1
|
Borge RH, Johannessen HA, Alfonso JH. Psychosocial work exposures as risk factors for skin problems in a general working population: cross-sectional and prospective associations. Int Arch Occup Environ Health 2025; 98:309-319. [PMID: 40069534 PMCID: PMC11972187 DOI: 10.1007/s00420-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/22/2025] [Indexed: 04/06/2025]
Abstract
OBJECTIVE The potential contribution of psychosocial work exposures to skin problems is largely overlooked in the occupational health literature. To address this knowledge gap, we examined cross-sectional and prospective associations between six psychosocial work exposures (i.e., quantitative demands, job control, social support, emotional demands, role conflict, and interpersonal conflict) and self-reported skin problems. METHODS Data came from a probability sample of the general working population in Norway surveyed in 2016 (N = 7833) and 2019 (N = 8038). The prospective sample comprised 3430 participants. Data were analysed with ordered logistic regression, adjusting for age, sex, occupation, and exposure to cleaning products, water, and dry indoor air. RESULTS Cross-sectional analyses indicated statistically significant associations with skin problems for emotional demands, role conflict, and interpersonal conflict in 2016 and 2019, and for social support in 2019. In prospective analyses, emotional demands (OR 1.12, 95% CI 1.01-1.23), role conflict (OR 1.14, 95% CI 1.00-1.29), and interpersonal conflict (OR 1.24, 95% CI 1.01-1.52) significantly predicted subsequent skin problems. Interpersonal conflict (OR 1.26, 95% CI 1.01-1.57) was a significant predictor above and beyond baseline levels of skin problems. Quantitative demands and job control was generally non-significant, except for a significant interaction in the 2019 sample. CONCLUSION Exposure to certain psychosocial work stressors may be a risk factor for experiencing skin problems, particularly if you are exposed to interpersonal conflict. Preventive efforts to reduce the occurrence of skin problems in work settings should also target psychosocial stressors.
Collapse
Affiliation(s)
- Randi Hovden Borge
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Pb 5330 Majorstuen, 0304, Oslo, Norway.
| | - Håkon A Johannessen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Pb 5330 Majorstuen, 0304, Oslo, Norway
| | - Jose Hernán Alfonso
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
- Department of Dermatology and Venereology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
2
|
Strange TA, Clark HL, Dixon LJ. Potentially traumatic events, posttraumatic stress symptoms, and skin-related quality of life among adults with self-reported skin disease symptoms. Arch Dermatol Res 2024; 317:19. [PMID: 39546010 PMCID: PMC11568012 DOI: 10.1007/s00403-024-03451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
The connection between stress and skin disease has been extensively documented; however, there are no empirical studies investigating the incidence of traumatic event exposure and posttraumatic stress (PTS) symptoms among dermatology patients. To address this gap in the literature and begin to understand the associations between PTS symptoms and skin disease symptoms, this study used a sample of adults with self-reported skin disease symptoms to examine: (1) rates of potentially traumatic event (PTE) exposure and PTS symptoms; and (2) the association between PTS symptoms and skin-related quality of life, controlling for relevant covariates. Data were collected online through Cloud Research, and participants completed a battery of self-report measures. The sample included 310 participants (68.4% female) who endorsed current skin disease symptoms. Results indicated that 47.1% of participants endorsed clinical levels of PTS symptoms. Consistent with hypotheses, greater levels of PTS symptoms were associated with worse skin-related quality of life, and this association was particularly robust for arousal-related symptoms. Results shed light on the occurrence of trauma-related experiences among individuals with self-reported skin disease and indicate a link between PTS symptoms and the perceived burden of skin disease symptoms on daily living. However, this study was cross-sectional and relied on self-report measures; therefore, findings should be interpreted with caution, particularly since diagnoses could not be verified. Replication of this work in dermatology patients is needed to further understand these connections.
Collapse
Affiliation(s)
- Taylor A Strange
- Department of Psychology, University of Mississippi, P.O. Box 1848, Mississippi, 38655-1848, USA
| | - Heather L Clark
- Department of Psychology, University of Mississippi, P.O. Box 1848, Mississippi, 38655-1848, USA
| | - Laura J Dixon
- Department of Psychology, University of Mississippi, P.O. Box 1848, Mississippi, 38655-1848, USA.
| |
Collapse
|
3
|
Gelardi M, Giancaspro R, Fortunato F, Cassano M. Italian survey on the effectiveness of halotherapy administered via the Aerosal ® system. Monaldi Arch Chest Dis 2024. [PMID: 39221656 DOI: 10.4081/monaldi.2024.3007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Over the years, halotherapy (HT) has shown promise in the treatment of respiratory and dermatological diseases. However, its widespread acceptance remains limited due to the absence of official guidelines and awareness among doctors and patients. Among the patented systems of administration of HT, Aerosal® is the only one consisting of 3 certified elements, all classified as Medical Devices Class 2A: a dry saline dispenser called Aerosalmed®, a 30 g salt dose named AeroNaCL®, and a confined environment in marine multilayered construction with walls coated in salt called Aerosal®. We conducted an online survey of subjects undergoing Aerosal® HT across 80 Italian centers. Participants provided demographic data, reasons for choosing HT, and perceptions of its effectiveness. Following 10 treatment sessions, they rated improvements in various aspects, such as skin condition, sleep quality, relaxation, and respiratory benefits. Most participants learned about HT through word of mouth rather than medical advice, suggesting a discrepancy between patient satisfaction and medical endorsement. Over 92% reported resolution of their health issues post-treatment, with significant improvements in sleep quality and relaxation, particularly in adults. The therapy showed promise in various conditions, including respiratory and skin disorders, possibly attributed to stress reduction and intrinsic therapeutic effects. Despite skepticism, HT administered through the Aerosal® system has shown therapeutic potential. The psycho-physical benefits observed in patients advocate for greater consideration of this therapy by clinicians, emphasizing its safety, tolerability, and absence of notable side effects. In this context, standardized systems like Aerosal® are crucial for ensuring treatment safety and efficacy.
Collapse
Affiliation(s)
| | | | - Francesca Fortunato
- Section of Hygiene, Department of Medical and Surgical Sciences, University of Foggia.
| | | |
Collapse
|
4
|
Başar Kılıç Ş, Taheri S, Mehmetbeyoğlu Duman E, Öksüm Solak E, Yılmaz Şükranlı Z, Rassoulzadegan M, Borlu M. Psoriatic skin transcript phenotype: androgen/estrogen and cortisone/cortisol imbalance with increasing DNA damage response. Mol Biol Rep 2024; 51:933. [PMID: 39180588 DOI: 10.1007/s11033-024-09782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Patients prone to psoriasis suffer after a breakdown of the epidermal barrier and develop poorly healing lesions with abnormal proliferation of keratinocytes. Strong inflammatory reactions with genotoxicity (short telomeres) suggest impaired immune defenses with DNA damage repair response (DDR) in patients with psoriasis. Recent evidence indicates the existence of crosstalk mechanisms linking the DDR machinery and hormonal signaling pathways that cooperate to influence both progressions of many diseases and responses to treatment. The aim of this study was to clarify whether steroid biosynthesis and genomic stability markers are altered in parallel during the formation of psoriatic skin. Understanding the interaction of the steroid pathway and DNA damage response is crucial to addressing underlying fundamental issues and managing resulting epidermal barrier disruption in psoriasis. METHODS Skin (Lesional, non-lesional) and blood samples from twenty psoriasis patients and fifteen healthy volunteers were collected. Real-Time-PCR study was performed to assess levels of known transcripts such as: estrogen (ESR1, ESR2), androgen (AR), glucocorticoid/mineralocorticoid receptors (NR3C1, NR3C2), HSD11B1/HSD11B2, and DNA damage sensors (SMC1A, TREX1, TREX2, SSBP3, RAD1, RAD18, EXO1, POLH, HUS1). RESULTS We found that ESR1, ESR2, HSD11B1, NR3C1, NR3C2, POLH, and SMC1A transcripts were significantly decreased and AR, TREX1, RAD1, and SSBP3 transcripts were increased dramatically in the lesional skin compared to skin samples of controls. CONCLUSION We found that the regulation of the steroidogenic pathway was disrupted in the lesional tissue of psoriasis patients and that a sufficient glucocorticoid and mineralocorticoid response did not form and the estrogen/androgen balance was altered in favour of androgens. We suggest that an increased androgen response in the presence of DDR increases the risk of developing psoriasis. Although this situation may be the cause or the consequence of a disruption of the epidermal barrier, our data suggest developing new therapeutic strategies.
Collapse
Affiliation(s)
- Şeyma Başar Kılıç
- Dermatology and Venereology Department, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ecmel Mehmetbeyoğlu Duman
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Eda Öksüm Solak
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Murat Borlu
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Lee S, Kim SY, Lee S, Jang S, Hwang ST, Kwon Y, Choi J, Kwon O. Ganoderma lucidum extract attenuates corticotropin-releasing hormone-induced cellular senescence in human hair follicle cells. iScience 2024; 27:109675. [PMID: 38706837 PMCID: PMC11068553 DOI: 10.1016/j.isci.2024.109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Corticotropin-releasing hormone (CRH) is a key mediator in stress-induced hair growth inhibition. Here, we investigated the impact of stress-induced senescence and evaluated the potential of Ganoderma lucidum (GL) extract in mitigating CRH-induced senescence in human hair follicle cells (hHFCs). We show that CRH treatment increased the senescence-associated beta-galactosidase (SA-β-GAL) activity and reactive oxygen species (ROS) formation in hHFCs and suppressed alkaline phosphatase (ALP) activity and anagen-inducing genes. However, GL extract restored ALP activity and decreased the expression levels of anagen-related genes in CRH-treated hHFCs. It decreased SA-β-GAL activity, reduced ROS production, and prevented the phosphorylation of MAPK signaling pathways in CRH-related stress response. Moreover, GL reversed the CRH-induced inhibition of two-cell assemblage (TCA) elongation and Ki67 expression. GL extract attenuates stress-induced hair follicular senescence by delaying catagen entry and scavenging ROS. Our findings suggest that GL extract could be used for treating stress-induced hair loss.
Collapse
Affiliation(s)
- Sunhyoung Lee
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - So Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Seunghee Lee
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Sunhyae Jang
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | | | - Youngji Kwon
- R&I Center, COSMAX BTI, Seongnam, Gyeonggi-do, South Korea
| | - Jaehwan Choi
- R&I Center, COSMAX BTI, Seongnam, Gyeonggi-do, South Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| |
Collapse
|
6
|
Ofenloch R, Weisshaar E. [Selected aspects regarding social factors in skin diseases]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:386-391. [PMID: 38639767 DOI: 10.1007/s00105-024-05335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Skin diseases are complex and cannot be explained solely by genetic or environmental factors but are also significantly shaped by social influences. This review illuminates the bidirectional relationship between social factors and skin diseases, demonstrating how social determinants such as socioeconomic status, living environment, and psychosocial stress can influence the onset and progression of skin conditions. Simultaneously, it explores how skin diseases can affect individuals' social lives and work capability, leading to a cycle of social withdrawal and further deterioration of the condition. The paper describes the need for a holistic approach in dermatology that goes beyond the biomedical perspective and incorporates social factors to develop effective prevention and treatment strategies. The increasing prevalence of skin diseases in Europe and the expected rise in allergies due to climate change make the consideration of social determinants even more urgent. The findings of this review aim to raise awareness of the complex interconnections between social factors and skin health and contribute to reducing social disparities in skin health.
Collapse
Affiliation(s)
- Robert Ofenloch
- Sektion Berufsdermatologie, Hautklinik, Universitätsklinikum Heidelberg, Voßstr. 2, 69115, Heidelberg, Deutschland.
| | - Elke Weisshaar
- Sektion Berufsdermatologie, Hautklinik, Universitätsklinikum Heidelberg, Voßstr. 2, 69115, Heidelberg, Deutschland
| |
Collapse
|
7
|
Zhao Q, Tominaga M, Toyama S, Komiya E, Tobita T, Morita M, Zuo Y, Honda K, Kamata Y, Takamori K. Effects of Psychological Stress on Spontaneous Itch and Mechanical Alloknesis of Atopic Dermatitis. Acta Derm Venereol 2024; 104:adv18685. [PMID: 38566405 PMCID: PMC11000660 DOI: 10.2340/actadv.v104.18685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease, manifests as an intractable itch. Psychological stress has been suggested to play a role in the onset and worsening of AD symptoms. However, the pathophysiological relationships between psychological stressors and cutaneous manifestations remain unclear. To elucidate the mechanisms underlying the stress-related exacerbation of itch, we investigated the effects of water stress, restraint stress and repeated social defeat stress on itch-related scratching behaviour, mechanical alloknesis and dermatitis in male NC/Nga mice with AD-like symptoms induced by the repeated application of ointment containing Dermatophagoides farina body. NC/Nga mice with AD-like symptoms were subjected to water stress, restraint stress and repeated social defeat stress, and their scratching behaviour, sensitivity to mechanical stimuli (mechanical alloknesis) and severity of dermatitis were evaluated. Social defeat stress+ Dermatophagoides farina body-treated mice exposed to stress showed slower improvements in or the exacerbation of AD-like symptoms, including dermatitis and itch. In the mechanical alloknesis assay, the mechanical alloknesis scores of social defeat stress+ Dermatophagoides farina body-treated mice exposed to stress were significantly higher than those of non-exposed social defeat stress+ Dermatophagoides farina body- and social defeat stress-treated mice. These results suggest that psychological stress delays improvements in dermatitis by exacerbating itch hypersensitivity in AD.
Collapse
Affiliation(s)
- Qiaofeng Zhao
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Eriko Komiya
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Tomohiro Tobita
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Motoki Morita
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Ying Zuo
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kotaro Honda
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Yayoi Kamata
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine. Chiba, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan; Department of Dermatology, Juntendo University Urayasu Hospital, Chiba, Japan..
| |
Collapse
|
8
|
Fu S, Song X. The clinical and immunological features of alopecia areata following SARS-CoV-2 infection or COVID-19 vaccines. Expert Opin Ther Targets 2024; 28:273-282. [PMID: 38646688 DOI: 10.1080/14728222.2024.2344696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Alopecia areata (AA) is an autoimmune disease induced by viral infection or vaccination. With the increased incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the incidence of AA has also increased. Recently the incidence was found to be 7.8% from a previously reported rate of 2.1%. The physical and psychological damage caused by AA could seriously affect patients' lives, while AA is a challenging dermatological disease owing to its complex pathogenesis. AREAS COVERED This paper presents a comprehensive review of the prevalence, pathogenesis and potential therapeutic targets for AA after infection with SARS-CoV-2 or SARS-CoV-2 vaccine. EXPERT OPINION The treatment of AA remains challenging because of the complexity of its pathogenesis. For patients with AA after SARS-CoV-2 infection or vaccination, the use of sex hormones and alternative regenerative therapies may be actively considered in addition to conventional treatments. For preexisting disease, therapeutic agents should be adjusted to the patient's specific condition.
Collapse
Affiliation(s)
- Shiqi Fu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Hangzhou, China
| |
Collapse
|
9
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
10
|
Favero G, Gianò M, Franco C, Pinto D, van Noorden CJ, Rinaldi F, Rezzani R. Relation Between Reactive Oxygen Species Production and Transient Receptor Potential Vanilloid1 Expression in Human Skin During Aging. J Histochem Cytochem 2024; 72:157-171. [PMID: 38440794 PMCID: PMC10956443 DOI: 10.1369/00221554241236537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Skin sensitivity and impaired epidermal barrier function are associated with aging and are at least partly due to increased production of reactive oxygen species (ROS). Transient receptor potential vanilloid1 (TRPV1) is expressed in keratinocytes, fibroblasts, mast cells, and endothelial cells in skin. We investigated in skin biopsies of adult and elderly donors whether TRPV1 expression is involved in the skin aging process. We found that aging skin showed a strongly reduced epidermal thickness, strongly increased oxidative stress, protease expression, and mast cell degranulation and strongly increased TRPV1 expression both in epidermis and dermis. Based on our findings, the aging-related changes observed in the epidermis of the skin level are associated with increased ROS production, and hypothesized alterations in TRPV1 expression are mechanistically linked to this process.
Collapse
Affiliation(s)
- Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs - ARTO”, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Caterina Franco
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubliana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs - ARTO”, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| |
Collapse
|
11
|
Zhang H, Wang M, Zhao X, Wang Y, Chen X, Su J. Role of stress in skin diseases: A neuroendocrine-immune interaction view. Brain Behav Immun 2024; 116:286-302. [PMID: 38128623 DOI: 10.1016/j.bbi.2023.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Psychological stress is a crucial factor in the development of many skin diseases, and the stigma caused by skin disorders may further increase the psychological burden, forming a vicious cycle of psychological stress leading to skin diseases. Therefore, understanding the relationship between stress and skin diseases is necessary. The skin, as the vital interface with the external environment, possesses its own complex immune system, and the neuroendocrine system plays a central role in the stress response of the body. Stress-induced alterations in the immune system can also disrupt the delicate balance of immune cells and inflammatory mediators in the skin, leading to immune dysregulation and increased susceptibility to various skin diseases. Stress can also affect the skin barrier function, impair wound healing, and promote the release of pro-inflammatory cytokines, thereby exacerbating existing skin diseases such as psoriasis, atopic dermatitis, acne, and urticaria. In the present review, we explored the intricate relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective. We explored the occurrence and development of skin diseases in the context of stress, the stress models for skin diseases, the impact of stress on skin function and diseases, and relevant epidemiological studies and clinical trials. Understanding the relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective provides a comprehensive framework for targeted interventions and new insights into the diagnosis and treatment of skin diseases.
Collapse
Affiliation(s)
- Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Mi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Department of Mental Health Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Yujie Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| |
Collapse
|
12
|
Anand S, Littler DR, Mobbs JI, Braun A, Baker DG, Tennant L, Purcell AW, Vivian JP, Rossjohn J. Complimentary electrostatics dominate T Cell Receptor binding to a psoriasis-associated-peptide-antigen presented by Human Leukocyte Antigen (HLA) C*06:02. J Biol Chem 2023:104930. [PMID: 37330172 PMCID: PMC10371836 DOI: 10.1016/j.jbc.2023.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Psoriasis is a chronic skin disease characterised by hyperproliferative epidermal lesions infiltrated by autoreactive T cells. Individuals expressing the Human Leukocyte antigen (HLA) C*06:02 allele are at highest risk for developing psoriasis. An autoreactive T cell clone (termed Vα3S1/Vβ13S1) isolated from psoriatic plaques is selective for HLA-C*06:02-presenting a peptide derived from the melanocyte-specific auto-antigen ADAMTSL5 (VRSRRCLRL). Here we determine the crystal structure of this psoriatic TCR-HLA-C*06:02- ADAMTSL5 complex with a stabilised peptide. Docking of the TCR involves an extensive complementary charge network formed between negatively charged TCR residues interleaving with exposed arginine residues from the self-peptide and the HLA-C*06:02 α1 helix. We probed these interactions through mutagenesis and activation assays. The charged interface spans the polymorphic region of the C1/C2 HLA group. Notably the peptide binding groove of HLA C*06:02 appears exquisitely suited for presenting highly charged Arg-rich epitopes recognised by this acidic psoriatic TCR. Overall, we provide a structural basis for understanding engagement of melanocyte antigen-presenting cells by a TCR implicated in psoriasis, while simultaneously expanding our knowledge of how TCRs engage HLA-C.
Collapse
Affiliation(s)
- Sushma Anand
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Jesse I Mobbs
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Asolina Braun
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Daniel G Baker
- Janssen Research & Development, LLC, Horsham, Philadelphia, Pennsylvania, USA
| | - Luke Tennant
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
13
|
Ma YQ, Sun Z, Li YM, Xu H. Oxidative stress and alopecia areata. Front Med (Lausanne) 2023; 10:1181572. [PMID: 37396920 PMCID: PMC10311488 DOI: 10.3389/fmed.2023.1181572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Alopecia areata (AA) is an inflammatory autoimmune disease characterized by non-scarring hair loss on the scalp or any other part of the hair-bearing skin. While the collapse of the immune privilege is considered as one of the most accepted theories accounting for AA, the exact pathogenesis of this disease remains unclear by now. Other factors, such as genetic predisposition, allergies, microbiota, and psychological stress, also play an important role in the occurrence and development of AA. Oxidative stress (OS), an unbalance between the oxidation and antioxidant defense systems, is believed to be associated with AA and may trigger the collapse of hair follicle-immune privilege. In this review, we examine the evidence of oxidative stress in AA patients, as well as the relationship between the pathogenesis of AA and OS. In the future, antioxidants may play a new role as a supplementary therapy for AA.
Collapse
Affiliation(s)
| | | | | | - Hui Xu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Wang X, Su Y, Cai Z, Xu Y, Wu X, Al Rudaisat M, Hua C, Chen S, Lai L, Cheng H, Song Y, Zhou Q. γ-Aminobutyric acid promotes the inhibition of hair growth induced by chronic restraint stress. Life Sci 2023; 317:121439. [PMID: 36731645 DOI: 10.1016/j.lfs.2023.121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
Stress plays a critical role in hair loss, although the underlying mechanisms are largely unknown. γ-aminobutyric acid (GABA) has been reported to be associated with stress; however, whether it affects stress-induced hair growth inhibition is unclear. This study aimed to investigate the potential roles and mechanisms of action of GABA in chronic restraint stress (CRS)-induced hair growth inhibition. We performed RNA-seq analysis and found that differentially expressed genes (DEGs) associated with neuroactive ligand-receptor interaction, including genes related to GABA receptors, significantly changed after mice were treated with CRS. Targeted metabolomics analysis and enzyme-linked immunosorbent assay (ELISA) also showed that GABA levels in back skin tissues and serum significantly elevated in the CRS group. Notably, CRS-induced hair growth inhibition got aggravated by GABA and alleviated through GABAA antagonists, such as picrotoxin and ginkgolide A. RNA sequencing analysis revealed that DEGs related to the cell cycle, DNA replication, purine metabolism, and pyrimidine metabolism pathways were significantly downregulated in dermal papilla (DP) cells after GABA treatment. Moreover, ginkgolide A, a GABAA antagonist extracted from the leaves of Ginkgo biloba, promoted the cell cycle of DP cells. Therefore, the present study demonstrated that the increase in GABA could promote CRS-induced hair growth inhibition by downregulating the cell cycle of DP cells and suggested that ginkgolide A may be a promising therapeutic drug for hair loss.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixin Su
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Zhenying Cai
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mus'ab Al Rudaisat
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Kelkar V, Driver EM, Bienenstock EJ, Palladino A, Halden RU. Stability of human stress hormones and stress hormone metabolites in wastewater under oxic and anoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159377. [PMID: 36240932 DOI: 10.1016/j.scitotenv.2022.159377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Levels in wastewater of human stress biomarkers, such as cortisone (E), cortisol (F), tetrahydrocortisone (THE), and tetrahydrocortisol (THF) may serve as indicators of population wellbeing and overall health. This study examined the stability of these biosignature compounds in wastewater to inform on their applicability for use in wastewater-based epidemiology (WBE). Wastewater from two undisclosed U.S. municipalities were fortified with the above four biomarkers of stress to a concentration of 10 ppb, and their decay was studied at three temperatures (15, 25, and 35 °C) over 24 h in oxic and anoxic conditions. Samples were analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) in conjunction with the isotope dilution method for absolute quantitation. Results demonstrated short-term persistence (24 h) of biomarkers at low temperatures (15 °C), and accelerating kinetics of decay that were positively correlated with temperature increases. Among the four biomarkers evaluated, the tetrahydro derivatives were the most long-lived sewage-borne stress biomarkers and these are recommended as prime analytical targets for use in WBE when tracking population stress. Statistical analyses using a non-parametric Wilcoxon test further revealed no significant differences (p > 0.05) between oxic and anoxic decay rates for all stress biomarkers in wastewater from all study locations, regardless of the prevailing temperature regime. This negative finding is worthy of reporting because it suggests the feasibility of straightforward modeling of stress hormone decay, irrespective of whether the sewerage system monitored contains fully filled, pressurized pipes or partially filled gravity flow pipes, whose filling level, and with it its redox conditions, are known to fluctuate over time with water use and storm events.
Collapse
Affiliation(s)
- Varun Kelkar
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA
| | - Erin M Driver
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA
| | - Elisa J Bienenstock
- Watts College of Public Service and Community Solutions, Arizona State University, 411 N Central Ave #750, Phoenix, AZ 85004, USA
| | - Anthony Palladino
- Boston Fusion Corp., 70 Westview Street, Suite 100, Lexington, MA 02421, USA
| | - Rolf U Halden
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA; OneWaterOneHealth Nonprofit Project, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA.
| |
Collapse
|
17
|
Pringle D, Suliman S, Seedat S, van den Heuvel LL. The impact of childhood maltreatment on women's reproductive health, with a focus on symptoms of polycystic ovary syndrome. CHILD ABUSE & NEGLECT 2022; 133:105831. [PMID: 35985071 DOI: 10.1016/j.chiabu.2022.105831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Childhood maltreatment leads to lifelong health risks, particularly in women. Although reproductive health has been linked to such maltreatment, limited literature exists on its association with polycystic ovary syndrome (PCOS). OBJECTIVES In a sample of psychiatrically healthy women, we evaluated the impact of child maltreatment (subtypes of abuse and neglect) on women's reproductive health outcomes, specifically PCOS. PARTICIPANTS AND SETTING The 237 psychiatrically healthy women, aged between 18 and 79 years, were control participants in a case-control study (SHARED ROOTS), conducted in Cape Town, South Africa, between May 2014 and June 2017. METHODS Probable PCOS was based on a history of symptoms of ovulatory dysfunction and hyperandrogenism or a diagnosis of PCOS. We conducted hierarchical logistic regression models to assess which child maltreatment subtypes (emotional, physical and sexual abuse and emotional and physical neglect) were significantly associated with PCOS, controlling for sociodemographic and clinical factors. RESULTS Probable PCOS was present in 29 (12.2 %) women. Emotional abuse (31.6 %) was the most frequent type of child maltreatment and was significantly associated with PCOS (OR = 5.11, CI 1.87; 13.98), including when other maltreatment types were accounted for (OR = 3.90, CI 1.27; 12.02). Physical abuse was associated with PCOS (OR = 4.21, CI 1.43; 12.38), but was not significant when other maltreatment types were factored in. CONCLUSIONS Child maltreatment is independently associated with PCOS in women without psychiatric disorders. In the context of all maltreatment subtypes, emotional abuse remained associated with PCOS, suggesting its unique effect on this endocrinopathy.
Collapse
Affiliation(s)
- Deirdre Pringle
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg 7505, Cape Town, South Africa
| | - Sharain Suliman
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg 7505, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg 7505, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| | - Leigh Luella van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg 7505, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
18
|
Sánchez-Pellicer P, Navarro-Moratalla L, Núñez-Delegido E, Agüera-Santos J, Navarro-López V. How Our Microbiome Influences the Pathogenesis of Alopecia Areata. Genes (Basel) 2022; 13:genes13101860. [PMID: 36292745 PMCID: PMC9601531 DOI: 10.3390/genes13101860] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022] Open
Abstract
Alopecia areata is a multifactorial autoimmune-based disease with a complex pathogenesis. As in all autoimmune diseases, genetic predisposition is key. The collapse of the immune privilege of the hair follicle leading to scalp loss is a major pathogenic event in alopecia areata. The microbiota considered a bacterial ecosystem located in a specific area of the human body could somehow influence the pathogenesis of alopecia areata, as it occurs in other autoimmune diseases. Moreover, the Next Generation Sequencing of the 16S rRNA bacterial gene and the metagenomic methodology have provided an excellent characterization of the microbiota. The aim of this narrative review is to examine the published literature on the cutaneous and intestinal microbiota in alopecia areata to be able to establish a pathogenic link. In this review, we summarize the influence of the microbiota on the development of alopecia areata. We first introduce the general pathogenic mechanisms that cause alopecia areata to understand the influence that the microbiota may exert and then we summarize the studies that have been carried out on what type of gut and skin microbiota is found in patients with this disease.
Collapse
Affiliation(s)
- Pedro Sánchez-Pellicer
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Laura Navarro-Moratalla
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Eva Núñez-Delegido
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Juan Agüera-Santos
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Vicente Navarro-López
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
- Infectious Diseases Unit, University Hospital of Vinalopó-Fisabio, Carrer Tonico Sansano Mora 14, 03293 Elche, Spain
- Correspondence:
| |
Collapse
|
19
|
Salhab O, Khayat L, Alaaeddine N. Stem cell secretome as a mechanism for restoring hair loss due to stress, particularly alopecia areata: narrative review. J Biomed Sci 2022; 29:77. [PMID: 36199062 PMCID: PMC9533579 DOI: 10.1186/s12929-022-00863-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Living organisms are continuously exposed to multiple internal and external stimuli which may influence their emotional, psychological, and physical behaviors. Stress can modify brain structures, reduces functional memory and results in many diseases such as skin disorders like acne, psoriasis, telogen effluvium, and alopecia areata. In this review, we aim to discuss the effect of secretome on treating alopecia, especially alopecia areata. We will shed the light on the mechanism of action of the secretome in the recovery of hair loss and this by reviewing all reported in vitro and in vivo literature. Main body Hair loss has been widely known to be enhanced by stressful events. Alopecia areata is one of the skin disorders which can be highly induced by neurogenic stress especially if the patient has a predisposed genetic background. This condition is an autoimmune disease where stress in this case activates the immune response to attack the body itself leading to hair cycle destruction. The currently available treatments include medicines, laser therapy, phototherapy, and alternative medicine therapies with little or no satisfactory results. Regenerative medicine is a new era in medicine showing promising results in treating many medical conditions including Alopecia. The therapeutic effects of stem cells are due to their paracrine and trophic effects which are due to their secretions (secretome). Conclusion Stem cells should be more used as an alternative to conventional therapies due to their positive outcomes. More clinical trials on humans should be done to maximize the dose needed and type of stem cells that must be used to treat alopecia areata.
Collapse
Affiliation(s)
- Ola Salhab
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Luna Khayat
- University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Nada Alaaeddine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
20
|
Yuan H, Sun Y, Zhang S, Feng J, Tian Z, Liu J, Wang H, Gao Y, Tang Y, Zheng F. NLRP3 neuroinflammatory factors may be involved in atopic dermatitis mental disorders: an animal study. Front Pharmacol 2022; 13:966279. [PMID: 36267291 PMCID: PMC9576917 DOI: 10.3389/fphar.2022.966279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Numerous clinical studies have shown that atopic dermatitis (AD) is often associated with mental disorders. This could contribute to the overall burden of atopic dermatitis. However, the underlying mechanism of mental health symptoms in AD has not been fully elucidated. Methods: An AD mouse was induced by 2,4-dinitrofluorobenzene (DNFB), which was repeatedly applied to the back skin of the BALB/C mice to establish an atopic dermatitis mental disorder model. The role of neuroinflammation in the pathogenesis of atopic dermatitis mental disorders was then explored. Results: After the stimulation of DNFB for 35 days, the skin lesions, the HE staining of skin lesions, and the behavioral experiments (including elevated plus maze assay and tail suspension test) suggested that the AD mental disorder mouse model was successfully replicated. The expression of neuroinflammatory factors in the hippocampus was then investigated through Western blotting. The results showed a significant increase in the protein expression of NLRP3, caspase-1, and IL-1β. Conclusion: Mental disorders in AD might be related to the neuroinflammatory response in the hippocampus. An alternative yet essential approach to promoting AD recovery could be through reducing neuroinflammation and improving mental disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Probing the Skin–Brain Axis: New Vistas Using Mouse Models. Int J Mol Sci 2022; 23:ijms23137484. [PMID: 35806489 PMCID: PMC9267936 DOI: 10.3390/ijms23137484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammatory diseases of the skin, including atopic dermatitis and psoriasis, have gained increasing attention with rising incidences in developed countries over the past decades. While bodily properties, such as immunological responses of the skin, have been described in some detail, interactions with the brain via different routes are less well studied. The suggested routes of the skin–brain axis comprise the immune system, HPA axis, and the peripheral and central nervous system, including microglia responses and structural changes. They provide starting points to investigate the molecular mechanisms of neuropsychiatric comorbidities in AD and psoriasis. To this end, mouse models exist for AD and psoriasis that could be tested for relevant behavioral entities. In this review, we provide an overview of the current mouse models and assays. By combining an extensive behavioral characterization and state-of-the-art genetic interventions with the investigation of underlying molecular pathways, insights into the mechanisms of the skin–brain axis in inflammatory cutaneous diseases are examined, which will spark further research in humans and drive the development of novel therapeutic strategies.
Collapse
|
22
|
Chen YY, Liu LP, Zhou H, Zheng YW, Li YM. Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:2082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin's well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body's basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes "see" light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the "secret identity" of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- School of Medicine, Yokohama City University, Yokohama 234-0006, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
23
|
Tampa M, Mitran CI, Mitran MI, Amuzescu A, Matei C, Georgescu SR. Ischemia-Modified Albumin—A Potential New Marker of Oxidative Stress in Dermatological Diseases. Medicina (B Aires) 2022; 58:medicina58050669. [PMID: 35630086 PMCID: PMC9147831 DOI: 10.3390/medicina58050669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022] Open
Abstract
There is growing evidence that oxidative stress is involved in the pathogenesis of numerous conditions, including dermatological diseases. Various markers are available to assess oxidative stress, but none of these can be considered the ideal marker. Recent studies have shown that ischemia-modified albumin (IMA) is not only an indicator of ischemia, but also a marker of oxidative stress. We have conducted a narrative review to evaluate the role of IMA in dermatological diseases. We have identified 24 original articles that evaluated IMA in skin disorders (psoriasis, acne vulgaris, hidradenitis suppurativa, urticaria, vitiligo and Behcet’s disease) and hair disorders (alopecia areata, androgenetic alopecia and telogen effluvium). The results of the studies analyzed reveal that IMA may be considered a new marker of oxidative stress in dermatological diseases and offer new insights into the pathogenesis of these disorders and the theoretical basis for the development of new, effective, targeted therapies. To the best of our knowledge, this is the first review that gathers up data on the role of IMA in dermatological diseases.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.); (S.R.G.)
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Cristina Iulia Mitran
- Department of Microbiology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (C.I.M.); (M.I.M.)
| | - Madalina Irina Mitran
- Department of Microbiology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (C.I.M.); (M.I.M.)
| | - Andreea Amuzescu
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Clara Matei
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.); (S.R.G.)
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
24
|
Mahadi AR, Rafi MA, Shahriar T, Seemanta S, Rabbani MG, Akter M, Majumder MI, Hasan MT. Association Between Hair Diseases and COVID-19 Pandemic-Related Stress: A Cross-Sectional Study Analysis. Front Med (Lausanne) 2022; 9:876561. [PMID: 35647001 PMCID: PMC9133810 DOI: 10.3389/fmed.2022.876561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction:Psychological stress from the ongoing coronavirus disease 2019 (COVID-19) pandemic can potentially aggravate the course of several stress-sensitive skin and hair diseases. This study aimed to determine the potential association of COVID-19 stress with hair diseases, such as telogen effluvium (TE), alopecia areata (AA), and seborrheic dermatitis (SD), among medical students in Bangladesh.MethodsThis online-based cross-sectional study was conducted among 404 medical students of Bangladesh using a self-administered questionnaire, including sociodemographic information, status of hair diseases (i.e., TE, AA, and SD), COVID-19 fear scale, impact of event scale specific for COVID-19 (IES-COVID-19), and COVID-19 student stress questionnaire (CSSQ) scale, to determine pandemic-related stress. The logistic regression model was used to analyze the association.ResultsOverall prevalence of TE, AA, and SD was 61.1, 24.7, and 57.7%, respectively, with female predominance in case of TE and male predominance in case of AA and SD. More than half of the participants had COVID-19-related fear and traumatic stress symptoms. In the multiple logistic regression model, smoking [adjusted odds ratio (aOR) 2.93, 95% CI 1.29–6.65 for AA and aOR 4.19, 95% CI 1.83–9.56 for TE], COVID-19-related fear (aOR 1.70, 95% CI 1.01–2.89 for AA and aOR 2.620, 95% CI 1.25–5.48 for TE), and COVID-19-related traumatic stress symptoms (aOR 1.84, 95% CI 1.08–3.13 for AA, aOR 2.61, 95% CI 1.19–5.68 for TE, and aOR 1.92, 95% CI 1.14–3.25 for SD) were the risk factors of hair fall disorders.ConclusionOur study showed that a large number of medical students experienced TE, AA, and SD during the pandemic era. COVID-19-related stress and fear potentially have an association with these diseases.
Collapse
Affiliation(s)
- Ashrafur Rahaman Mahadi
- Central Medical College, Cumilla, Bangladesh
- Public Health Foundation, Dhaka, Bangladesh
- *Correspondence: Ashrafur Rahaman Mahadi
| | | | | | | | - Md. Golam Rabbani
- Public Health Foundation, Dhaka, Bangladesh
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | - M. Tasdik Hasan
- Public Health Foundation, Dhaka, Bangladesh
- Department of Public Health, State University of Bangladesh, Dhaka, Bangladesh
- Department of Primary Care & Mental Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
25
|
Jamerson TA, Li Q, Sreeskandarajan S, Budunova IV, He Z, Kang J, Gudjonsson JE, Patrick MT, Tsoi LC. Roles Played by Stress-Induced Pathways in Driving Ethnic Heterogeneity for Inflammatory Skin Diseases. Front Immunol 2022; 13:845655. [PMID: 35572606 PMCID: PMC9095822 DOI: 10.3389/fimmu.2022.845655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Immune-mediated skin conditions (IMSCs) are a diverse group of autoimmune diseases associated with significant disease burden. Atopic dermatitis and psoriasis are among the most common IMSCs in the United States and have disproportionate impact on racial and ethnic minorities. African American patients are more likely to develop atopic dermatitis compared to their European American counterparts; and despite lower prevalence of psoriasis among this group, African American patients can suffer from more extensive disease involvement, significant post-inflammatory changes, and a decreased quality of life. While recent studies have been focused on understanding the heterogeneity underlying disease mechanisms and genetic factors at play, little emphasis has been put on the effect of psychosocial or psychological stress on immune pathways, and how these factors contribute to differences in clinical severity, prevalence, and treatment response across ethnic groups. In this review, we explore the heterogeneity of atopic dermatitis and psoriasis between African American and European American patients by summarizing epidemiological studies, addressing potential molecular and environmental factors, with a focus on the intersection between stress and inflammatory pathways.
Collapse
Affiliation(s)
- Taylor A. Jamerson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Qinmengge Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | | | - Irina V. Budunova
- Department of Dermatology, Northwestern Medicine, Northwestern University, Chicago, IL, United States,Department of Urology, Northwestern Medicine, Northwestern University, Chicago, IL, United States
| | - Zhi He
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jian Kang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Matthew T. Patrick
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States,Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States,Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States,*Correspondence: Lam C. Tsoi,
| |
Collapse
|
26
|
Keratinocytes take part in the regulation of substance P in melanogenesis through the HPA axis. J Dermatol Sci 2022; 106:141-149. [PMID: 35525773 DOI: 10.1016/j.jdermsci.2022.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Clinical findings have shown that skin depigmentation disorder such as vitiligo may be closely associated with the release of central and peripheral substance P (SP) resulted from chronic psychological stress or sudden mental blow. But the regulatory role of SP and its receptor, tachykinin receptor in the pathogenesis of vitiligo is unclear. OBJECTIVES To investigate the function and mechanism of SP in melanogenesis. METHODS The chronic mental stress was used to explore the intrinsic association between psychological factors, SP and melanogenesis disorder. The effect of SP on melanogenesis through hypothalamic pituitary adrenocortical (HPA) axis was studied by skin culture in vitro. The conditioned medium experiment demonstrated the indirect effect of SP on melanogenesis of B16F10 cells through HaCaT cells. The ability to produce melanin was evaluated by detecting melanin and tyrosinase activity. qRT-PCR, western blotting and immunohistochemistry were used to detect the expression of related genes and proteins in melanogenesis and HPA axis. RESULTS Increased SP expression and reduction of melanogenesis in the skin of mice were observed under mental stress. Melanogenesis was suppressed in the cultured human skin treated with SP due to the down-regulation of melanin-related proteins and HPA axis genes. The melanogenesis of B16F10 cells was inhibited by the conditioned medium of HaCaT cells treated with SP. CONCLUSIONS Overall, these results indicate that excess SP originated from mental stress interferes with melanogenesis through keratinocytes in the skin. The HPA axis is the key downstream to perceive the SP signaling and furtherly regulate the melanogenesis.
Collapse
|
27
|
Wang X, Liu X, Xiao S, Zhang Z, Wu L, Cheng Y, Tan Y, Zhang G, Jiang C. Comparison of gut microbiota compositions and corresponding genetic and metabolic features between guttate and plaque psoriasis by metagenomic sequencing. Microb Pathog 2022; 167:105560. [DOI: 10.1016/j.micpath.2022.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
28
|
Wang X, Cai C, Liang Q, Xia M, Lai L, Wu X, Jiang X, Cheng H, Song Y, Zhou Q. Integrated Transcriptomics and Metabolomics Analyses of Stress-Induced Murine Hair Follicle Growth Inhibition. Front Mol Biosci 2022; 9:781619. [PMID: 35198601 PMCID: PMC8859263 DOI: 10.3389/fmolb.2022.781619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Qichang Liang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Jiang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| |
Collapse
|
29
|
Upregulated Fibulin-1 Increased Endometrial Stromal Cell Viability and Migration by Repressing EFEMP1-Dependent Ferroptosis in Endometriosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4809415. [PMID: 35127942 PMCID: PMC8816540 DOI: 10.1155/2022/4809415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
Endometriosis (EMS) is a prevalent disease in women characterized by the presence of endometrial stroma and glands outside the uterus. Recent studies have showed that EMS is correlated with the resistance of endometrial stromal cells (ESCs) to ferroptosis, an iron-dependent nonapoptotic cell death. Fibulin-1 (FBLN1) is a newly identified target regulated by progesterone in the process of ESC decidualization. However, the role of FBLN1 in regulating ESC ferroptosis and EMS remains unclear. In the present study, the gene expression profiles of GSE58178, GSE23339, and GSE25628 were downloaded from the Gene Expression Omnibus (GEO) database, and the commonly differential genes were identified using Venn diagram analysis. The role of FBLN1 in ESC viability and migration was evaluated using Cell Counting Kit-8, transwell, and western blot analysis. We found that the FBLN1 expression was increased significantly in eutopic and ectopic endometrial tissues of patients with EMS compared with normal endometrium. FBLN1 overexpression in normal ESCs (NESCs) promoted cell viability and migration, whereas FBLN1 inhibition in ectopic ESCs (EESCs) decreased cell viability and migration. Furthermore, FBLN1 inhibition facilitated EESC death by triggering ferroptosis, as evidenced by increased Fe2+, lipid ROS, and malondialdehyde (MDA) level and decreased glutathione peroxidase 4 (GPX4) expression and glutathione (GSH) level. Mechanistically, FBLN1 interacted with EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) and increased the protein stability of EFEMP1. More importantly, EFEMP1 silencing repressed the effect of FBLN1 on regulating EESC ferroptosis, death, and migration. Taken together, these results verify the role of the FBLN1/EFEMP1/ferroptosis pathway in the pathogenesis of EMS, and silencing of FBLN1/EFEMP1 might be an effective approach to treat EMS.
Collapse
|
30
|
The Brain-Skin Axis in Psoriasis-Psychological, Psychiatric, Hormonal, and Dermatological Aspects. Int J Mol Sci 2022; 23:ijms23020669. [PMID: 35054853 PMCID: PMC8776235 DOI: 10.3390/ijms23020669] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with systemic manifestation, in which psychological factors play an important role. The etiology of psoriasis is complex and multifactorial, including genetic background and environmental factors such as emotional or physical stress. Psychological stress may also play a role in exacerbation of psoriasis, by dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, sympathetic–adrenal–medullary axis, peripheral nervous system, and immune system. Skin cells also express various neuropeptides and hormones in response to stress, including the fully functional analog of the HPA axis. The deterioration of psoriatic lesions is accompanied by increased production of inflammatory mediators, which could contribute to the imbalance of neurotransmitters and the development of symptoms of depression and anxiety. Therefore, deregulation of the crosstalk between endocrine, paracrine, and autocrine stress signaling pathways contributes to clinical manifestations of psoriasis, which requires multidisciplinary approaches.
Collapse
|
31
|
Singh S, Sharma N, Behl T, Sarkar BC, Saha HR, Garg K, Singh SK, Arora S, Amran MS, Abdellatif AAH, Bilgrami AL, Ashraf GM, Rahman MS. Promising Strategies of Colloidal Drug Delivery-Based Approaches in Psoriasis Management. Pharmaceutics 2021; 13:pharmaceutics13111978. [PMID: 34834393 PMCID: PMC8623849 DOI: 10.3390/pharmaceutics13111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disorder that moderately affects social and interpersonal relationships. Conventional treatments for psoriasis have certain problems, such as poor drug penetration through the skin, hyper-pigmentation, and a burning sensation on normal and diseased skin. Colloidal drug delivery systems overcome the pitfalls of conventional approaches for psoriasis therapeutics and have improved patient safety parameters, compliance, and superior effectiveness. They also entail reduced toxicity. This comprehensive review’s topics include the pathogenesis of psoriasis, causes and types of psoriasis, conventional treatment alternatives for psoriasis, the need for colloidal drug delivery systems, and recent studies in colloidal drug delivery systems for the treatment of psoriasis. This review briefly describes colloidal drug delivery approaches, such as emulsion systems—i.e., multiple emulsion, microemulsion, and nano-emulsion; vesicular systems—i.e., liposomes, ethosomes, noisomes, and transferosomes; and particulate systems—i.e., solid lipid nanoparticles, solid lipid microparticles, nano-structured lipid carriers, dendrimers, nanocrystals, polymeric nanoparticles, and gold nanoparticles. The review was compiled through an extensive search of the literature through the PubMed, Google Scholar, and ScienceDirect databases. A survey of literature revealed seven formulations based upon emulsion systems, six vesicular drug delivery systems, and fourteen particulate systems reported for antipsoriatic drugs. Based on the literature studies of colloidal approaches for psoriasis management carried out in recent years, it has been concluded that colloidal pharmaceutical formulations could be investigated broadly and have a broad scope for effective management of many skin disorders in the coming decades.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| | - Bidhan Chandra Sarkar
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Hasi Rani Saha
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Kanika Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Supriya Kamari Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Sandeep Arora
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh;
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| |
Collapse
|
32
|
Zhang J, Chen R, Wen L, Fan Z, Guo Y, Hu Z, Miao Y. Recent Progress in the Understanding of the Effect of Sympathetic Nerves on Hair Follicle Growth. Front Cell Dev Biol 2021; 9:736738. [PMID: 34513851 PMCID: PMC8427189 DOI: 10.3389/fcell.2021.736738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 11/15/2022] Open
Abstract
Clinical observation and experimental studies have long suggested that the perifollicular nerves have nutritional and regulatory effects on the growth, development, and physiological cycle of hair follicles (HFs), even though the concrete mechanism remains obscure. Recently, with the progress of immunohistochemistry and molecular biology techniques, more innovation has been made in the study of the follicular sympathetic nerves and its nerve-effect factor norepinephrine affecting hair follicle stem cells. This review highlights the progress in the regulation of the sympathetic nervous system toward the growth of HFs.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihong Wen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
COVID-19 infection is a major cause of acute telogen effluvium. Ir J Med Sci 2021; 191:1677-1681. [PMID: 34467470 PMCID: PMC8407603 DOI: 10.1007/s11845-021-02754-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022]
Abstract
Background Acute telogen effluvium is a non-scaring hair loss, usually occurs 3 months after the stressful event that causes hair shedding, and lasts up to 6 months. It can be associated with post COVID-19 infection. Objective To study the possible effects of COVID-19 on the hair growth cycle and the relationship between COVID-19 and acute telogen effluvium. Patients and methods This is an observational cross-sectional study that had been conducted during the period from September 2020 to March 2021 years. Thirty-nine patients with post COVID-19 hair loss are confirmed by polymerase chain reaction (PCR) or antibody testing. Hair pull test was carried out to confirm the diagnosis and severity of telogen effluvium. Results Thirty-nine patients were evaluated; their ages ranged from 22 to 67 years with a mean and SD of 41.3 ± 11.6 years with 36 (92.3%) females and 3 (7.69%) males. All patients with a diagnosis of ATE were enrolled in this study and had a laboratory-confirmed diagnosis of prior SARS-CoV-2 infection; 15 (38.46%) patients reported mild symptoms, 24 (61.53%) patients presented with moderate disease, and no patient required hospitalization. They all experienced excessive hair loss within 2–3 months after infection. Pull tests were strongly positive (> 10–50% with a mean of 35% of pulled hair away from scalp). Conclusion COVID-19 infection is now a frequent and a common cause of acute telogen effluvium. Hence, clinicians should be aware about the relation between this infection and this pattern of hair loss. Drugs that have been used for the treatment of COVID-19 were excluded as a cause of acute telogen effluvium.
Collapse
|
34
|
Fregoso DR, Hadian Y, Gallegos AC, Degovics D, Maaga J, Keogh CE, Kletenik I, Gareau MG, Isseroff RR. Skin-brain axis signaling mediates behavioral changes after skin wounding. Brain Behav Immun Health 2021; 15:100279. [PMID: 34589779 PMCID: PMC8474598 DOI: 10.1016/j.bbih.2021.100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
Patients with chronic wounds often have associated cognitive dysfunction and depression with an as yet unknown mechanism for this association. To address the possible causality of skin wounding inducing these changes, behavior and cognitive functions of female C57BL/6 mice with an excisional skin wound were compared to unwounded animals. At six days post wounding, animals exhibited anxiety-like behaviors, impaired recognition memory, and impaired coping behavior. Wounded animals also had concomitant increased hippocampal expression of Tnfa, the pattern recognition receptor (PRR) Nod2, the glucocorticoid receptors GR/Nr3c1 and Nr3c2. Prefrontal cortex serotonin and dopamine turnover were increased on day six post-wounding. In contrast to the central nervous system (CNS) findings, day six post -wounding serum catecholamines did not differ between wounded and unwounded animals, nor did levels of the stress hormone corticosterone, TNFα, or TGFβ. Serum IL6 levels were, however elevated in the wounded animals. These findings provide evidence of skin-to-brain signaling, mediated either by elevated serum IL6 or a direct neuronal signaling from the periphery to the CNS, independent of systemic mediators. Wounding in the periphery is associated with an altered expression of inflammatory mediators and PRR genes in the hippocampus, which may be responsible for the observed behavioral deficits.
Collapse
Affiliation(s)
- Daniel R. Fregoso
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Yasmin Hadian
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Anthony C. Gallegos
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Doniz Degovics
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - John Maaga
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Ciara E. Keogh
- University of California, School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, Davis, United States
| | - Isaiah Kletenik
- Harvard Medical School, Department of Neurology, And Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Department of Neurology, United States
| | - Melanie G. Gareau
- University of California, School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, Davis, United States
| | - R. Rivkah Isseroff
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| |
Collapse
|
35
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
36
|
Ren SY, Zhang YN, Wang MJC, Wen BR, Xia CY, Li X, Wang HQ, Zhang RP, Zhang Y, Wang ZZ, Chen NH. Hair growth predicts a depression-like phenotype in rats as a mirror of stress traceability. Neurochem Int 2021; 148:105110. [PMID: 34166749 DOI: 10.1016/j.neuint.2021.105110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/09/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
As a subjective mood-related disorder with an unclear mechanism, depression has many problems in its diagnosis, which offers great space and value for research. At present, the methods commonly used to judge whether an animal model of depression has been established are mainly by biochemical index detection and behavioral tests, both of which inevitably cause stress in animals. Stress-induced hair growth inhibition has been widely reported in humans and animals. The simplicity of collecting hair samples and the observable state of hair growth has significant advantages; we tried to explore whether the parameters related to hair growth could be used as auxiliary indicators to evaluate a depression model in animals. The length and weight of the hair were calculated. Correlation analysis was conducted between the depressive behavioral results and the glucocorticoid levels in hair and serum. Learned helplessness combined with chronic restraint stress, and chronic unpredictable stress in the animal were detectable by superficial observation, weight ratio, and length of hair, and follicular development scores were significantly reduced compared to the control. The hair growth parameters of rats with depression, the rise in corticosterone, and the corresponding changes in behavioral parameters were significantly correlated. The neurotrophic factors, glucocorticoid-receptor (GR), brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and fibroblast growth factor 5 (FGF5), are associated with depression and hair growth. Significant differences were detected between the stress and control groups, suggesting that the mechanism underlying the stress-phenomenon inhibition of hair growth may be related to growth factor mediation.
Collapse
Affiliation(s)
- Si-Yu Ren
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Ya-Ni Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Man-Jiang-Cuo Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Bi-Rui Wen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xun Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Hui-Qin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Rui-Ping Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
37
|
Altunisik N, Ucuz I, Turkmen D. Psychiatric basics of alopecia areata in pediatric patients: Evaluation of emotion dysregulation, somatization, depression, and anxiety levels. J Cosmet Dermatol 2021; 21:770-775. [PMID: 33797195 DOI: 10.1111/jocd.14122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/12/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND/OBJECTIVE Alopecia areata (AA) is a skin disease characterized by sudden-onset hair loss. The relationship between psychiatric status and AA has not been fully elucidated. The aim of this study was to evaluate emotion dysregulation, somatization, depression, and anxiety levels in children and adolescents with AA. METHODS The study included 27 patients aged 8-18 years diagnosed with AA, and an age and gender-matched control group consisting of 30 cases without a known chronic medical disease. All individuals were screened for existing psychiatric illnesses by a pediatric psychiatrist through the Schedule for Affective Disorders and Schizophrenia for School-Age Children Present and Lifetime Version (K-SADS-PL). The patients were then evaluated using the Children's Depression Inventory (CDI), Screen for Child Anxiety-Related Emotional Disorders (SCARED), State-Trait Anxiety Inventory for Children (STAI-C), and Children Somatization Inventory (CSI-24). In addition, the patients' parents were asked to complete the Emotion Regulation Checklist-Family Form (ERC). RESULTS When comparing the scale scores of the AA and control group, there was a statistically significant difference between the groups in terms of the Emotional Lability/Negativity subscale scores on ERC. K-SADSPL ratios denoted features of at least one psychiatric condition in 62.9% and 16.6% of the AA group and control group, respectively. CONCLUSIONS Our results emphasize the importance of psychiatric evaluation in patients with AA. Our study also reveals the need for further studies with a larger sample of AA patients being evaluated in terms of emotion regulation.
Collapse
Affiliation(s)
- Nihal Altunisik
- Department of Dermatology, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Ilknur Ucuz
- Department of Pediatric Psychiatry, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Dursun Turkmen
- Department of Dermatology, Inonu University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
38
|
Xiao S, Zhang G, Jiang C, Liu X, Wang X, Li Y, Cheng M, Lv H, Xian F, Guo X, Tan Y. Deciphering Gut Microbiota Dysbiosis and Corresponding Genetic and Metabolic Dysregulation in Psoriasis Patients Using Metagenomics Sequencing. Front Cell Infect Microbiol 2021; 11:605825. [PMID: 33869074 PMCID: PMC8047475 DOI: 10.3389/fcimb.2021.605825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background Increasing evidence has shown that alterations in the intestinal microbiota play an important role in the pathogenesis of psoriasis. The existing relevant studies focus on 16S rRNA gene sequencing, but in-depth research on gene functions and comprehensive identification of microbiota is lacking. Objectives To comprehensively identify characteristic gut microbial compositions, genetic functions and relative metabolites of patients with psoriasis and to reveal the potential pathogenesis of psoriasis. Methods DNA was extracted from the faecal microbiota of 30 psoriatic patients and 15 healthy subjects, and metagenomics sequencing and bioinformatic analyses were performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database, cluster of orthologous groups (COG) annotations, and metabolic analyses were used to indicate relative target genes and pathways to reveal the pathogenesis of psoriasis. Results Compared with healthy individuals, the gut microbiota of psoriasis patients displayed an alteration in microbial taxa distribution, but no significant difference in microbial diversity. A distinct gut microbial composition in patients with psoriasis was observed, with an increased abundance of the phyla Firmicutes, Actinobacteria and Verrucomicrobia and genera Faecalibacterium, Bacteroides, Bifidobacterium, Megamonas and Roseburia and a decreased abundance of the phyla Bacteroidetes, Euryarchaeota and Proteobacteria and genera Prevotella, Alistipes, and Eubacterium. A total of 134 COGs were predicted with functional analysis, and 15 KEGG pathways, including lipopolysaccharide (LPS) biosynthesis, WNT signaling, apoptosis, bacterial secretion system, and phosphotransferase system, were significantly enriched in psoriasis patients. Five metabolites, hydrogen sulfide (H2S), isovalerate, isobutyrate, hyaluronan and hemicellulose, were significantly dysregulated in the psoriatic cohort. The dysbiosis of gut microbiota, enriched pathways and dysregulated metabolites are relevant to immune and inflammatory response, apoptosis, the vascular endothelial growth factor (VEGF) signaling pathway, gut-brain axis and brain-skin axis that play important roles in the pathogenesis of psoriasis. Conclusions A clear dysbiosis was displayed in the gut microbiota profile, genetic functions and relative metabolites of psoriasis patients. This study is beneficial for further understanding the inflammatory pathogenesis of psoriasis and could be used to develop microbiome-based predictions and therapeutic approaches.
Collapse
Affiliation(s)
- Shiju Xiao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Graduate School, Capital Medical University, Beijing, China
| | - Guangzhong Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chunyan Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xin Liu
- Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Xiaoxu Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Graduate School, Capital Medical University, Beijing, China
| | - Yafan Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Meijiao Cheng
- Beijing QuantiHealth Technology Co., Ltd, Beijing, China
| | - Hongpeng Lv
- Beijing University of Chinese Medicine, Beijing, China
| | - Fuyang Xian
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinwei Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Graduate School, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Rinaldi F, Trink A, Giuliani G, Pinto D. Italian Survey for the Evaluation of the Effects of Coronavirus Disease 2019 (COVID-19) Pandemic on Alopecia Areata Recurrence. Dermatol Ther (Heidelb) 2021; 11:339-345. [PMID: 33580408 PMCID: PMC7880634 DOI: 10.1007/s13555-021-00498-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The inflammation storm involved in coronavirus disease 2019 (COVID-19) infection and worsening and the psychological stress derived from current quarantine conditions can affect the course of many skin and scalp conditions. This study examined the possible effects of COVID-19 on alopecia areata (AA) relapse in patients suffering from these scalp conditions during the pandemic. METHODS The study was carried out in the form of an observational cross-sectional type using a questionnaire sent by mail to a cohort of patients affected by AA during the pandemic from March 2020 to October 2020. RESULTS During the pandemic, AA relapse was reported in 42.5% of the participants who also declared COVID-19 infection, confirmed by nasopharyngeal swab or hematological analysis. The relapse was reported about 2 months later COVID-19 infection (median of 2.14 months) and 74.0% of these participants continue to experience AA symptoms when the survey was proposed. Only 12.5% of participants reported AA relapse in the absence of COVID-19 infection. CONCLUSIONS The present study reported a significant relapse in patients suffering from AA and infected by COVID-19. This phenomenon could be attributed to the inflammation storm typical of COVID-19 infection and the psychological stress derived from quarantine conditions.
Collapse
Affiliation(s)
- Fabio Rinaldi
- International Hair Research Foundation (IHRF), Milan, Italy.
| | - Anna Trink
- International Hair Research Foundation (IHRF), Milan, Italy
| | | | - Daniela Pinto
- International Hair Research Foundation (IHRF), Milan, Italy
| |
Collapse
|
40
|
Héron A, Papillon V, Dubayle D. Medical, neurobiological, and psychobehavioral perspectives of mastocytosis: a case report. J Med Case Rep 2021; 15:176. [PMID: 33781336 PMCID: PMC8008611 DOI: 10.1186/s13256-021-02757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022] Open
Abstract
Background Cutaneous mastocytosis is a rare pathology characterized by an abnormal proliferation and degranulation of mast cells, affecting the skin. Here we present the case of a patient suffering from chronic resistant mastocytosis. An original integrative method of evaluation was tested in this patient, to improve therapeutic management. It integrated the interactions between stressful life events and medical history as well as psychobehavioral components and neurobiological factors. Case presentation The patient was a 65-year-old Caucasian woman. The cutaneous symptoms of mastocytosis had progressively evolved over the past 36 years, increasingly affecting the patient’s quality of life. At the time of the evaluation, psoralen and ultraviolet A therapy had reduced pruritus, but very unsightly brown-red maculopapules persisted on the chest, back, and arms. We proposed an integrative diagnosis that combined a semistructured interview, a psychometric assessment with the Millon Behavioral Medicine Diagnostic tool, and the collection of medical data. The medical data were compared with the analysis of the significant events in the patient’s life, to determine the threshold of tolerance to stress beyond which the skin symptoms led to profuse thrusts of pruritus. At the same time, the psychobehavioral profile of the patient was determined; this highlighted how social isolation, the denigrated coping style, and problematic compliance could influence the extension of dermatological symptoms. The effects of stressors on the infiltration and degranulation of skin mast cells have been discussed in light of the neurobiological processes currently known. At the end of the evaluation, a new therapeutic strategy was proposed. Conclusion This case report reveals the mind–body relationship of a patient suffering from mastocytosis. It highlights the points of vulnerability and the adaptative strategies specific to each patient to be considered in therapeutic management of other resistant chronic diseases.
Collapse
Affiliation(s)
- A Héron
- Faculté de Santé, Université de Paris, Physiologie Humaine, 4 avenue de l'Observatoire, 75006, Paris, France. .,Groupement Hospitalier de Territoire, Unité de Recherche Clinique URC28, Centre Hospitalier Général Victor Jousselin, 44 avenue JF Kennedy, 28100, Dreux, France.
| | - V Papillon
- Groupement Hospitalier de Territoire, Unité de Recherche Clinique URC28, Centre Hospitalier Général Victor Jousselin, 44 avenue JF Kennedy, 28100, Dreux, France
| | - D Dubayle
- Université de Paris, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
41
|
Jean dit Bailleul R, Gourier G, Saliou P, Misery L, Dewitte J, Lodde B, Brenaut E, Durand-Moreau Q. Balance effort–récompense et prurit chez les travailleurs atteints de psoriasis : une étude pilote. ARCH MAL PROF ENVIRO 2021. [DOI: 10.1016/j.admp.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules 2021; 26:molecules26040943. [PMID: 33579001 PMCID: PMC7916812 DOI: 10.3390/molecules26040943] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.
Collapse
|
43
|
Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomed Pharmacother 2021; 137:111065. [PMID: 33540138 DOI: 10.1016/j.biopha.2020.111065] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The occurrence, progression and recurrence of psoriasis are thought to be related to mood and psychological disorders such as depression. Psoriasis can lead to depression, and depression, in turn, exacerbates psoriasis. No specific mechanism can explain the association between psoriasis and depression. The gut-brain-skin axis has been used to explain correlations among the gut microbiota, emotional states and systemic and skin inflammation, and this axis may be associated with overlapping mechanisms between psoriasis and depression. Therefore, in the context of the gut-brain-skin axis, we systematically summarized and comparatively analysed the inflammatory and immune mechanisms of psoriasis and depression and illustrated the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and the gut microbiota. This review provides a theoretical basis and new targets for the treatment of psoriasis and depression.
Collapse
|
44
|
Glas B, Claeson AS. Skin sensitivity to capsaicin, perceived stress and burn out among patients with building-related symptoms. Int Arch Occup Environ Health 2021; 94:791-797. [PMID: 33423091 PMCID: PMC8238921 DOI: 10.1007/s00420-020-01647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
Objective The mechanisms behind building-related symptoms have remained unknown despite many years of research. It is known that environmental and psychosocial factors are of importance. Some receptors in the Transient Receptor Potential family elicit the same symptoms when stimulated, as reported by those suffering from building-related symptoms. The aim of this study was to compare capsaicin sensitivity between people with and without skin symptoms. A second aim was to investigate perceived stress among individuals with different levels of capsaicin sensitivity. Methods People referred to an occupational health care unit and judged to have building-related symptoms by a physician answered a questionnaire regarding their symptoms. Solutions with different capsaicin concentrations were applied to participants’ nasolabial folds. Self-reported stress and burnout were assessed using two questionnaires: the Perceived Stress Scale (PSS) and the Shirom-Melamed Burnout Questionnaire (SMBQ). Results We found that people who reported facial erythema or itching, stinging, tight or burning facial skin were more sensitive than those without symptoms and similarities with Sensitive Skin are discussed. We also found that participants who reacted to the lowest capsaicin concentrations scored significantly higher on scales for stress and burnout. Conclusions We found associations between sensitivity to capsaicin and skin symptoms among people with building-related symptoms, as well as associations between capsaicin sensitivity and perceived stress/burnout.
Collapse
Affiliation(s)
- Bo Glas
- Department of Clinical Medicine and Public Health, Umeå University, Umea, Sweden.
| | | |
Collapse
|
45
|
Barr KL, Soutor CA, Franklin JMM. Mind–Body Therapies. INTEGRATIVE DERMATOLOGY 2021:165-191. [DOI: 10.1007/978-3-030-58954-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Fischer TW, Bergmann A, Kruse N, Kleszczynski K, Skobowiat C, Slominski AT, Paus R. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP 3 -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75 NTR and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br J Dermatol 2021; 184:96-110. [PMID: 32271938 PMCID: PMC7962141 DOI: 10.1111/bjd.19115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Human hair is highly responsive to stress, and human scalp hair follicles (HFs) contain a peripheral neuroendocrine equivalent of the systemic hypothalamic-pituitary-adrenal (HPA) stress axis. Androgenetic alopecia (AGA) is supposed to be aggravated by stress. We used corticotropin-releasing hormone (CRH), which triggers the HPA axis, to induce a stress response in human ex vivo male AGA HFs. Caffeine is known to reverse testosterone-mediated hair growth inhibition in the same hair organ culture model. OBJECTIVES To investigate whether caffeine would antagonize CRH-mediated stress in these HFs. METHODS HFs from balding vertex area scalp biopsies of men affected by AGA were incubated with CRH (10-7 mol L-1 ) with or without caffeine (0·001% or 0·005%). RESULTS Compared to controls, CRH significantly enhanced the expression of catagen-inducing transforming growth factor-β2 (TGF-β2) (P < 0·001), CRH receptors 1 and 2 (CRH-R1/2) (P < 0·01), adrenocorticotropic hormone (ACTH) (P < 0·001) and melanocortin receptor 2 (MC-R2) (P < 0·001), and additional stress-associated parameters, substance P and p75 neurotrophin receptor (p75NTR ). CRH inhibited matrix keratinocyte proliferation and expression of anagen-promoting insulin-like growth factor-1 (IGF-1) and the pro-proliferative nerve growth factor receptor NGF-tyrosine kinase receptor A (TrkA). Caffeine significantly counteracted all described stress effects and additionally enhanced inositol trisphosphate receptor (IP3 -R), for the first time detected in human HFs. CONCLUSIONS These findings provide the first evidence in ex vivo human AGA HFs that the stress mediator CRH induces not only a complex intrafollicular HPA response, but also a non-HPA-related stress response. Moreover, we show that these effects can be effectively antagonized by caffeine. Thus, these data strongly support the hypothesis that stress can impair human hair physiology and induce hair loss, and that caffeine may effectively counteract stress-induced hair damage and possibly prevent stress-induced hair loss.
Collapse
Affiliation(s)
- T W Fischer
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - A Bergmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - N Kruse
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - K Kleszczynski
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - C Skobowiat
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| | - R Paus
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
Theoharides TC. The impact of psychological stress on mast cells. Ann Allergy Asthma Immunol 2020; 125:388-392. [PMID: 32687989 DOI: 10.1016/j.anai.2020.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Atopic diseases worsen with psychological stress, but how stress contributes to their pathogenesis is still not clear. We review the evidence supporting the premise that stress contributes to allergic and inflammatory processes through stimulation of mast cells (MCs) by neuroimmune stimuli. DATA SOURCES PubMed was searched between 1950 and 2019 using the following terms: allergies, atopic diseases, corticotropin-releasing hormone, inflammation, hypothalamic-pituitary-adrenal axis, mast cells, mastocytosis, neuropeptides, psychological stress, neurotensin, and substance P. STUDY SELECTIONS Only articles published in English were selected based on their relevance to stress and MCs, especially those that discussed potential mechanisms of action. RESULTS Psychological stress worsens many diseases, especially asthma, atopic dermatitis, and mastocytosis. This effect is mediated through MCs stimulated by neuropeptides, especially corticotropin-releasing hormone, neurotensin, and substance P, a process augmented by interleukin-33. CONCLUSION Understanding how stress stimulates MCs to release proinflammatory mediators is important in advancing treatments for diseases that worsen with stress.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
48
|
Turkmen D, Altunisik N, Sener S, Colak C. Evaluation of the effects of COVID-19 pandemic on hair diseases through a web-based questionnaire. Dermatol Ther 2020; 33:e13923. [PMID: 32594627 PMCID: PMC7361059 DOI: 10.1111/dth.13923] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Aim Current quarantine conditions are a difficult process for individuals and can worsen the psychological state. Increased psychosocial stress can affect the course of many common “stress‐sensitive” skin conditions. This study examined the possible effects of coronavirus disease 2019 (COVID‐19) on hair and scalp diseases such as telogen effluvium (TE), alopecia areata (AA), and seborrheic dermatitis (SD) in individuals who had to stay at home for a long time and the patients' methods of dealing with these diseases. Methods The study was conducted using an online questionnaire. All the individuals were asked questions about pre‐ and post‐pandemic TE, AA, and SD. Participants with complaints were asked what they did for treatment. Results During the pandemic, TE was seen in 27.9% of the participants, AA on the scalp was seen in 2.8%, AA on the face was seen in 2.5%, and SD was seen in 19.9%. Applying to a dermatologist for complaints during the pandemic was lower than before pandemic. TE was higher in women before and during the pandemic. Conclusion It was found that the rates of referring to a dermatologist for the complaints before the pandemic varied between 15% and 28% and that these rates decreased significantly during the pandemic (2.5%‐12.5%).
Collapse
Affiliation(s)
- Dursun Turkmen
- Department of Dermatology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nihal Altunisik
- Department of Dermatology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Serpil Sener
- Department of Dermatology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
49
|
Rivetti N, Barruscotti S. Management of telogen effluvium during the COVID-19 emergency: Psychological implications. Dermatol Ther 2020; 33:e13648. [PMID: 32445237 PMCID: PMC7267137 DOI: 10.1111/dth.13648] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Nicolò Rivetti
- Ambulatorio di Dermatologia, Istituto Clinico Beato Matteo, Vigevano, Pavia, Italy
| | - Stefania Barruscotti
- Department of Clinical-Surgical, Diagnostic and Pediatric Science, Institute of Dermatology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.,PhD School in Experimental Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
50
|
Theoharides TC. Effect of Stress on Neuroimmune Processes. Clin Ther 2020; 42:1007-1014. [PMID: 32451121 DOI: 10.1016/j.clinthera.2020.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Psychological stress worsens many diseases, especially those with inflammatory components, such as atopic dermatitis (AD) and autism spectrum disorder (ASD), conditions that are significantly correlated in large epidemiologic studies. However, how stress contributes to these conditions is still poorly understood. This narrative review of the relevant literature advances the premise that stress affects inflammatory processes in AD and ASD via stimulation of mast cells (MCs). METHODS MEDLINE was searched between 1980 and 2019 using the terms allergies, atopic dermatitis, autism spectrum disorder, brain, corticotropin-releasing hormone, inflammation, hypothalamic-pituitary-adrenal axis, mast cells, neuropeptides, stress, neurotensin, and substance P. FINDINGS Exposure to psychological stress is associated with onset and/or exacerbation of AD and ASD. This association could be attributable to activation of MCs, which are ubiquitous in the body, including the brain, and could contribute to inflammation. IMPLICATIONS Understanding and addressing the connection between stress and MCs is important in clarifying the pathogenesis and developing effective treatments for diseases that worsen with stress and involve inflammation, such as AD and ASD.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|