1
|
Sallam NA, Peterson CS, Kamar SS, Saenz C, Visser F, Borgland SL. Sex differences in the effects of maternal voluntary oral Cannabis consumption on the metabolic outcomes of high-fat diet in adult offspring. Br J Pharmacol 2025; 182:2354-2373. [PMID: 39894461 DOI: 10.1111/bph.17447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 11/30/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Given the recent rise in Cannabis legalisation, accessibility to Cannabis and consumption have increased during pregnancy. Therefore, there could be unintended developmental consequences. The endocannabinoid system plays a key role in fetal development and later-life energy homeostasis. We explored the long-term effects of maternal voluntary Cannabis consumption on the metabolic outcomes of a high-fat diet (HFD) in adult offspring. EXPERIMENTAL APPROACH Pregnant mice voluntarily consumed Cannabis extract equivalent to 5 mg kg-1 day-1 Δ9-tetrahydrocannabinol (THC) from gestational day 1.5 until postnatal day (PD) 10. Pregnancy and pup outcomes and active maternal behaviour were recorded. Male and female offspring (PD49) were placed on a 12-week HFD or control diet; their weight gain, adiposity, glucose tolerance, insulin sensitivity, circulating hormones and pancreatic structure were measured. KEY RESULTS Perinatal Cannabis exposure (PCE) pup weight was initially reduced but restored by PD16. PCE did not influence weight gain or metabolic characteristics of male mice on a HFD. PCE female but not male offspring on a HFD had reduced accumulation of adipose tissue and lower insulin, leptin and resistin independent of body weight. PCE females on control diet also showed altered basal insulin sensitivity likely because of increased glucagon levels in parallel with reduced islets of Langerhans size and enhanced gene expression of cannabinoid 2 receptors in white adipose tissue. CONCLUSION AND IMPLICATIONS PCE adversely affected glycaemic control in female offspring on control diet while it mitigated HFD-induced metabolic dysfunction. This raises concerns about the long-term effects of PCE on the metabolic health of offspring.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colleen S Peterson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samaa S Kamar
- Department of Histology Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Camila Saenz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Frank Visser
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Dion D, Noll C, Fortin M, Haroune L, Saibi S, Sarret P, Carpentier AC. Plasma Endocannabinoids Are Independently Associated With the Metabolic Function of White Adipose Tissue. J Clin Endocrinol Metab 2025; 110:e1821-e1832. [PMID: 39298666 DOI: 10.1210/clinem/dgae657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
CONTEXT Little is known about the link between the endocannabinoid (EC) system and the in vivo metabolic function of white adipose tissue (WAT). OBJECTIVE We aimed to evaluate whether ECs are linked to postprandial fatty acid metabolism and WAT metabolic function. METHODS Men and women, with (IGT, n = 20) or without impaired glucose tolerance (NGT, n = 20) underwent meal testing with oral and intravenous stable isotope palmitate tracers and positron emission tomography with intravenous [11C]-palmitate and oral [18F]-fluoro-thia-heptadecanoic acid to determine systemic and organ-specific dietary fatty acid (DFA) and nonesterified fatty acid (NEFA) metabolism and partitioning. We determined fasting and postprandial plasma levels of EC by ultra-high performance liquid chromatography-tandem mass spectrometry. RESULTS All ECs of the 2-monoacylglycerol (2-MAG) family displayed a progressive postprandial increase up to 360 minutes after meal intake that was more pronounced in women with IGT. N-acylethanolamine (NAE) levels decreased between fasting and 180 minutes, followed by a return to preprandial values at 360 minutes and were also increased in women with IGT. Postprandial area under the curve (AUC) of palmitate appearance rate was significantly and independently associated with postprandial AUC of anandamide (AEA; P = .0003) and total energy expenditure (P = .0009). DFA storage in abdominal subcutaneous adipose tissue was positively predicted by fasting 2-arachidonoylglycerol (2-AG; P < .04). CONCLUSION EC levels of the NAE family independently follow plasma NEFA metabolism, whereas 2-MAG closely follow the spillover of triglyceride-rich lipoprotein intravascular lipolytic products. Whether these associations are causal requires further investigation.
Collapse
Affiliation(s)
- Dany Dion
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Lounès Haroune
- Department of Pharmacology & Pharmacology, Institut de Pharmacologie de Sherbrooke, Bioanalysis Platform, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sabrina Saibi
- Department of Pharmacology & Pharmacology, Institut de Pharmacologie de Sherbrooke, Bioanalysis Platform, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology & Pharmacology, Institut de Pharmacologie de Sherbrooke, Bioanalysis Platform, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
3
|
Šimon M, Čater M, Kunej T, Morton NM, Horvat S. A bioinformatics toolbox to prioritize causal genetic variants in candidate regions. Trends Genet 2025; 41:33-46. [PMID: 39414414 DOI: 10.1016/j.tig.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
This review addresses the significant challenge of identifying causal genetic variants within quantitative trait loci (QTLs) for complex traits and diseases. Despite progress in detecting the ever-larger number of such loci, establishing causality remains daunting. We advocate for integrating bioinformatics and multiomics analyses to streamline the prioritization of candidate genes' variants. Our case study on the Pla2g4e gene, identified previously as a positional candidate obesity gene through genetic mapping and expression studies, demonstrates how applying multiomic data filtered through regulatory elements containing SNPs can refine the search for causative variants. This approach can yield results that guide more efficient experimental strategies, accelerating genetic research toward functional validation and therapeutic development.
Collapse
Affiliation(s)
- Martin Šimon
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Maša Čater
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Tanja Kunej
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Nicholas M Morton
- Department of Biosciences, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Simon Horvat
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia.
| |
Collapse
|
4
|
Le HH, Shorey-Kendrick LE, Hinds MT, McCarty OJT, Lo JO, Anderson DEJ. Effects of in utero exposure to Δ-9-tetrahydrocannabinol on cardiac extracellular matrix expression and vascular transcriptome in rhesus macaques. Am J Physiol Heart Circ Physiol 2024; 327:H701-H714. [PMID: 39028280 PMCID: PMC11442028 DOI: 10.1152/ajpheart.00181.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, remains a schedule I substance, thus safety data regarding the effects on the cardiovascular and prenatal health are limited. Importantly, there is evidence showing prenatal cannabis exposure can negatively impact fetal organ development, including the cardiovascular system. THC can cross the placenta and bind to cannabinoid receptors expressed in the developing fetus, including on endothelial cells. To understand the impact of prenatal THC exposure on the fetal cardiovascular system, we used our rhesus macaque model of prenatal daily edible THC consumption. Before conception, animals were acclimated to THC (2.5 mg/7 kg/day, equivalent to a heavy medical cannabis dose) and maintained on this dose daily throughout pregnancy. Fetal tissue samples were collected at gestational day 155 (full term is 168 days). Our model showed that in utero THC exposure was associated with a decreased heart weight-to-body weight ratio in offspring, warranting further mechanistic investigation. Histological examination of the fetal cardiac and vascular tissues did not reveal any significant effect of THC exposure on the maturity of collagen within the fetal heart or the aorta. Total collagen III expression and elastin production and organization were unchanged. However, bulk RNA-sequencing of vascular cells in the umbilical vein, umbilical artery, and fetal aorta demonstrated that THC alters the fetal vascular transcriptome and is associated with upregulated expression of genes involved in carbohydrate metabolism and inflammation. The long-term consequences of these findings are unknown but suggest that prenatal THC exposure may affect cardiovascular development in offspring.NEW & NOTEWORTHY Prenatal cannabis use is increasing and despite the public health relevance, there is limited safety data regarding its impact on offspring cardiovascular health outcomes. We used a translational, nonhuman primate model of daily edible Δ-9-tetrahydrocannabinol (THC) consumption during pregnancy to assess its effects on the fetal cardiovascular system. THC-exposed fetal vascular tissues displayed upregulation of genes involved in cellular metabolism and inflammation, suggesting that prenatal THC exposure may impact fetal vascular tissues.
Collapse
Affiliation(s)
- Hillary H Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
- Center for Developmental Health, Oregon Health & Science University, Portland, Oregon, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Jamie O Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, United States
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
5
|
Lin L, Jung KM, Lee HL, Le J, Colleluori G, Wood C, Palese F, Squire E, Ramirez J, Su S, Torrens A, Fotio Y, Tang L, Yu C, Yang Q, Huang L, DiPatrizio N, Jang C, Cinti S, Piomelli D. Adolescent exposure to low-dose THC disrupts energy balance and adipose organ homeostasis in adulthood. Cell Metab 2023; 35:1227-1241.e7. [PMID: 37267956 PMCID: PMC10524841 DOI: 10.1016/j.cmet.2023.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
One of cannabis' most iconic effects is the stimulation of hedonic high-calorie eating-the "munchies"-yet habitual cannabis users are, on average, leaner than non-users. We asked whether this phenotype might result from lasting changes in energy balance established during adolescence, when use of the drug often begins. We found that daily low-dose administration of cannabis' intoxicating constituent, Δ9-tetrahydrocannabinol (THC), to adolescent male mice causes an adult metabolic phenotype characterized by reduced fat mass, increased lean mass and utilization of fat as fuel, partial resistance to diet-induced obesity and dyslipidemia, enhanced thermogenesis, and impaired cold- and β-adrenergic receptor-stimulated lipolysis. Further analyses revealed that this phenotype is associated with molecular anomalies in the adipose organ, including ectopic overexpression of muscle-associated proteins and heightened anabolic processing. Thus, adolescent exposure to THC may promote an enduring "pseudo-lean" state that superficially resembles healthy leanness but might in fact be rooted in adipose organ dysfunction.
Collapse
Affiliation(s)
- Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Georgia Colleluori
- Department of Clinical and Experimental Medicine, Center of Obesity, Marche Polytechnic University, Ancona 600126, Italy
| | - Courtney Wood
- Department of Biomedical Sciences, University of California, Riverside, Riverside, CA 92697, USA
| | - Francesca Palese
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jade Ramirez
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Shiqi Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lingyi Tang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Qin Yang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas DiPatrizio
- Department of Biomedical Sciences, University of California, Riverside, Riverside, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Saverio Cinti
- Department of Clinical and Experimental Medicine, Center of Obesity, Marche Polytechnic University, Ancona 600126, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
6
|
Hao J, Chen Q, Feng Y, Jiang Q, Sun H, Deng B, Huang X, Guan J, Chen Q, Liu X, Wang Y, Cao P, Feng F, Li X. Combination treatment with FAAH inhibitors/URB597 and ferroptosis inducers significantly decreases the growth and metastasis of renal cell carcinoma cells via the PI3K-AKT signaling pathway. Cell Death Dis 2023; 14:247. [PMID: 37024452 PMCID: PMC10079857 DOI: 10.1038/s41419-023-05779-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Ferroptosis, a nonapoptotic form of programmed cell death characterized by significant iron-dependent peroxidation of phospholipids, is regulated by cellular metabolism, redox homeostasis, and various cancer-related signaling pathways. Recently, considerable progress has been made in demonstrating the critical role of lipid metabolism in regulating ferroptosis, indicating the potential of combinational strategies for treating cancer in the future. In this study, we explored the combinational effects of lipid metabolism compounds and ferroptosis inducers on renal cell carcinoma (RCC) cells. We found potent synergy of the fatty acid amide hydrolase (FAAH) inhibitor URB597 with ferroptosis inducer (1S, 3R)-RSL3 (RSL3) in inhibiting the growth and metastasis of RCC cells both in vitro and in vivo via induction of G1 cell cycle arrest and promotion of the production of lipid peroxides, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and cytosolic reactive oxygen species (ROS). In addition, inhibition of FAAH increased the sensitivity of RCC cells to ferroptosis. Genome-wide RNA sequencing indicated that the combination of URB597 and RSL3 has more significant effects on regulation of the expression of genes related to cell proliferation, the cell cycle, cell migration and invasion, and ferroptosis than either single agent alone. Moreover, we found that combinational treatment modulated the sensitivity of RCC cells to ferroptosis via the phosphatidylinositol 3 kinase (PI3K)-AKT signaling pathway. These data demonstrate that dual targeting of FAAH and ferroptosis could be a promising strategy for treating RCC.
Collapse
Affiliation(s)
- Junfeng Hao
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of General practice medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Qiguang Chen
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yongmin Feng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qiyu Jiang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Huiwei Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Botian Deng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xin Huang
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of General practice medicine, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Jibin Guan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qiuping Chen
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xincheng Liu
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yanjin Wang
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Peng Cao
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, 110016, China.
| | - Fan Feng
- Clinical Laboratory, The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Xiaoyu Li
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
7
|
De Filippo C, Costa A, Becagli MV, Monroy MM, Provensi G, Passani MB. Gut microbiota and oleoylethanolamide in the regulation of intestinal homeostasis. Front Endocrinol (Lausanne) 2023; 14:1135157. [PMID: 37091842 PMCID: PMC10113643 DOI: 10.3389/fendo.2023.1135157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
A vast literature strongly suggests that the endocannabinoid (eCB) system and related bioactive lipids (the paracannabinoid system) contribute to numerous physiological processes and are involved in pathological conditions such as obesity, type 2 diabetes, and intestinal inflammation. The gut paracannabinoid system exerts a prominent role in gut physiology as it affects motility, permeability, and inflammatory responses. Another important player in the regulation of host metabolism is the intestinal microbiota, as microorganisms are indispensable to protect the intestine against exogenous pathogens and potentially harmful resident microorganisms. In turn, the composition of the microbiota is regulated by intestinal immune responses. The intestinal microbial community plays a fundamental role in the development of the innate immune system and is essential in shaping adaptive immunity. The active interplay between microbiota and paracannabinoids is beginning to appear as potent regulatory system of the gastrointestinal homeostasis. In this context, oleoylethanolamide (OEA), a key component of the physiological systems involved in the regulation of dietary fat consumption, energy homeostasis, intestinal motility, and a key factor in modulating eating behavior, is a less studied lipid mediator. In the small intestine namely duodenum and jejunum, levels of OEA change according to the nutrient status as they decrease during food deprivation and increase upon refeeding. Recently, we and others showed that OEA treatment in rodents protects against inflammatory events and changes the intestinal microbiota composition. In this review, we briefly define the role of OEA and of the gut microbiota in intestinal homeostasis and recapitulate recent findings suggesting an interplay between OEA and the intestinal microorganisms.
Collapse
Affiliation(s)
- Carlotta De Filippo
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Alessia Costa
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | | | - Mariela Mejia Monroy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Gustavo Provensi
- Dipartimento di Neurofarba, Università di Firenze, Firenze, Italy
- *Correspondence: Maria Beatrice Passani, ; Gustavo Provensi,
| | - Maria Beatrice Passani
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
- *Correspondence: Maria Beatrice Passani, ; Gustavo Provensi,
| |
Collapse
|
8
|
Sihag J, Di Marzo V. (Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids Health Dis 2022; 21:9. [PMID: 35027074 PMCID: PMC8759188 DOI: 10.1186/s12944-021-01609-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Jyoti Sihag
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| | - Vincenzo Di Marzo
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Institute of Biomolecular Chemistry of the National Research Council (ICB-CNR), Naples, Italy.
- Endocannabinoid Research Group, Naples, Italy.
- Joint International Research Unit between the Italian National Research Council (CNR) and University of Laval, for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.
| |
Collapse
|
9
|
Yang ZY, Wu YY, Zhou Y, Yang YQ, Zhang JH, He T, Liu S. N-linoleyltyrosine ameliorates high-fat diet-induced obesity in C57BL/6 mice via cannabinoid receptor regulation. Front Endocrinol (Lausanne) 2022; 13:938527. [PMID: 36111301 PMCID: PMC9468927 DOI: 10.3389/fendo.2022.938527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES N-linoleyltyrosine (NITyr) showed mild effects in preclinical studies. The research discussed the effect of NITyr on a high-fat diet (HFD) induced obese (DIO) mice, and preliminarily explored its mechanism. METHODS The DIO mice were established by feeding an HFD for 12 weeks and subsequently administrated orally with NITyr (30, 60 and 100 mg/kg) for four weeks. The indexes of serum and liver samples were determined by ELISA kit. The pathological status of adipose and liver were detected by HE staining. The factors related to energy and lipid metabolism were measured via western blot. RESULTS NITyr at 60 and 100 mg/kg/day suppressed the weight gain without affecting water and food intake. Accordingly, NITyr reduced adipose weight and the area of individual adipocytes and increased the number of adipocytes. Moreover, NITyr didn't affect the appetite-related indexes such as ghrelin, peptide YY and brain-derived neurotrophic factor. Besides, NITyr didn't affect other organ coefficients except for the liver. Correspondingly, NITyr reduced alanine aminotransferase and aspartate aminotransferase levels, yet didn't influence IL-1β and TNF-α levels, and the liver injury. The levels of triacylglycerol (TG), total cholesterol (TC), glucose, insulin, adiponectin and leptin in serum were assessed to evaluate the effect of NITyr on glucose and lipid metabolism. NITyr decreased the levels of TG, TC and glucose, and didn't affect insulin, adiponectin and leptin levels. Meanwhile, NITyr up-regulated p-AMPK and the cannabinoid receptor 2 (CB2) expressions, and down-regulated PPAR, FAS and cannabinoid receptor 1 (CB1) expressions.Overall, NITyr suppressed lipid accumulation via improving lipid and glucose metabolism involving CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Zheng-yu Yang
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
| | - Yi-ying Wu
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
| | - Yi Zhou
- Research and Development Center, Sichuan Yuanda Shuyang Pharmaceutical Co., Ltd, Chengdu, China
| | - Yun-qi Yang
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
| | - Jia-hui Zhang
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
| | - Tao He
- Department of Thoracic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Sha Liu, ; Tao He,
| | - Sha Liu
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Sha Liu, ; Tao He,
| |
Collapse
|
10
|
Zhang H, Li X, Liao D, Luo P, Jiang X. Alpha/Beta-Hydrolase Domain-Containing 6: Signaling and Function in the Central Nervous System. Front Pharmacol 2021; 12:784202. [PMID: 34925039 PMCID: PMC8675881 DOI: 10.3389/fphar.2021.784202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoid (eCB) signaling plays an important role in the central nervous system (CNS). α/β-Hydrolase domain-containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids such as endocannabinoid 2-arachidonoyl glycerol (2-AG). ABHD6 participates in neurotransmission, inflammation, brain energy metabolism, tumorigenesis and other biological processes and is a potential therapeutic target for various neurological diseases, such as traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, mental illness, and pain. This review summarizes the molecular mechanisms of action and biological functions of ABHD6, particularly its mechanism of action in the pathogenesis of neurological diseases, and provides a theoretical basis for new pharmacological interventions via targeting of ABHD6.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
12
|
Charytoniuk T, Sztolsztener K, Harasim-Symbor E, Berk K, Chabowski A, Konstantynowicz-Nowicka K. Cannabidiol - A phytocannabinoid that widely affects sphingolipid metabolism under conditions of brain insulin resistance. Biomed Pharmacother 2021; 142:112057. [PMID: 34435590 DOI: 10.1016/j.biopha.2021.112057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022] Open
Abstract
Obesity-related insulin resistance (IR) and attenuated brain insulin signaling are significant risk factors for neurodegenerative disorders, e.g., Alzheimer's disease. IR and type 2 diabetes correlate with an increased concentration of sphingolipids, a class of lipids that play an essential structural role in cellular membranes and cell signaling pathways. Cannabidiol (CBD) is a nonpsychoactive constituent of Cannabis sativa plant that interacts with the endocannabinoidome. Despite known positive effects of CBD on improvement in diabetes and its aftermath, e.g., anti-inflammatory and anti-oxidant effects, there are no studies evaluating the effect of phytocannabinoids on the brain insulin resistance and sphingolipid metabolism. Our experiment was carried out on Wistar rats that received a high-fat diet and/or intraperitoneal CBD injections. In our study, we indicated inhibition of de novo synthesis and salvage pathways, which resulted in significant changes in the concentration of sphingolipids, e.g., ceramide and sphingomyelin. Furthermore, we observed reduced brain IR and decreased tau protein phosphorylation what might be protective against neuropathologies development. We believe that our research will concern a new possible therapeutic approach with Cannabis -plant derived compounds and within a few years, cannabinoids would be considered as prominent substances for targeting both metabolic and neurodegenerative pathologies.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Klaudia Berk
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222 Bialystok, Poland.
| | | |
Collapse
|
13
|
A Duet Between Histamine and Oleoylethanolamide in the Control of Homeostatic and Cognitive Processes. Curr Top Behav Neurosci 2021; 59:389-410. [PMID: 34410679 DOI: 10.1007/7854_2021_236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In ballet, a pas de deux (in French it means "step of two") is a duet in which the two dancers perform ballet steps together. The suite of dances shares a common theme of partnership. How could we better describe the fine interplay between oleoylethanolamide (OEA) and histamine, two phylogenetically ancient molecules controlling metabolic, homeostatic and cognitive processes? Contrary to the pas de deux though, the two dancers presumably never embrace each other as a dancing pair but execute their "virtuoso solo" constantly exchanging interoceptive messages presumably via vagal afferents, the blood stream, the neuroenteric system. With one exception, which is in the control of liver ketogenesis, as in hepatocytes, OEA biosynthesis strictly depends on the activation of histaminergic H1 receptors. In this review, we recapitulate our main findings that evidence the interplay of histamine and OEA in the control of food consumption and eating behaviour, in the consolidation of emotional memory and mood, and finally, in the synthesis of ketone bodies. We will also summarise some of the putative underlying mechanisms for each scenario.
Collapse
|
14
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|