1
|
Zhang X, van Greevenbroek MMJ, Scheijen JLJM, Eussen SJPM, Kelly J, Stehouwer CDA, Schalkwijk CG, Wouters K. Fasting plasma methylglyoxal concentrations are associated with higher numbers of circulating intermediate and non-classical monocytes but with lower activation of intermediate monocytes: the Maastricht Study. J Endocrinol Invest 2025; 48:1257-1268. [PMID: 39847265 PMCID: PMC12049376 DOI: 10.1007/s40618-025-02536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
PURPOSE Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study. METHODS 696 participants of The Maastricht Study (age 60.3 ± 8.4 years, 51.9% women) underwent an oral glucose tolerance test (OGTT). Fasting and post-OGTT plasma MGO concentrations were measured using mass spectrometry. Numbers and activation of circulating immune cells at fasting state were quantified using flow cytometry. Activation scores were calculated by averaging individual marker z-scores for neutrophils (CD11b, CD11c, CD16) and classical, intermediate, and non-classical monocytes (CD11b, CD11c, CX3XR1, HLA-DR). Associations were analysed using multiple linear regression adjusted for potential confounders. Stratified analyses were performed for glucose metabolism status for associations between plasma MGO levels and immune cell counts. RESULTS Higher fasting plasma MGO concentrations were significantly associated with higher numbers of intermediate (β = 0.09 [95%CI 0.02; 0.17]) and non-classical monocytes (0.08 [0.002; 0.15]), but with lower activation scores for the intermediate monocytes (-0.14 [-0.22; -0.06]). Stratified analyses showed that positive associations between fasting plasma MGO levels and numbers of intermediate and non-classical monocytes appear only in participants with type 2 diabetes. Post-OGTT plasma MGO concentrations were not consistently associated with immune cells counts or activation. CONCLUSION Higher fasting plasma MGO concentrations are associated with higher intermediate and non-classical monocyte counts but with lower activation of intermediate monocytes.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, 6229HA, the Netherlands
- CAPHRI School for Care and Public Health Research Unit, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Jaycey Kelly
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands.
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands.
| |
Collapse
|
2
|
He W, Yu S, Li J, Li S, Chen Z, Zhang J, Liu Y, Zhou M, Yang T, Cheng W, Dai SS. From inflammation to remodelling: A novel BASP1 + monocyte subset as a catalyst for acute aortic dissection. J Adv Res 2025:S2090-1232(25)00144-4. [PMID: 40057028 DOI: 10.1016/j.jare.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/10/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025] Open
Abstract
INTRODUCTION Monocytes comprise heterogeneous cell populations. However, beyond traditionally considered as precursors of tissue macrophages, heterogeneity and detailed effects of monocytes in acute aortic dissection (AAD) are largely unknown. OBJECTIVES To investigate the role of brain soluble acid protein 1 positive (BASP1+) monocyte subset in promoting AAD development as well as the underlying mechanism. METHODS Monocyte/macrophage heterogeneity in both human peripheral blood and aortic tissues were assayed by scRNA-seq. Monocyte trafficking and lineage tracing were detected by immunofluorescence and using BASP1-CreER/Lyz2-DreER-tdT reporter mice with AAD. The effects and underlying mechanism were investigated by laser speckle image, ultrasound imaging, Co-IP, ChIP-sequencing. Conditional knockout of BASP1 on monocyte and BASP1 siRNA were used to observe BASP1+ monocyte subset-targeted AAD intervention. RESULTS "PIP2-SP1-ACTN1/VAV3" and "ITGB1-Rac1-GSN" signalling mediated BASP1+ monocyte subset as the first line immune cells infiltrating aortic tissues in AAD induction and partial of them transformed to BASP1+ macrophages to amplify the inflammation. Meanwhile, BASP1+ monocyte subset induced an inflammatory phenotype vascular smooth muscle cell (VSMC) subset and a ROS-enriched endothelial cell (EC) subset accompanied with promoting the apoptosis of normal VSMC and EC, contributing to vascular remodelling and dampening the myo-endothelial gap junction. Selective deletion of BASP1+ monocyte subset and interference with BASP1 expression in monocytes both inhibited the development of AAD in mice. CONCLUSION Interpretation BASP1+ monocyte subset and its regulatory network provides deep insight into AAD pathogenesis and a novel potential target for early intervention in AAD formation.
Collapse
Affiliation(s)
- Wenhui He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Sanjiu Yu
- Department of Cardiac Surgery, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Jun Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Siyu Li
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Zongtao Chen
- Health Management Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Jingyu Zhang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yangwuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Wei Cheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China.
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Chen Y, Luo D, Gao R, Wu J, Qiu X, Zou Y, Jian Y, Zhang S. The sentinels of coronary artery disease: heterogeneous monocytes. Front Immunol 2025; 16:1428978. [PMID: 40079002 PMCID: PMC11898731 DOI: 10.3389/fimmu.2025.1428978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Monocytes are heterogeneous immune cells that play a crucial role in the inflammatory response during atherosclerosis, influencing the progression and outcome of the disease. In the pathogenesis of atherosclerotic diseases, such as coronary artery disease (CAD), monocytes not only serve as the initial sensors of endogenous and exogenous pathogenic factors, but also function as intermediators that bridge the circulatory system and localized lesions. In the bloodstream, heterogeneous monocytes, acting as sentinels, are rapidly recruited to atherosclerotic lesions, where they exhibit a heightened capacity to respond to various pathological stimuli upon detecting signals from damaged vascular endothelial cells. Clinical studies have demonstrated that the heterogeneity of monocytes in CAD patients presents both diversity and complexity, varying across different disease subtypes and pathological stages. This review explores the heterogeneity of monocytes in CAD, focusing on alterations in monocyte subset numbers, proportions, and the expression of functional receptors, as well as their correlations with clinical features. Additionally, we propose strategies to enhance the clinical utility value of monocyte heterogeneity and outline future research directions in the field of CAD. With the widespread application of high-parameter flow cytometry and single-cell sequencing technologies, it is anticipated that a comprehensive understanding of monocyte heterogeneity in CAD will be achieved, enabling the identification of disease-specific monocyte subtypes. This could offer new opportunities for improving the diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Yanyu Chen
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Renzhuo Gao
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, China
| | - Jinjing Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xingpeng Qiu
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yingchao Jian
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
4
|
Ran M, Li S, Lan J, Chen F, Wu D. Association of monocyte to HDL cholesterol ratio and a composite risk score with left ventricular aneurysm formation in patients with acute ST-segment elevation myocardial infarction. Coron Artery Dis 2024; 35:490-497. [PMID: 38682446 DOI: 10.1097/mca.0000000000001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Left ventricular aneurysm (LVA) is an important complication of acute myocardial infarction. This study aimed to investigate the potential predictive value of the monocyte count to high-density lipoprotein cholesterol ratio (MHR) and a composite risk score in determining the formation of LVA in patients with acute ST-segment elevation myocardial infarction (STEMI) who underwent primary percutaneous coronary intervention. METHODS We recruited 1005 consecutive patients with STEMI. Multivariable logistic regression analysis was conducted identify the independent risk factors for LVA formation. Predictive power of MHR and composite risk score for LVA formation were assessed using receiver operating characteristic curve analysis. RESULTS The MHR was significantly higher among patients with LVA compared to those without LVA [6.6 (3.8-10.8) vs. 4.6 (3.3-6.3), P < 0.001]. Univariable logistic regression analysis revealed that MHR (OR = 3.866, 95% CI = 2.677-5.582, P < 0.001) was associated with the risk of LVA formation. The predictive value of MHR remained significant even after multivariate logistic regression analysis [odds ratio (OR) = 4.801, 95% confidence interval (CI) = 2.672-8.629, P < 0.001]. The discriminant power of MHR for LVA is 0.712, which is superior to both monocyte ( C statistic = 0.553) and high-density lipoprotein cholesterol ( C statistic = 0.654). The composite risk score including MHR, gender, LVEF, hemoglobin, lymphocyte and left anterior descending artery as the culprit vessel could significantly increase the predictive ability ( C statistic = 0.920). CONCLUSION A higher MHR could effectively identify individuals at high risk of LVA formation, especially when combined with gender, LVEF, hemoglobin, lymphocyte and left anterior descending artery as the culprit vessel.
Collapse
Affiliation(s)
| | | | | | - Fengjuan Chen
- Department of Hematology, Panzhihua Central Hospital, Panzhihua, China
| | | |
Collapse
|
5
|
Mitsis A, Myrianthefs M, Sokratous S, Karmioti G, Kyriakou M, Drakomathioulakis M, Tzikas S, Kadoglou NPE, Karagiannidis E, Nasoufidou A, Fragakis N, Ziakas A, Kassimis G. Emerging Therapeutic Targets for Acute Coronary Syndromes: Novel Advancements and Future Directions. Biomedicines 2024; 12:1670. [PMID: 39200135 PMCID: PMC11351818 DOI: 10.3390/biomedicines12081670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Acute coronary syndrome (ACS) remains a major cause of morbidity and mortality worldwide, requiring ongoing efforts to identify novel therapeutic targets to improve patient outcomes. This manuscript reviews promising therapeutic targets for ACS identified through preclinical research, including novel antiplatelet agents, anti-inflammatory drugs, and agents targeting plaque stabilization. Preclinical studies have expounded these agents' efficacy and safety profiles in mitigating key pathophysiological processes underlying ACS, such as platelet activation, inflammation, and plaque instability. Furthermore, ongoing clinical trials are evaluating the efficacy and safety of these agents in ACS patients, with potential implications for optimizing ACS management. Challenges associated with translating preclinical findings into clinical practice, including patient heterogeneity and trial design considerations, are also discussed. Overall, the exploration of emerging therapeutic targets offers promising avenues for advancing ACS treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Stefanos Sokratous
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Georgia Karmioti
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michaela Kyriakou
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Michail Drakomathioulakis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (M.M.); (S.S.); (G.K.); (M.K.); (M.D.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Efstratios Karagiannidis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Athina Nasoufidou
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (N.F.); (G.K.)
| |
Collapse
|
6
|
Na SP, Ning ML, Ma JF, Liang S, Wang YL, Sui MS, Guo XF, Ji Y, Lyu HY, Yuan XY, Bao YS. Association of elevated circulating monocyte-platelet aggregates with hypercoagulability in patients with nephrotic syndrome. Thromb J 2024; 22:56. [PMID: 38943162 PMCID: PMC11212416 DOI: 10.1186/s12959-024-00626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Hypercoagulability emerges as a central pathological feature and clinical complication in nephrotic syndrome. Increased platelet activation and aggregability are closely related to hypercoagulability in nephrotic syndrome. Monocyte-platelet aggregates (MPAs) have been proposed to represent a robust biomarker of platelet activation. The aim of this study was to investigate levels of the circulating MPAs and MPAs with the different monocyte subsets to evaluate the association of MPAs with hypercoagulability in nephrotic syndrome. METHODS Thirty-two patients with nephrotic syndrome were enrolled. In addition, thirty-two healthy age and sex matched adult volunteers served as healthy controls. MPAs were identified by CD14 monocytes positive for CD41a platelets. The classical (CD14 + + CD16-, CM), the intermediate (CD14 + + CD16+, IM) and the non-classical (CD14 + CD16++, NCM) monocytes, as well as subset specific MPAs, were measured by flow cytometry. RESULTS Patients with nephrotic syndrome showed a higher percentage of circulating MPAs as compared with healthy controls (p < 0.001). The percentages of MPAs with CM, IM, and NCM were higher than those of healthy controls (p = 0.012, p < 0.001 and p < 0.001, respectively). Circulating MPAs showed correlations with hypoalbuminemia (r=-0.85; p < 0.001), hypercholesterolemia (r = 0.54; p < 0.001), fibrinogen (r = 0.70; p < 0.001) and D-dimer (r = 0.37; p = 0.003), but not with hypertriglyceridemia in nephrotic syndrome. The AUC for the prediction of hypercoagulability in nephrotic syndrome using MPAs was 0.79 (95% CI 0.68-0.90, p < 0.001). The sensitivity of MPAs in predicting hypercoagulability was 0.71, and the specificity was 0.78. CONCLUSION Increased MPAs were correlated with hypercoagulability in nephrotic syndrome. MPAs may serve as a potential biomarker for thrombophilic or hypercoagulable state and provide novel insight into the mechanisms of anticoagulation in nephrotic syndrome.
Collapse
Affiliation(s)
- Shi-Ping Na
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Mei-Liang Ning
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Ji-Fang Ma
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Shuang Liang
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Yan-Li Wang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Man-Shu Sui
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Xiao-Fang Guo
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Ying Ji
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Hui-Yan Lyu
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Xue-Ying Yuan
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China
| | - Yu-Shi Bao
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, China.
| |
Collapse
|
7
|
Merinopoulos I, Bhalraam U, Holmes T, Tsampasian V, Corballis N, Gunawardena T, Sawh C, Maart C, Wistow T, Ryding A, Eccleshall SC, Smith J, Vassiliou VS. Circulating intermediate monocytes CD14++CD16+ are increased after elective percutaneous coronary intervention. PLoS One 2023; 18:e0294746. [PMID: 38096193 PMCID: PMC10721025 DOI: 10.1371/journal.pone.0294746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
AIM Inflammation plays a central role in the pathogenesis of atherosclerosis and in the sequelae of percutaneous coronary intervention (PCI). Previous work demonstrated that intermediate monocytes (CD14++CD16+) are associated with adverse cardiovascular events, yet monocyte subset response following elective PCI has not been described. This article explores the changes in monocyte subset and humoral response after elective PCI. METHODS This prospective study included 30 patients without inflammatory diseases being referred for elective PCI. We included patients treated with drug coated balloons or 2nd generation drug eluting stents. Patients underwent blood tests at baseline (prior to PCI), four hours, two weeks and two months later. Analyses were performed in terms of monocyte subsets (classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++), gene expression of CD14+ leucocytes and humoral biomarkers. RESULTS Intermediate monocytes decreased significantly four hours after PCI, were recovered at two weeks, and increased significantly at two months post elective, uncomplicated PCI. They remain significantly elevated in the DES group but not in the DCB group. Gene expression analysis of CD14+ leucocytes showed IL18 had decreased expression at two weeks, CXCR4 and IL1β decreased at two months, while pentraxin 3 increased at two weeks and two months. In terms of humoral biomarkers, hsTnI remains elevated up to two weeks post PCI while IL6 and TNFα remain elevated till two months post PCI. CONCLUSION Intermediate monocytes increase significantly two months following elective, uncomplicated PCI. They remain significantly elevated in the DES group but not in the DCB group suggesting that the PCI strategy could be one of the ways to modulate the inflammatory response post PCI.
Collapse
Affiliation(s)
- Ioannis Merinopoulos
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - U Bhalraam
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Terri Holmes
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Vasiliki Tsampasian
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Natasha Corballis
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Tharusha Gunawardena
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Chris Sawh
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Clint Maart
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Trevor Wistow
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Alisdair Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Simon C. Eccleshall
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - James Smith
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Vassilios S. Vassiliou
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Institute of Continuing Education, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Liang S, Wang YL, Ji Y, Na SP, Jia XB, Zhao SL, Lyu HY, Yuan XY, Bao YS. Circulating monocyte-platelet aggregates with different monocyte subsets and their association with disease severity in chronic kidney disease. Am J Med Sci 2023; 365:443-449. [PMID: 36796723 DOI: 10.1016/j.amjms.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is usually considered an immune inflammatory disease. Interaction between platelets and monocytes is associated with immune inflammation. Cross-talk between platelets and monocytes is reflected by formation monocyte-platelet aggregates (MPAs). This study aims to test MPAs and MPAs with the different monocyte subsets to evaluate their association with disease severity in CKD. METHODS Forty-four hospitalized patients with CKD and twenty healthy volunteers were enrolled. The proportion of MPAs and MPAs with the different monocyte subsets were tested by flow cytometry. RESULTS The proportion of circulating MPAs in all patients with CKD were significantly higher than those of healthy controls (p<0.001). A higher proportion of MPAs with classical monocytes (CM) was found in CKD4-5 patients (p=0.007), while another higher proportion of MPAs with non-classical monocytes (NCM) was found CKD2-3 patients (p<0.001). The proportion of MPAs with intermediate monocytes (IM) in CKD 4-5 group was significantly higher in comparison to CKD2-3 group and healthy controls (p<0.001). Circulating MPAs were found to be correlated with serum creatinine (r=0.538, p<0.001) and eGFR (r=-0.864, p<0.001). The AUC for MPAs with IM was 0.942 (95% CI 0.890-0.994, p<0.001). CONCLUSIONS Study results highlight the interplay between platelets and inflammatory monocytes in CKD. There are alterations in circulating MPAs and MPAs with the different monocyte subsets in CKD patients compared to controls which change with CKD severity. The MPAs may have an important role in the development of CKD or as a predictive marker for monitoring disease severity.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yan-Li Wang
- Department of Rheumatology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Ying Ji
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Shi-Ping Na
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xi-Bei Jia
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Shi-Lei Zhao
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Hui-Yan Lyu
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xue-Ying Yuan
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yu-Shi Bao
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Ma X, Han K, Yang L, Shao Q, Li Q, Wang Z, Li Y, Gao F, Yang Z, Shi D, Zhou Y. Adjustment of the GRACE Risk Score by Monocyte to High-Density Lipoprotein Ratio Improves Prediction of Adverse Cardiovascular Outcomes in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Front Cardiovasc Med 2022; 8:755806. [PMID: 35155594 PMCID: PMC8826569 DOI: 10.3389/fcvm.2021.755806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background and Aims The monocyte to high-density lipoprotein cholesterol ratio (MHR), a novel marker for inflammation and lipid metabolism, has been demonstrated to be associated with poor prognosis in many patient populations. However, the prognostic influence of MHR in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) is poorly understood. Here, we sought to investigate the relationship between MHR and adverse cardiovascular (CV) outcomes in such patients and determine whether MHR could improve the GRACE risk score based prognostic models. Methods and Results MHR was applied to 1,720 patients with ACS undergoing PCI who were admitted to our CV center from June 2016 to November 2017. These patients were stratified into three groups according to MHR tertiles. The relationship between MHR and the primary endpoint (overall death, non-fatal stroke, non-fatal myocardial infarction, or unplanned repeat revascularization) was examined by Cox proportional hazards regression analysis. During a median follow-up of 31 months, 353 patients had at least one primary endpoint event. Compared with those in the lowest MHR tertile, patients in the middle and highest tertiles [adjusted HR: 1.541 (95% CI: 1.152–2.060) and 1.800 (95%CI: 1.333–2.432), respectively], had a higher risk of the primary endpoint. The addition of MHR has an incremental effect on the predictive ability of the GRACE risk score for the primary endpoint (cNRI: 0.136, P < 0.001; IDI: 0.006, P < 0.001). Conclusion MHR was independently and significantly associated with adverse CV outcomes in ACS patients who underwent PCI and improved the predictive ability of the GRACE risk score based prognostic models. Registration Number http://www.chictr.org.cn/hvshowproject.aspx?id=21397; ChiCTR1800017417.
Collapse
Affiliation(s)
- Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kangning Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lixia Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiaoyu Shao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiuxuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yueping Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dongmei Shi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Pluta K, Porębska K, Urbanowicz T, Gąsecka A, Olasińska-Wiśniewska A, Targoński R, Krasińska A, Filipiak KJ, Jemielity M, Krasiński Z. Platelet-Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases. BIOLOGY 2022; 11:biology11020224. [PMID: 35205091 PMCID: PMC8869671 DOI: 10.3390/biology11020224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Simple Summary Cardiovascular diseases are the most common cause of death worldwide. Hence, novel biomarkers are urgently needed to improve diagnosis and treatment. Platelet–leucocyte aggregates are conglomerates of platelets and leucocytes and are widely investigated as biomarkers in cardiovascular diseases. Platelet–leucocytes aggregates are present in health, but increase in patients with cardiovascular risk factors and acute or stable coronary syndromes, making them a potential diagnostic marker. Moreover, platelet–leucocyte aggregates predict outcomes after surgery or percutaneous treatment and could be used to monitor antiplatelet therapy. Emerging data about the participation of platelet–leucocyte aggregates in cardiovascular diseases pathogenesis make them an attractive target for novel therapies. Furthermore, simple detection with conventional flow cytometry provides accurate and reproducible results, although requires specific sample handling. The main task for the future is to determine the standardized protocol to measure blood concentrations of platelet–leucocyte aggregates and subsequently establish their normal range in health and disease. Abstract Platelet–leucocyte aggregates (PLA) are a formation of leucocytes and platelets bound by specific receptors. They arise in the condition of sheer stress, thrombosis, immune reaction, vessel injury, and the activation of leukocytes or platelets. PLA participate in cardiovascular diseases (CVD). Increased levels of PLA were revealed in acute and chronic coronary syndromes, carotid stenosis cardiovascular risk factors. Due to accessible, available, replicable, quick, and low-cost quantifying using flow cytometry, PLA constitute an ideal biomarker for clinical practice. PLA are promising in early diagnosing and estimating prognosis in patients with acute or chronic coronary syndromes treated by percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). PLA were also a reliable marker of platelet activity for monitoring antiplatelet therapy. PLA consist also targets potential therapies in CVD. All of the above potential clinical applications require further studies to validate methods of assay and proof clinical benefits.
Collapse
Affiliation(s)
- Kinga Pluta
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
| | - Kinga Porębska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
- Correspondence: ; Tel.: +48-22-599-1951
| | - Anna Olasińska-Wiśniewska
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Radosław Targoński
- 1st Department of Cardiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Aleksandra Krasińska
- Department of Ophtalmology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy in Warsaw, 00-136 Warsaw, Poland;
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| |
Collapse
|
11
|
Williams H, Mack CD, Li SCH, Fletcher JP, Medbury HJ. Nature versus Number: Monocytes in Cardiovascular Disease. Int J Mol Sci 2021; 22:ijms22179119. [PMID: 34502027 PMCID: PMC8430468 DOI: 10.3390/ijms22179119] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
Monocytes play a key role in cardiovascular disease (CVD) as their influx into the vessel wall is necessary for the development of an atherosclerotic plaque. Monocytes are, however, heterogeneous differentiating from classical monocytes through the intermediate subset to the nonclassical subset. While it is recognized that the percentage of intermediate and nonclassical monocytes are higher in individuals with CVD, accompanying changes in inflammatory markers suggest a functional impact on disease development that goes beyond the increased proportion of these ‘inflammatory’ monocyte subsets. Furthermore, emerging evidence indicates that changes in monocyte proportion and function arise in dyslipidemia, with lipid lowering medication having some effect on reversing these changes. This review explores the nature and number of monocyte subsets in CVD addressing what they are, when they arise, the effect of lipid lowering treatment, and the possible implications for plaque development. Understanding these associations will deepen our understanding of the clinical significance of monocytes in CVD.
Collapse
Affiliation(s)
- Helen Williams
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia; (H.W.); (C.D.M.); (J.P.F.)
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
| | - Corinne D. Mack
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia; (H.W.); (C.D.M.); (J.P.F.)
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
| | - Stephen C. H. Li
- Chemical Pathology, NSW Health Pathology, Westmead Hospital and Institute of Clinical Pathology and Medical Research, Westmead, Sydney, NSW 2145, Australia;
- Blacktown/Mt Druitt Clinical School, Blacktown Hospital, Western Sydney University, Blacktown, NSW 2148, Australia
| | - John P. Fletcher
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia; (H.W.); (C.D.M.); (J.P.F.)
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
| | - Heather J. Medbury
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia; (H.W.); (C.D.M.); (J.P.F.)
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
12
|
Bikulčienė I, Garjonytė N, Žėkas V, Matuzevičienė R, Žymantienė Ž, Baublytė A, Hendrixson V, Karčiauskaitė D, Utkus A, Kaminskas A. Relationship Between Composition of Fatty Acid in Platelet Phospholipid Membrane and Markers of Oxidative Stress in Healthy Men and Men After a Myocardial Infarction. Med Sci Monit Basic Res 2021; 27:e929634. [PMID: 33583940 PMCID: PMC7893829 DOI: 10.12659/msmbr.929634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Oxidative stress (OS) is known to be extremely damaging for phospholipids in cell membranes, especially their polyunsaturated fatty acids (PUFAs). OS is known to be associated with increased platelet activation and thrombosis, which lead to cardiovascular lesions. The aim of this study was to investigate how changes in the composition of fatty acids (FAs) in the platelet phospholipid membrane correlate with OS in healthy men and in men who have experienced a myocardial infarction (post-MI men). Material/Methods FA methyl esters from the platelet phospholipid membrane of 79 apparently healthy and 20 post-MI men were identified using gas chromatography/mass spectrometry. Malondialdehyde (MDA) was measured in the blood serum using high-performance liquid chromatography, and platelet-white blood cell aggregates (PWAs) were analysed based on whole-blood flow cytometry. The composition of platelet membrane FAs was compared to MDA concentration (μg/l) and the percentage of PWA formation between healthy men and individuals who had suffered a myocardial infarction (MI). Results Statistically, post-MI patients had a significantly higher concentration of blood serum MDA than those in the control group (p=0.000). The level of PUFAs was also higher in the platelet phospholipid membrane of post-MI patients than in healthy individuals (p=0.016). However, the percentage of PWA formation was lower in patients compared with the control group (p<0.05). Conclusions A higher level of blood serum MDA concentration due to OS stimulates platelets to incorporate more PUFAs into the phospholipid membrane, thereby affecting platelet activation. This may lead the individual to develop cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Inga Bikulčienė
- Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Neda Garjonytė
- Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vytautas Žėkas
- Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rėda Matuzevičienė
- Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Živilė Žymantienė
- Consultation and Diagnostic Center, Vilnius District Central Polyclinic, Vilnius, Lithuania
| | - Aldona Baublytė
- Clinical Diagnostic Laboratory, Vilnius District Central Polyclinic, Vilnius, Lithuania
| | - Vaiva Hendrixson
- Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dovilė Karčiauskaitė
- Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Algirdas Utkus
- Institute of Biomedical Sciences, Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Arvydas Kaminskas
- Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
13
|
Stojkovic S, Wadowski PP, Haider P, Weikert C, Pultar J, Lee S, Eichelberger B, Hengstenberg C, Wojta J, Panzer S, Demyanets S, Gremmel T. Circulating MicroRNAs and Monocyte-Platelet Aggregate Formation in Acute Coronary Syndrome. Thromb Haemost 2021; 121:913-922. [PMID: 33469902 DOI: 10.1055/s-0040-1722226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Monocyte-platelet aggregates (MPAs) are a sensitive marker of in vivo platelet activation in acute coronary syndrome (ACS) and associated with clinical outcomes. MicroRNAs (miRs) play an important role in the regulation of platelet activation, and may influence MPA formation. Both, miRs and MPA, could be influenced by the type of P2Y12 inhibitor. AIM To study the association of platelet-related miRs with MPA formation in ACS patients on dual antiplatelet therapy (DAPT), and to compare miRs and MPA levels between prasugrel- and ticagrelor-treated patients. METHODS AND RESULTS We analyzed 10 circulating platelet-related miRs in 160 consecutive ACS patients on DAPT with low-dose aspirin and either prasugrel (n = 80) or ticagrelor (n = 80). MPA formation was measured by flow cytometry without addition of platelet agonists and after simulation with the toll-like receptor (TLR)-1/2 agonist Pam3CSK4, adenosine diphosphate (ADP), or arachidonic acid (AA). In multivariate regression analyses, we identified miR-21 (β = 9.50, 95% confidence interval [CI]: 1.60-17.40, p = 0.019) and miR-126 (β = 7.50, 95% CI: 0.55-14.44, p = 0.035) as independent predictors of increased MPA formation in vivo and after TLR-1/2 stimulation. In contrast, none of the investigated miRs was independently associated with MPA formation after stimulation with ADP or AA. Platelet-related miR expression and MPA formation did not differ significantly between prasugrel- and ticagrelor-treated patients. CONCLUSION Platelet-related miR-21 and miR-126 are associated with MPA formation in ACS patients on DAPT. miRs and MPA levels were similar in prasugrel- and ticagrelor-treated patients.
Collapse
Affiliation(s)
- Stefan Stojkovic
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patricia P Wadowski
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Constantin Weikert
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Joseph Pultar
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Silvia Lee
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Beate Eichelberger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Core Facilities, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Simon Panzer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| |
Collapse
|
14
|
Singh A, Coulter AR, Trainor PJ, Singam NSV, Aladili BN, Amraotkar AR, Owolabi US, DeFilippis AP. Flow cytometric evaluation of platelet-leukocyte conjugate stability over time: methodological implications of sample handling and processing. J Thromb Thrombolysis 2020; 51:120-128. [PMID: 32557223 DOI: 10.1007/s11239-020-02186-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Platelet activation and subsequent aggregation is a vital component of atherothrombosis resulting in acute myocardial infarction. Therefore, quantifying platelet aggregation is a valuable measure for elucidating the pathogenesis of acute coronary syndromes (ACS). Circulating platelet-monocyte conjugates (PMC) as determined by flow cytometry (FCM) are an important measure of in vivo platelet aggregation. However, the influence of sample handling on FCM measurement of PMC is not well-studied. The changes in FCM measurement of PMC with variation in sample handling techniques were evaluated. The stability of PMC concentrations over time with changes in fixation and immunolabeling intervals was assessed. The effect of Time-to-Fix and Time-to-Stain on FCM PMC measurements was investigated in five healthy volunteers. Time-to-Fix (i.e., interval between phlebotomy and sample fixation) was performed at 3, 30, and 60 min. Time-to-Stain (i.e., time of fixed sample storage to staining) was performed at 1, 24, and 48 h. Increasing Time-to-Stain from 1 to 24 or 48 h resulted in lower PMC measures (p < 0.0001). A statistically significant difference in PMC measurement with increasing Time-to-Fix was not observed (p < 0.41). Postponement of sample staining has deleterious effects on the measurement of PMC via FCM. Delays in immunolabeling of fixed samples compromised measurement of PMC by 30% over the first 24 h. Staining/FCM should be completed within an hour of collection.
Collapse
Affiliation(s)
- Ayesha Singh
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, USA. .,University of Louisville, Delia Baxter Biomedical Research Building, 580 South Preston Street, Rm. 307, Louisville, KY, 40202, USA.
| | - Amanda R Coulter
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Patrick J Trainor
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Applied Statistics, New Mexico State University, Las Cruces, NM, USA
| | - Narayana Sarma V Singam
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bahjat N Aladili
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Alok R Amraotkar
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ugochukwu S Owolabi
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andrew P DeFilippis
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University, Baltimore, MD, USA.,Jewish Hospital Rudd Heart & Lung Center, University of Louisville, 550 South Jackson Street, ACB 3rd Floor, Louisville, KY, 40202, USA
| |
Collapse
|
15
|
Aspirin enhances regulatory functional activities of monocytes and downregulates CD16 and CD40 expression in myocardial infarction autoinflammatory disease. Int Immunopharmacol 2020; 83:106349. [DOI: 10.1016/j.intimp.2020.106349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
|
16
|
Binder CJ, Borén J, Catapano AL, Dallinga-Thie G, Kronenberg F, Mallat Z, Negrini S, Raggi P, von Eckardstein A. The year 2019 in Atherosclerosis. Atherosclerosis 2020; 299:67-75. [PMID: 32248950 DOI: 10.1016/j.atherosclerosis.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Geesje Dallinga-Thie
- Department of Vascular Medicine, Amsterdam University Medical Centers, AMC, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; University of Paris, PARCC, INSERM, Paris, France
| | - Simona Negrini
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada; Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Monocyte Subsets, Stanford-A Acute Aortic Dissection, and Carotid Artery Stenosis: New Evidences. J Immunol Res 2019; 2019:9782594. [PMID: 31467936 PMCID: PMC6701364 DOI: 10.1155/2019/9782594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/21/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Monocytes are a heterogeneous cell population distinguished into three subsets with distinctive phenotypic and functional properties: “classical” (CD14++CD16-), “intermediate” (CD14++CD16+), and “nonclassical” (CD14+CD16++). Monocyte subsets play a pivotal role in many inflammatory systemic diseases including atherosclerosis (ATS). Only a low number of studies evaluated monocyte behavior in patients affected by cardiovascular diseases, and data about their role in acute aortic dissection (AAD) are lacking. Thus, the aim of this study was to investigate CD14++CD16-, CD14++CD16+, and CD14+CD16++ cells in patients with Stanford-A AAD and in patients with carotid artery stenosis (CAS). Methods. 20 patients with carotid artery stenosis (CAS group), 17 patients with Stanford-A AAD (AAD group), and 17 subjects with traditional cardiovascular risk factors (RF group) were enrolled. Monocyte subset frequency was determined by flow cytometry. Results. Classical monocytes were significantly increased in the AAD group versus CAS and RF groups, whereas intermediate monocytes were significantly decreased in the AAD group versus CAS and RF groups. Conclusions. Results of this study identify in AAD patients a peculiar monocyte array that can partly explain depletion of T CD4+ lymphocyte subpopulations observed in patients affected by AAD.
Collapse
|
18
|
Liu JX, Li X, Ji WJ, Yan LF, Li T, Li YX, Xu ZW, Yang GH, Li YM, Zhao JH, Zhou X. The Dynamics of Circulating Monocyte Subsets and Intra-Plaque Proliferating Macrophages during the Development of Atherosclerosis in ApoE -/- Mice. Int Heart J 2019; 60:746-755. [PMID: 31019169 DOI: 10.1536/ihj.17-681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To detect the development of monocytes and proliferative macrophages in atherosclerosis of ApoE-/- mice, we randomly assigned 84 ApoE-/- mice fed western diet or chow diet. On weeks 2, 4, 6, 8, 10, and 12 after fed high-fat diet or normal chow diet, animals were euthanized (n = 7 for each group at each time point). Flow cytometry methods were used to analyze the proportions of circulation monocyte subsets. The macrophage and proliferative macrophage accumulation within atherosclerotic plaques was estimated by confocal florescence microscopy. Plasma levels of total cholesterol and triglyceride were measured by ELISA kit. The plaques of aortic sinus were stained with Oil Red O. The percent of Ly6Chi circulation monocyte, the density of proliferation macrophage, the total plasma cholesterol and triglyceride levels, the lesion area of ApoE-/- mice were consistently elevated in chow diet throughout the trial. The total plasma cholesterol and triglyceride levels, the lesion area were elevated in western diet group with age, and they were always higher than the chow diet group. The Ly6Chi monocytes and proliferative macrophages reached a plateau at 8 weeks and 6 weeks; despite continued high-triglyceride high-cholesterol diet the percent did not significantly change. Interestingly, the density of macrophage did not change significantly over age in western and chow diet groups. Our results provide a dynamic view of Ly6Chi monocyte subset, the density of macrophage and proliferation macrophage change during the development and progression of atherosclerosis, which is relevant for designing new treatment strategies targeting mononuclear phagocytes in this model.
Collapse
Affiliation(s)
- Jun-Xiang Liu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | | | - Wen-Jie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Li-Fang Yan
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Tan Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Yu-Xiu Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Zhong-Wei Xu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Guo-Hong Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Ji-Hong Zhao
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| |
Collapse
|
19
|
Allen N, Barrett TJ, Guo Y, Nardi M, Ramkhelawon B, Rockman CB, Hochman JS, Berger JS. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis 2019; 282:11-18. [PMID: 30669018 DOI: 10.1016/j.atherosclerosis.2018.12.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/02/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Platelets are a major culprit in the pathogenesis of cardiovascular disease (CVD). Circulating monocyte-platelet aggregates (MPA) represent the crossroads between atherothrombosis and inflammation. However, there is little understanding of the platelets and monocytes that comprise MPA and the prevalence of MPA in different CVD phenotypes. We aimed to establish (1) the reproducibility of MPA over time in circulating blood samples from healthy controls, (2) the effect of aspirin, (3) the relationship between MPA and platelet activity and monocyte subtype, and (4) the association between MPA and CVD phenotype (coronary artery disease, peripheral artery disease [PAD], abdominal aortic aneurysm, and carotid artery stenosis). METHODS AND RESULTS MPA were identified by CD14+ monocytes positive for CD61+ platelets in healthy subjects and in patients with CVD. We found that MPA did not significantly differ over time in healthy controls, nor altered by aspirin use. Compared with healthy controls, MPA were significantly higher in CVD (9.4% [8.2, 11.1] vs. 21.8% [11.5, 44.1], p < 0.001) which remained significant after multivariable adjustment (β = 9.1 [SER = 3.9], p = 0.02). We found PAD to be associated with a higher MPA in circulation (β = 19.3 [SER = 6.0], p = 0.001), and among PAD subjects, MPA was higher in subjects with critical limb ischemia (34.9% [21.9, 51.15] vs. 21.6% [15.1, 40.6], p = 0.0015), and significance remained following multivariable adjustment (β = 14.77 (SE = 4.35), p = 0.001). CONCLUSIONS Circulating MPA are a robust marker of platelet activity and monocyte inflammation, unaffected by low-dose aspirin, and are significantly elevated in subjects with CVD, particularly those with PAD.
Collapse
Affiliation(s)
- Nicole Allen
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Yu Guo
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Michael Nardi
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, New York, NY, USA
| | - Caron B Rockman
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, New York, NY, USA
| | - Judith S Hochman
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jeffrey S Berger
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA; Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, New York, NY, USA; Division of Hematology, Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Del Porto F, Cifani N, Proietta M, Dezi T, Panzera C, Ficarelli R, Taurino M. Inflammation and immune response in carotid artery stenosis. ITALIAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY 2019. [DOI: 10.23736/s1824-4777.18.01385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
|
22
|
Hally KE, Danielson KM, Larsen PD. Looking to the Future: Spotlight on Emerging Biomarkers for Predicting Cardiovascular Risk. CURR EPIDEMIOL REP 2018. [DOI: 10.1007/s40471-018-0158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Affiliation(s)
- Farhan Shahid
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gregory Y H Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Eduard Shantsila
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The pivotal role of macrophages in experimental atherosclerosis is firmly established, but their contribution to human disease is less well defined. In this review we have outlined the current insights on macrophage phenotypes and their presumed precursors, monocytes, in clinical atherosclerosis, and their association with disease progression. Moreover, we will assess major clinical modifiers of macrophage-mediated plaque inflammation and define the outstanding questions for further study. RECENT FINDINGS Our survey indicates that macrophage accumulation and status in human plaques are linked with lesion progression and destabilization as well as with symptomatic coronary artery disease. Likewise, levels of their precursors, circulating monocytes were repeatedly seen to associate with atherosclerosis and to predict clinical outcome. Furthermore, the presence and phenotype of both macrophages and monocytes appears to be responsive to the traditional risk factors of atherosclerosis, including hypercholesterolemia, hypertension, and type 2 diabetes, and to treatment thereof, with clear repercussions on disease development. SUMMARY Although plaque macrophages and their precursor cells do represent attractive targets for treating cardiovascular diseases, this therapeutic avenue requires much deeper understanding of the complexity of macrophage biology in human atherosclerosis than available at present.
Collapse
Affiliation(s)
- Erik A L Biessen
- aDepartment of Pathology bDepartment of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands cInstitute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH, Aachen, Aachen, Germany
| | | |
Collapse
|
25
|
Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6501046. [PMID: 28698768 PMCID: PMC5494111 DOI: 10.1155/2017/6501046] [Citation(s) in RCA: 494] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/26/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen species (ROS) formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1) ROS in leukocytes and platelets by flow cytometry, (2) markers based on ROS-induced modifications of lipids, DNA, and proteins, (3) enzymatic players of redox status, and (4) total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.
Collapse
|
26
|
Abstract
Antiplatelet agents have for decades been used to improve outcomes in patients with acute coronary syndromes and have become increasingly valued, not only for their antithrombotic properties but also for their anti-inflammatory effects. The drug class continues to evolve as novel agents with increasingly efficacious antiplatelet actions are identified. This review will discuss antiplatelet agents, including aspirin, the P2Y12 receptor antagonists and the glycoprotein IIb/IIIa inhibitors, that are currently used to treat patients with unstable angina and myocardial infarction, focusing on their pharmacological properties and the clinical evidence supporting their use.
Collapse
Affiliation(s)
- Kerry Layne
- Department of Clinical Pharmacology, Cardiovascular Division, King's College London, London, UK
| | - Albert Ferro
- Department of Clinical Pharmacology, Cardiovascular Division, King's College London, London, UK
| |
Collapse
|
27
|
Fuijkschot WW, Groothuizen WE, Appelman Y, Radonic T, van Royen N, van Leeuwen MA, Krijnen PA, van der Wal AC, Smulders YM, Niessen HW. Inflammatory cell content of coronary thrombi is dependent on thrombus age in patients with ST-elevation myocardial infarction. J Cardiol 2017; 69:394-400. [DOI: 10.1016/j.jjcc.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/16/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
28
|
Weber C, Shantsila E, Hristov M, Caligiuri G, Guzik T, Heine GH, Hoefer IE, Monaco C, Peter K, Rainger E, Siegbahn A, Steffens S, Wojta J, Lip GYH. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC) Working Groups "Atherosclerosis & Vascular Biology" and "Thrombosis". Thromb Haemost 2016; 116:626-37. [PMID: 27412877 DOI: 10.1160/th16-02-0091] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022]
Abstract
Monocytes as cells of the innate immunity are prominently involved in the development of atherosclerotic lesions. The heterogeneity of blood monocytes has widely been acknowledged by accumulating experimental and clinical data suggesting a differential, subset-specific contribution of the corresponding subpopulations to the pathology of cardiovascular and other diseases. This document re-evaluates current nomenclature and summarises key findings on monocyte subset biology to propose a consensus statement about phenotype, separation and quantification of the individual subsets.
Collapse
Affiliation(s)
- Christian Weber
- Dr. Christian Weber, LMU Munich - Cardiovascular Prevention, Pettenkoferstr. 9, 80336 Munich, Germany, Tel.: +49 89 4400 54350, Fax: +49 89 4400 54352, E-mail:
| | | | - Michael Hristov
- Dr. Michael Hristov, LMU Munich - Cardiovascular Prevention, Pettenkoferstr. 9, 80336 Munich, Germany, Tel.: +49 89 4400 54350, Fax: +49 89 4400 54352, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhou X, Liu XL, Ji WJ, Liu JX, Guo ZZ, Ren D, Ma YQ, Zeng S, Xu ZW, Li HX, Wang PP, Zhang Z, Li YM, Benefield BC, Zawada AM, Thorp EB, Lee DC, Heine GH. The Kinetics of Circulating Monocyte Subsets and Monocyte-Platelet Aggregates in the Acute Phase of ST-Elevation Myocardial Infarction: Associations with 2-Year Cardiovascular Events. Medicine (Baltimore) 2016; 95:e3466. [PMID: 27149446 PMCID: PMC4863763 DOI: 10.1097/md.0000000000003466] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In experimental myocardial infarction (MI), a rise in cell counts of circulating monocyte subsets contributes to impaired myocardial healing and to atherosclerotic plaque destabilization. In humans, the prognostic role of monocyte subsets in patients suffering ST-elevation MI (STEMI) is still unclear. In the present study, we aimed to determine the kinetics of the 3 monocyte subsets (classical CD14++CD16-, intermediate CD14++CD16+, and nonclassical CD14+CD16++ monocytes), as well as the subset-specific monocyte-platelet aggregates (MPA), in acute STEMI followed by primary percutaneous coronary intervention (PCI), and their relationships with cardiovascular outcomes during a 2-year follow-up.Monocyte subsets and MPA were measured in 100 STEMI patients receiving primary PCI on days 1, 2, 3, 5, and 7 of symptom onset, which were compared with 60 stable coronary heart disease patients and 35 healthy volunteers. From day 1 to day 7, significant increases in the counts of CD14++CD16+ monocytes and CD14++CD16+ MPA were observed, with peak levels on day 2. During a median follow-up of 2.0 years, 28 first cardiovascular events (defined as cardiovascular death, nonfatal ischemic stroke, recurrent MI, need for emergency or repeat revascularization, and rehospitalization for heart failure) were recorded. After adjustment for confounders, CD14++CD16+ monocytosis (day 1 [HR: 3.428; 95% CI: 1.597-7.358; P = 0.002], day 2 [HR: 4.835; 95% CI: 1.106-21.13; P = 0.04], day 3 [HR: 2.734; 95% CI: 1.138-6.564; P = 0.02], and day 7 [HR: 2.647; 95% CI: 1.196-5.861; P = 0.02]), as well as increased levels of CD14++CD16+ MPA measured on all time points (days 1, 2, 3, 5, and 7), had predictive values for adverse cardiovascular events.In conclusion, our data show the expansion of the CD14++CD16+ monocyte subset during acute phase of STEMI has predictive values for 2-year adverse cardiovascular outcomes in patients treated with primary PCI. Future studies will be warranted to elucidate whether CD14++CD16+ monocytes may become a target cell population for new therapeutic strategies after STEMI.
Collapse
Affiliation(s)
- Xin Zhou
- From the Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury (XZ, X-LL, W-JJ, J-XL, Z-ZG, DR, Y-QM, SZ, Z-WX, H-XL, Y-ML), Pingjin Hospital Heart Center, Logistics University of Chinese People's Armed Police Forces, Tianjin, China; Division of Community Health and Humanities (PPW), Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, Canada; Department of Radiology (ZZ); Feinberg Cardiovascular Research Institute (BCB, DCL); Department of Pathology (EBT), Northwestern University Feinberg School of Medicine, Chicago, IL, USA; and Department of Internal Medicine IV (AMZ and GHH), Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ji WJ, Lu RY, Liu JX, Ma YQ, Zeng S, Shi R, Zhao JH, Chen SB, Zhou X, Li YM. The influence of different anticoagulants and time-delayed sample processing and measurements on human monocyte subset and monocyte-platelet aggregate analyses. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:371-379. [PMID: 26861109 DOI: 10.1002/cyto.b.21363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Measuring human monocyte subsets (CD14++CD16-, CD14++CD16+, and CD14 + CD16++) and subset-specific monocyte-platelet aggregates (MPA) is vulnerable to analytical bias due to unavailability of a standardized methodology. We aimed to address this issue by focusing on the impacts of time-delayed sample processing and measurement between two commonly used anticoagulants. METHODS Ethylenediaminetetraacetic acid (EDTA)- and sodium citrate (SC)-anticoagulated blood samples from 12 healthy donors were subject to either delayed (2-h delay, kept at 4°C) or immediate processing (without fixation) before four-color flow cytometry (FCM) analysis. RESULTS In SC-anticoagulated samples, a 2-h delay in sample processing contributed to a significant decrease in CD14++CD16- monocyte percent and a reciprocal increase in CD14++CD16+ monocytes, as well as increases in all three subset-specific MPA. Similar slight, but non-significant changes were observed in EDTA-treated samples. In samples processed immediately and stored at 4°C, delayed measurement at 0, 1, 3, and 5 h after processing led to a time-dependent decrease in CD14++CD16- monocyte percent and a reciprocal increase in CD14++CD16+ subset in SC-treated, but not in EDTA-treated, samples. Moreover, a time-dependent increase in all three subset-specific MPA was observed in SC-treated samples, which, to a lesser extent, was only observed in CD14++CD16+ MPA in EDTA-treated samples after storage at 4°C for 3-5 h after processing. CONCLUSIONS We recommend EDTA for anticoagulation. Additionally, sample should be stored at 4°C and processing and measuring should be performed within 2 h after harvest and 3 h after processing, respectively. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Wen-Jie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China.,Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Tianjin, China
| | - Rui-Yi Lu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Jun-Xiang Liu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Yong-Qiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Shan Zeng
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Rui Shi
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Ji-Hong Zhao
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Shao-Bo Chen
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| |
Collapse
|
31
|
Stansfield BK, Ingram DA. Clinical significance of monocyte heterogeneity. Clin Transl Med 2015; 4:5. [PMID: 25852821 PMCID: PMC4384980 DOI: 10.1186/s40169-014-0040-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022] Open
Abstract
Monocytes are primitive hematopoietic cells that primarily arise from the bone marrow, circulate in the peripheral blood and give rise to differentiated macrophages. Over the past two decades, considerable attention to monocyte diversity and macrophage polarization has provided contextual clues into the role of myelomonocytic derivatives in human disease. Until recently, human monocytes were subdivided based on expression of the surface marker CD16. "Classical" monocytes express surface markers denoted as CD14(++)CD16(-) and account for greater than 70% of total monocyte count, while "non-classical" monocytes express the CD16 antigen with low CD14 expression (CD14(+)CD16(++)). However, recognition of an intermediate population identified as CD14(++)CD16(+) supports the new paradigm that monocytes are a true heterogeneous population and careful identification of specific subpopulations is necessary for understanding monocyte function in human disease. Comparative studies of monocytes in mice have yielded more dichotomous results based on expression of the Ly6C antigen. In this review, we will discuss the use of monocyte subpopulations as biomarkers of human disease and summarize correlative studies in mice that may yield significant insight into the contribution of each subset to disease pathogenesis.
Collapse
Affiliation(s)
- Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Georgia Regents University, Augusta, Georgia ; Vascular Biology Center, Georgia Regents University, Augusta, Georgia ; Medical College of Georgia at Georgia Regents University, 1120 15th St, BIW-6033, Augusta, GA 30912 USA
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Georgia Regents University, Augusta, Georgia ; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana USA ; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 699 Riley Hospital Drive, RR208, Indianapolis, IN 46202 USA
| |
Collapse
|
32
|
Abstract
Monocytes and their descendant macrophages are essential to the development and exacerbation of atherosclerosis, a lipid-driven inflammatory disease. Lipid-laden macrophages, known as foam cells, reside in early lesions and advanced atheromata. Our understanding of how monocytes accumulate in the growing lesion, differentiate, ingest lipids, and contribute to disease has advanced substantially over the last several years. These cells' remarkable phenotypic and functional complexity is a therapeutic opportunity: in the future, treatment and prevention of cardiovascular disease and its complications may involve specific targeting of atherogenic monocytes/macrophages and their products.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.).
| | - Filip K Swirski
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.)
| | - Clinton S Robbins
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.).
| |
Collapse
|