruiz J, Alcázar-Alay S, Encina-Zelada CR, Cabezas DM, Correa MJ, Repo-Carrasco-Valencia R. Sprouted Andean grains: an alternative for the development of nutritious and functional products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2083158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shigeki De-La-Cruz-Yoshiura
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Julio Vidaurre-Ruiz
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Sylvia Alcázar-Alay
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Christian R. Encina-Zelada
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Dario M. Cabezas
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - María Jimena Correa
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Facultad de Ciencias Exactas-UNLP, la Plata, Argentina
| | - Ritva Repo-Carrasco-Valencia
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| |
Collapse
|
20
|
Can Karaca A, Nickerson M, Caggia C, Randazzo CL, Balange AK, Carrillo C, Gallego M, Sharifi-Rad J, Kamiloglu S, Capanoglu E. Nutritional and Functional Properties of Novel Protein Sources. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- ProBioEtna srl, Spin off of Univesity of Catania, Catania, Italy
| | - Cinzia L. Randazzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- ProBioEtna srl, Spin off of Univesity of Catania, Catania, Italy
| | - Amjad K. Balange
- Technology, ICAR-Central Institute of Fisheries EducationDepartment of Post-Harvest, Mumbai, India
| | - Celia Carrillo
- Bromatología, Facultad de Ciencias, Universidad de BurgosÁrea de Nutrición y , Burgos, Spain
| | - Marta Gallego
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa, Turkey
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
21
|
You H, Wu T, Wang W, Li Y, Liu X, Ding L. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res Int 2022; 156:111176. [DOI: 10.1016/j.foodres.2022.111176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
|
22
|
Stoleru V, Jacobsen SE, Vitanescu M, Jitareanu G, Butnariu M, Munteanu N, Stan T, Teliban GC, Cojocaru A, Mihalache G. Nutritional and antinutritional compounds in leaves of quinoa. FOOD BIOSCI 2022; 45:101494. [DOI: 10.1016/j.fbio.2021.101494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Almuhayawi MS, Abdel-Mawgoud M, Al Jaouni SK, Almuhayawi SM, Alruhaili MH, Selim S, AbdElgawad H. Bacterial Endophytes as a Promising Approach to Enhance the Growth and Accumulation of Bioactive Metabolites of Three Species of Chenopodium Sprouts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122745. [PMID: 34961218 PMCID: PMC8704246 DOI: 10.3390/plants10122745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/29/2023]
Abstract
Sprouts are regarded as an untapped source of bioactive components that display various biological properties. Endophytic bacterium inoculation can enhance plant chemical composition and improve its nutritional quality. Herein, six endophytes (Endo 1 to Endo 6) were isolated from Chenopodium plants and morphologically and biochemically identified. Then, the most active isolate Endo 2 (strain JSA11) was employed to enhance the growth and nutritive value of the sprouts of three Chenopodium species, i.e., C. ambrosoides, C. ficifolium, and C. botrys. Endo 2 (strain JSA11) induced photosynthesis and the mineral uptake, which can explain the high biomass accumulation. Endo 2 (strain JSA11) improved the nutritive values of the treated sprouts through bioactive metabolite (antioxidants, vitamins, unsaturated fatty acid, and essential amino acids) accumulation. These increases were correlated with increased amino acid levels and phenolic metabolism. Consequently, the antioxidant activity of the Endo 2 (strain JSA11)-treated Chenopodium sprouts was enhanced. Moreover, Endo 2 (strain JSA11) increased the antibacterial activity against several pathogenic bacteria and the anti-inflammatory activities as evidenced by the reduced activity of cyclooxygenase and lipoxygenase. Overall, the Endo 2 (strain JSA11) treatment is a successful technique to enhance the bioactive contents and biological properties of Chenopodium sprouts.
Collapse
Affiliation(s)
- Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed Abdel-Mawgoud
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo 11753, Egypt
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Saad M. Almuhayawi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed H. Alruhaili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
24
|
Enciso-Roca EC, Aguilar-Felices EJ, Tinco-Jayo JA, Arroyo-Acevedo JL, Herrera-Calderon O. Biomolecules with Antioxidant Capacity from the Seeds and Sprouts of 20 Varieties of Chenopodium quinoa Willd. (Quinoa). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112417. [PMID: 34834779 PMCID: PMC8618655 DOI: 10.3390/plants10112417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 05/03/2023]
Abstract
Quinoa has acquired a great interest due to its high content of nutrients and biomolecules that have nutritional and medicinal properties. The aim of this study was to compare the total phenolic content (TPC), total flavonoids (TF), and the antioxidant capacity of 20 varieties of seeds and sprouts of quinoa extract. Quinoa seeds were germinated for 72 h and dried in an oven at 45 °C. The extracts were obtained by dynamic extraction using methanol. Phytochemical analysis with liquid chromatography coupled with mass spectrometry (LC-ESI-MS/MS), TPC, TF, and the antioxidant capacity was carried out and compared between both extracts. The TPC was determined with Folin-Ciocalteu reagent, TF with AlCl3, and the antioxidant capacity was determined according to the DPPH and ABTS assays. Sprout extracts showed high values of TPC (31.28 ± 0.42 mg GAE/g; Pasankalla variety), TF (14.31 ± 0.50 mg EQ/g; black Coito variety), and antioxidant capacity (IC50 (DPPH): 12.69 ± 0.29 µg/mL and IC50 (ABTS): 3.51 ± 0.04 µg/mL; Pasankalla). The extracts of the Pasankalla variety revealed 93 and 90 phytochemical constituents in the seeds and sprouts, respectively, such as amino acids, phenolic acids, flavonoids, fatty acids, and triterpene saponins, among others. Quinoa sprouts showed a high content of TPC and TF, and high antioxidant capacity compared with seed extracts, especially the Pasankalla variety.
Collapse
Affiliation(s)
- Edwin Carlos Enciso-Roca
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (E.C.E.-R.); (E.J.A.-F.); (J.A.T.-J.)
| | - Enrique Javier Aguilar-Felices
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (E.C.E.-R.); (E.J.A.-F.); (J.A.T.-J.)
| | - Johnny Aldo Tinco-Jayo
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (E.C.E.-R.); (E.J.A.-F.); (J.A.T.-J.)
| | - Jorge Luis Arroyo-Acevedo
- Department of Dynamic Sciences, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru;
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru
- Correspondence: ; Tel.: +51-956-550-510
| |
Collapse
|
25
|
Cardone G, Rumler R, Speranza S, Marti A, Schönlechner R. Sprouting Time Affects Sorghum ( Sorghum bicolor [L.] Moench) Functionality and Bread-Baking Performance. Foods 2021; 10:foods10102285. [PMID: 34681334 PMCID: PMC8534832 DOI: 10.3390/foods10102285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Despite being considered a climate-resilient crop, sorghum is still underutilized in food processing because of the limited starch and protein functionality. For this reason, the objective of this study was to investigate the effect of sprouting time on sorghum functional properties and the possibility to exploit sprouted sorghum in bread making. In this context, red sorghum was sprouted for 24, 36, 48, 72, and 96 h at 27 °C. Sprouting time did not strongly affect the sorghum composition in terms of total starch, fiber, and protein contents. On the other hand, the developed proteolytic activity had a positive effect on oil-absorption capacity, pasting, and gelation properties. Conversely, the increased α-amylase activity in sprouted samples (≥36 h) altered starch functionality. As regards sorghum-enriched bread, the blends containing 48 h-sprouted sorghum showed high specific volume and low crumb firmness. In addition, enrichment in sprouted sorghum increased both the in vitro protein digestibility and the slowly digestible starch fraction of bread. Overall, this study showed that 48 h-sprouted sorghum enhanced the bread-making performance of wheat-based products.
Collapse
Affiliation(s)
- Gaetano Cardone
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via G. Celoria 2, 20133 Milan, Italy;
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Rubina Rumler
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Sofia Speranza
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via G. Celoria 2, 20133 Milan, Italy;
- Correspondence:
| | - Regine Schönlechner
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| |
Collapse
|
26
|
Suárez-Estrella D, Borgonovo G, Buratti S, Ferranti P, Accardo F, Pagani MA, Marti A. Sprouting of quinoa (Chenopodium quinoa Willd.): Effect on saponin content and relation to the taste and astringency assessed by electronic tongue. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Miyahira RF, Lopes JDO, Antunes AEC. The Use of Sprouts to Improve the Nutritional Value of Food Products: A Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:143-152. [PMID: 33719022 DOI: 10.1007/s11130-021-00888-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Sprouts are vegetable foods rich in phytonutrients, such as glucosinolates, phenolics, and isoflavones. Many studies have shown that sprouts also have high concentrations of vitamins and minerals. In addition to the high concentration of nutrients, sprouts can present a reduction of anti-nutritional factors such as phytates, tannins, and oxalates, which increases the bioaccessibility of minerals. However, their nutritional composition depends on several factors, such as the type of sprout and the germination conditions. In recent years, these foods have been highly demanded because they are associated to many health benefits. Moreover, germination is an easy and fast process, and does not depend on specific climatic conditions (potentially more sustainable to growth). The use of sprouts for the elaboration of food products can be a good strategy to increase the nutritional value of certain products that are widely consumed worldwide. In this sense, studies that evaluated the impact of adding sprouted grains on the nutritional value of some products, as well as the effect on their sensory properties were searched in the scientific literature. Most of them used germinated grain flours to replace wheat flour in food products. The satisfactory results of these products were associated with the type of sprout used and with the level of replacement of the wheat flour. This review briefly explored the nutritional benefits and the sensory acceptance of food products made with added sprouts.
Collapse
Affiliation(s)
- Roberta Fontanive Miyahira
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro/RJ, CEP: 20550-013, Brazil.
- School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil.
| | - Jean de Oliveira Lopes
- School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil
| | | |
Collapse
|