1
|
Aguilar-Galaviz L, Cadena-Iñiguez J, García-Flores DA, Loera-Alvarado G, Rivera-Escareño D, Ortega-Amaro MA. Fungistatic and Bactericidal Activity of Hydroalcoholic Extracts of Root of Jatropha dioica Sessé. Microorganisms 2025; 13:1027. [PMID: 40431200 PMCID: PMC12114416 DOI: 10.3390/microorganisms13051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Jatropha dioica Sessé (JD) is a plant from arid and semiarid zones of Mexico related to local therapeutic uses and possible use in food and agriculture as a control agent of pest organisms that helps to reduce impacts on the environment, human health and resistance by phytopathogens. In vitro bactericidal activity was evaluated with the well diffusion method in doses of 1000, 2500, 5000, 7500, 10,000 and 20,000 µg mL-1, and fungistatic activity was evaluated with the agar dilution method (500, 1000, 1500, 2000 and 4000 µg mL-1) in Pseudomonas syringae, Botrytis cinerea and Fusarium oxysporum using hydroalcoholic extracts of J. dioica root in a completely randomized design with five replications. Total phenol and flavonoid contents were recorded by the Folin-Ciocalteu and aluminum chloride methods. Ethanol and methanol extracts showed fungistatic activity on B. cinerea, inhibiting from 42.27 ± 1.09 to 46.68 ± 0.98 mg mL-1, with an IC50 of 5.04 mg mL-1, with no differences by solvent type. In F. oxysporum, inhibition ranged from 14.77 ± 1.08 to 29.19 ± 0.89 mg mL-1, and the methanol extract was more efficient, generating a stress response to the ethanol extract. The bactericidal activity on P. syringae recorded inhibition zones of 17.66 ± 0.33 and 16.66 ± 0.33 mg mL-1, with ethanol being more efficient. The phenol content ranged from 8.92 ± 0.25 to 12.10 ± 0.34 mg EAG g-1 and flavonoid content ranged from 20.49 ± 0.33 to 28.21 ± 0.73 mg QE g-1 of sample dry weight. The results highlight the biological activity of J. dioica as an alternative to biopesticides that minimize agrochemical applications and generate pathogen resistance. These advances contribute to the revaluation and conservation of the species.
Collapse
Affiliation(s)
- Lizeth Aguilar-Galaviz
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - Jorge Cadena-Iñiguez
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - Dalia Abigail García-Flores
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - Gerardo Loera-Alvarado
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - Diego Rivera-Escareño
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - María Azucena Ortega-Amaro
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera Salinas-Santo Domingo 200, Salinas de Hidalgo 78600, SLP, Mexico;
| |
Collapse
|
2
|
Aqel H, Farah H. Seriphidium herba-alba (Asso): A comprehensive study of essential oils, extracts, and their antimicrobial properties. PLoS One 2024; 19:e0302329. [PMID: 38662667 PMCID: PMC11045107 DOI: 10.1371/journal.pone.0302329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Seriphidium herba-alba (Asso), a plant celebrated for its therapeutic qualities, is widely used in traditional medicinal practices throughout the Middle East and North Africa. In a detailed study of Seriphidium herba-alba (Asso), essential oils and extracts were analyzed for their chemical composition and antimicrobial properties. The essential oil, characterized using mass spectrometry and retention index methods, revealed a complex blend of 52 compounds, with santolina alcohol, α-thujone, β-thujone, and chrysanthenone as major constituents. Extraction yields varied significantly, depending on the plant part and method used; notably, methanol soaking of aerial parts yielded the most extract at 17.75%. The antimicrobial analysis showed that the extracts had selective antibacterial activity, particularly against Staphylococcus aureus, and broad-spectrum antifungal activity against organisms such as Candida albicans and Aspergillus spp. The methanol-soaked extract demonstrated the strongest antimicrobial properties, indicating its potential as a natural antimicrobial source. This study not only underscores the therapeutic potential of Seriphidium herba-alba (Asso) in pharmaceutical applications but also sets a foundation for future research focused on isolating specific bioactive compounds and in vivo testing.
Collapse
Affiliation(s)
- Hazem Aqel
- Basic Medical Sciences Department, Al-Balqa’ Applied University, Salt, Jordan
| | - Husni Farah
- Medical Laboratory Sciences Department, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
3
|
Valencia J, Rubio V, Puerto G, Vasquez L, Bernal A, Mora JR, Cuesta SA, Paz JL, Insuasty B, Abonia R, Quiroga J, Insuasty A, Coneo A, Vidal O, Márquez E, Insuasty D. QSAR Studies, Molecular Docking, Molecular Dynamics, Synthesis, and Biological Evaluation of Novel Quinolinone-Based Thiosemicarbazones against Mycobacterium tuberculosis. Antibiotics (Basel) 2022; 12:antibiotics12010061. [PMID: 36671262 PMCID: PMC9854539 DOI: 10.3390/antibiotics12010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, a series of novel quinolinone-based thiosemicarbazones were designed in silico and their activities tested in vitro against Mycobacterium tuberculosis (M. tuberculosis). Quantitative structure-activity relationship (QSAR) studies were performed using quinolinone and thiosemicarbazide as pharmacophoric nuclei; the best model showed statistical parameters of R2 = 0.83; F = 47.96; s = 0.31, and was validated by several different methods. The van der Waals volume, electron density, and electronegativity model results suggested a pivotal role in antituberculosis (anti-TB) activity. Subsequently, from this model a new series of quinolinone-thiosemicarbazone 11a-e was designed and docked against two tuberculosis protein targets: enoyl-acyl carrier protein reductase (InhA) and decaprenylphosphoryl-β-D-ribose-2'-oxidase (DprE1). Molecular dynamics simulation over 200 ns showed a binding energy of -71.3 to -12.7 Kcal/mol, suggesting likely inhibition. In vitro antimycobacterial activity of quinolinone-thiosemicarbazone for 11a-e was evaluated against M. bovis, M. tuberculosis H37Rv, and six different strains of drug-resistant M. tuberculosis. All compounds exhibited good to excellent activity against all the families of M. tuberculosis. Several of the here synthesized compounds were more effective than the standard drugs (isoniazid, oxafloxacin), 11d and 11e being the most active products. The results suggest that these compounds may contribute as lead compounds in the research of new potential antimycobacterial agents.
Collapse
Affiliation(s)
- Jhesua Valencia
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Vivian Rubio
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Gloria Puerto
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Luisa Vasquez
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Anthony Bernal
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170157, Ecuador
| | - Sebastian A. Cuesta
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170157, Ecuador
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru
| | - Braulio Insuasty
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Jairo Quiroga
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Alberto Insuasty
- Grupo de Investigación en Materiales Funcionales Nanoestructurados, Universidad CESMAG, Pasto 520003, Colombia
| | - Andres Coneo
- Medicine Department, Division of Health Sciences, Universidad del Norte, Barranquilla 081007, Colombia
| | - Oscar Vidal
- Medicine Department, Division of Health Sciences, Universidad del Norte, Barranquilla 081007, Colombia
| | - Edgar Márquez
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.M.); (D.I.)
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.M.); (D.I.)
| |
Collapse
|
4
|
Khanzada B, Akhtar N, Okla MK, Alamri SA, Al-Hashimi A, Baig MW, Rubnawaz S, AbdElgawad H, Hirad AH, Haq IU, Mirza B. Profiling of Antifungal Activities and In Silico Studies of Natural Polyphenols from Some Plants. Molecules 2021; 26:7164. [PMID: 34885744 PMCID: PMC8659076 DOI: 10.3390/molecules26237164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023] Open
Abstract
A worldwide increase in the incidence of fungal infections, emergence of new fungal strains, and antifungal resistance to commercially available antibiotics indicate the need to investigate new treatment options for fungal diseases. Therefore, the interest in exploring the antifungal activity of medicinal plants has now been increased to discover phyto-therapeutics in replacement to conventional antifungal drugs. The study was conducted to explore and identify the mechanism of action of antifungal agents of edible plants, including Cinnamomum zeylanicum, Cinnamomum tamala, Amomum subulatum, Trigonella foenumgraecum, Mentha piperita, Coriandrum sativum, Lactuca sativa, and Brassica oleraceae var. italica. The antifungal potential was assessed via the disc diffusion method and, subsequently, the extracts were assessed for phytochemicals and total antioxidant activity. Potent polyphenols were detected using high-performance liquid chromatography (HPLC) and antifungal mechanism of action was evaluated in silico. Cinnamomum zeylanicum exhibited antifungal activity against all the tested strains while all plant extracts showed antifungal activity against Fusarium solani. Rutin, kaempferol, and quercetin were identified as common polyphenols. In silico studies showed that rutin displayed the greatest affinity with binding pocket of fungal 14-alpha demethylase and nucleoside diphosphokinase with the binding affinity (Kd, -9.4 and -8.9, respectively), as compared to terbinafine. Results indicated that Cinnamomum zeylanicum and Cinnamomum tamala exert their antifungal effect possibly due to kaempferol and rutin, respectively, or possibly by inhibition of nucleoside diphosphokinase (NDK) and 14-alpha demethylase (CYP51), while Amomum subulatum and Trigonella foenum graecum might exhibit antifungal potential due to quercetin. Overall, the study demonstrates that plant-derived products have a high potential to control fungal infections.
Collapse
Affiliation(s)
- Beenish Khanzada
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan;
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Saud A. Alamri
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Muhammad Waleed Baig
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-U.H.)
| | - Samina Rubnawaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Abdurahman H. Hirad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (S.A.A.); (A.A.-H.); (A.H.H.)
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-U.H.)
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| |
Collapse
|
5
|
Effect of Naturally Occurring Compounds on Fumonisin Production and fum Gene Expression in Fusarium verticillioides. AGRONOMY-BASEL 2021. [DOI: 10.3390/agronomy11061060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fusarium verticillioides, one of the most common pathogens in maize, is responsible for yield losses and reduced kernel quality due to contamination by fumonisins (FBs). Two F. verticillioides isolates that differed in their ability to produce FBs were treated with a selection of eight natural phenolic compounds with the aim of identifying those that were able to decrease toxin production at concentrations that had a limited effect on fungal growth. Among the tested compounds, ellagic acid and isoeugenol, which turned out to be the most effective molecules against fungal growth, were assayed at lower concentrations, while the first retained its ability to inhibit toxin production in vitro, the latter improved both the fungal growth and FB accumulation. The effect of the most effective phenolic compounds on FB accumulation was also tested on maize kernels to highlight the importance of appropriate dosages in order to avoid conditions that are able to promote mycotoxin biosynthesis. An expression analysis of genes involved in FB production allowed more detailed insights into the mechanisms underlying the inhibition of FBs by phenolic compounds. The expression of the fum gene was generally down-regulated by the treatments; however, some treatments in the low-producing F. verticillioides strain up-regulated fum gene expression without improving FB production. This study showed that although different phenolic compounds are effective for FB reduction, they can modulate biosynthesis at the transcription level in opposite manners depending on strain. In conclusion, on the basis of in vitro and in vivo screening, two out of the eight tested phenols (ellagic acid and carvacrol) appear to be promising alternative molecules for the control of FB occurrence in maize.
Collapse
|
6
|
Appell M, Compton DL, Evans KO. Predictive Quantitative Structure-Activity Relationship Modeling of the Antifungal and Antibiotic Properties of Triazolothiadiazine Compounds. Methods Protoc 2020; 4:mps4010002. [PMID: 33375476 PMCID: PMC7838911 DOI: 10.3390/mps4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022] Open
Abstract
Predictive models were developed using two-dimensional quantitative structure activity relationship (QSAR) methods coupled with B3LYP/6-311+G** density functional theory modeling that describe the antimicrobial properties of twenty-four triazolothiadiazine compounds against Aspergillus niger, Aspergillus flavus and Penicillium sp., as well as the bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. B3LYP/6-311+G** density functional theory calculations indicated the triazolothiadiazine derivatives possess only modest variation between the frontier orbital properties. Genetic function approximation (GFA) analysis identified the topological and density functional theory derived descriptors for antimicrobial models using a population of 200 models with one to three descriptors that were crossed for 10,000 generations. Two or three descriptor models provided validated predictive models for antifungal and antibiotic properties with R2 values between 0.725 and 0.768 and no outliers. The best models to describe antimicrobial activities include descriptors related to connectivity, electronegativity, polarizability, and van der Waals properties. The reported method provided robust two-dimensional QSAR models with topological and density functional theory descriptors that explain a variety of antifungal and antibiotic activities for structurally related heterocyclic compounds.
Collapse
Affiliation(s)
- Michael Appell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA
- Correspondence:
| | - David L. Compton
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (D.L.C.); (K.O.E.)
| | - Kervin O. Evans
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (D.L.C.); (K.O.E.)
| |
Collapse
|