1
|
Tang H, Kan C, Zhang K, Sheng S, Qiu H, Ma Y, Wang Y, Hou N, Zhang J, Sun X. Glycerophospholipid and Sphingosine- 1-phosphate Metabolism in Cardiovascular Disease: Mechanisms and Therapeutic Potential. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10620-3. [PMID: 40227543 DOI: 10.1007/s12265-025-10620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide, driven by factors such as dysregulated lipid metabolism, oxidative stress, and inflammation. Recent studies highlight the critical roles of both glycerophospholipid and sphingosine- 1-phosphate metabolism in the pathogenesis of cardiovascular disorders. However, the contributions of glycerophospholipid-derived metabolites remain underappreciated. Glycerophospholipid metabolism generates bioactive molecules that contribute to endothelial dysfunction, lipid accumulation, and cardiac cell injury while also modulating inflammatory and oxidative stress responses. Meanwhile, sphingosine- 1-phosphate is a bioactive lipid mediator that regulates vascular integrity, inflammation, and cardiac remodeling through its G-protein-coupled receptors. The convergence of these pathways presents novel therapeutic opportunities, where dietary interventions such as omega- 3 polyunsaturated fatty acids and pharmacological targeting of sphingosine- 1-phosphate receptors could synergistically mitigate cardiovascular risk. This review underscores the need for further investigation into the interplay between glycerophospholipid metabolism and sphingosine- 1-phosphate signaling to advance targeted therapies for the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- Huiru Tang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Sufang Sheng
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| |
Collapse
|
2
|
Gąsecka A, Siniarski A, Duchnowski P, Stępień K, Błażejowska E, Gajewska M, Karaban K, Porębska K, Reda A, Rogula S, Rolek B, Słupik D, Gozdowska R, Kleibert M, Zajkowska D, Grąt M, Grabowski M, Filipiak KJ, van der Pol E, Nieuwland R. Leukocyte Extracellular Vesicles Predict Progression of Systolic Dysfunction in Heart Failure with Mildly Reduced Ejection Fraction (LYCHEE) - A Prospective, Multicentre Cohort Study. J Cardiovasc Transl Res 2025; 18:17-27. [PMID: 39316271 PMCID: PMC11885366 DOI: 10.1007/s12265-024-10561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Risk stratification in heart failure with mildly-reduced ejection fraction (HFmrEF) remains challenging. We evaluated the predictive value of advanced glycation end products (AGEs) and plasma concentrations of extracellular vesicles (EVs) for the systolic and diastolic dysfunction progression in HFmrEF patients. Skin AGE accumulation was measured using AGE Reader. Plasma EV concentrations were measured using flow cytometry. Among 74 patients enrolled, 13 (18%) had systolic dysfunction progression and 5 (7%) had diastolic dysfunction progression during 6.5 months follow-up. Leukocyte EVs concentrations were higher in patients with systolic dysfunction progression (p = 0.002) and predicted the progression with 75.0% sensitivity and 58.3% specificity, independent of other clinical variables (OR 4.72, 95% CI 0.99-22.31). Skin AGE levels and concentrations of other EV subtypes were not associated with systolic or diastolic dysfunction progression. Increased leukocyte EVs concentrations are associated with 4.7-fold higher odds of systolic dysfunction progression in HFmrEF patients.
Collapse
Affiliation(s)
- Aleksandra Gąsecka
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Aleksander Siniarski
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- St. John Paul II Hospital in Krakow, Krakow, Poland
| | - Piotr Duchnowski
- Ambulatory Care Unit, Cardinal Wyszynski National Institute of Cardiology, Warsaw, Poland
| | - Konrad Stępień
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- St. John Paul II Hospital in Krakow, Krakow, Poland
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Błażejowska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Magdalena Gajewska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.
| | - Kacper Karaban
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Kinga Porębska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Aleksandra Reda
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Sylwester Rogula
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Bartosz Rolek
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Dorota Słupik
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Roksana Gozdowska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Marcin Kleibert
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Dominika Zajkowska
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Michał Grąt
- Department of General, Gastroenterological and Oncological Surgery, Medical Universityof Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Krzysztof J Filipiak
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Edwin van der Pol
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Vilella-Figuerola A, Cordero A, Mirabet S, Muñoz-García N, Suades R, Padró T, Badimon L. Platelet-Released Extracellular Vesicle Characteristics Differ in Chronic and in Acute Heart Disease. Thromb Haemost 2023; 123:892-903. [PMID: 37075787 DOI: 10.1055/s-0043-57017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs), shed in response to cell activation, stress, or injury, are increased in the blood of patients with cardiovascular disease. EVs are characterized by expressing parental-cell antigens, allowing the determination of their cellular origin. Platelet-derived EVs (pEVs) are the most abundant in blood. Although not universally given, EVs generally express phosphatidylserine (PS) in their membrane. OBJECTIVES To investigate pEVs in chronic and acute conditions, such as chronic heart failure (CHF) and first-onset acute coronary syndrome (ACS), in patients treated as per guidelines. METHODS EVs in CHF patients (n = 119), ACS patients (n = 58), their respective controls (non-CHF [n = 21] and non-ACS [n = 24], respectively), and a reference control group (n = 31) were characterized and quantified by flow cytometry, using monoclonal antibodies against platelet antigens, and annexin V (AV) to determine PS exposure. RESULTS CHF patients had higher EVs-PS- numbers, while ACS had predominantly EVs-PS+. In contrast to ACS, CHF patients had significantly reduced numbers of pEVs carrying PECAM and αIIb-integrin epitopes (CD31+/AV+, CD41a+/AV+, and CD31+/CD41a+/AV+), while no differences were observed in P-selectin-rich pEVs (CD62P+/AV+) compared with controls. Additionally, background etiology of CHF (ischemic vs. nonischemic) or ACS type (ST-elevation myocardial infarction [STEMI] vs. non-STEMI [NSTEMI]) did not affect pEV levels. CONCLUSION PS exposure in EV and pEV-release differ between CHF and ACS patients, with tentatively different functional capacities beyond coagulation to inflammation and cross-talk with other cell types.
Collapse
Affiliation(s)
- Alba Vilella-Figuerola
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Alberto Cordero
- Cardiology Department, Hospital Universitario de San Juan, Alicante, Spain
- Unidad de Investigación en Cardiología, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Sònia Mirabet
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Heart Failure Group, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Natàlia Muñoz-García
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- UAB-Chair Cardiovascular Research, Barcelona, Spain
| |
Collapse
|
4
|
Suades R, Vilella-Figuerola A, Padró T, Mirabet S, Badimon L. Red Blood Cells and Endothelium Derived Circulating Extracellular Vesicles in Health and Chronic Heart Failure: A Focus on Phosphatidylserine Dynamics in Vesiculation. Int J Mol Sci 2023; 24:11824. [PMID: 37511585 PMCID: PMC10380787 DOI: 10.3390/ijms241411824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Circulating extracellular microvesicles (cEVs) are characterised by presenting surface antigens of parental cells. Since their biogenesis involves the translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane, exposed PS has been considered as a recognition hallmark of cEVs. However, not all cEVs externalise PS. In this study, we have phenotypically and quantitatively characterised cEVs by flow cytometry, paying special attention to the proportions of PS in chronic heart failure patients (cHF; n = 119) and a reference non-HF group (n = 21). PS--cEVs were predominantly found in both groups. Parental markers showed differential pattern depending on the PS exposure. Endothelium-derived and connexin 43-rich cEVs were mainly PS--cEVs and significantly increased in cHF. On the contrary, platelet-derived cEVs were mostly PS+ and were increased in the non-HF group. We observed similar levels of PS+- and PS--cEVs in non-HF subjects when analysing immune cell-derived Evs, but there was a subset-specific difference in cHF patients. Indeed, those cEVs carrying CD45+, CD29+, CD11b+, and CD15+ were mainly PS+-cEVs, while those carrying CD14+, CD3+, and CD56+ were mainly PS--cEVs. In conclusion, endothelial and red blood cells are stressed in cHF patients, as detected by a high shedding of cEVs. Despite PS+-cEVs and PS--cEVs representing two distinct cEV populations, their release and potential function as both biomarkers and shuttles for cell communication seem unrelated to their PS content.
Collapse
Affiliation(s)
- Rosa Suades
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Alba Vilella-Figuerola
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sonia Mirabet
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Cardiology Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
5
|
Belinskaia DA, Voronina PA, Popova PI, Voitenko NG, Shmurak VI, Vovk MA, Baranova TI, Batalova AA, Korf EA, Avdonin PV, Jenkins RO, Goncharov NV. Albumin Is a Component of the Esterase Status of Human Blood Plasma. Int J Mol Sci 2023; 24:10383. [PMID: 37373530 PMCID: PMC10299176 DOI: 10.3390/ijms241210383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The esterase status of blood plasma can claim to be one of the universal markers of various diseases; therefore, it deserves attention when searching for markers of the severity of COVID-19 and other infectious and non-infectious pathologies. When analyzing the esterase status of blood plasma, the esterase activity of serum albumin, which is the major protein in the blood of mammals, should not be ignored. The purpose of this study is to expand understanding of the esterase status of blood plasma and to evaluate the relationship of the esterase status, which includes information on the amount and enzymatic activity of human serum albumin (HSA), with other biochemical parameters of human blood, using the example of surviving and deceased patients with confirmed COVID-19. In experiments in vitro and in silico, the activity of human plasma and pure HSA towards various substrates was studied, and the effect of various inhibitors on this activity was tested. Then, a comparative analysis of the esterase status and a number of basic biochemical parameters of the blood plasma of healthy subjects and patients with confirmed COVID-19 was performed. Statistically significant differences have been found in esterase status and biochemical indices (including albumin levels) between healthy subjects and patients with COVID-19, as well as between surviving and deceased patients. Additional evidence has been obtained for the importance of albumin as a diagnostic marker. Of particular interest is a new index, [Urea] × [MDA] × 1000/(BChEb × [ALB]), which in the group of deceased patients was 10 times higher than in the group of survivors and 26 times higher than the value in the group of apparently healthy elderly subjects.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina I. Popova
- City Polyclinic No. 112, 25 Academician Baykov Str., 195427 St. Petersburg, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Vladimir I. Shmurak
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Mikhail A. Vovk
- Centre for Magnetic Resonance, St. Petersburg State University, Universitetskij pr., 26, Peterhof, 198504 St. Petersburg, Russia
| | - Tatiana I. Baranova
- Faculty of Biology, St. Petersburg State University, 7-9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Anastasia A. Batalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| |
Collapse
|
6
|
Al-Koussa H, AlZaim I, El-Sabban ME. Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. J Clin Med 2022; 11:jcm11164932. [PMID: 36013171 PMCID: PMC9410115 DOI: 10.3390/jcm11164932] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The notion of blood coagulation dates back to the ancient Greek civilization. However, the emergence of innovative scientific discoveries that started in the seventeenth century formulated the fundamentals of blood coagulation. Our understanding of key coagulation processes continues to evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the cell-based theory, which combines these two pathways, along with newly discovered mechanisms, emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease, thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary clotting, drive the development and progression of diseases. Accumulating evidence implicates cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs), exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic approaches in thrombotic and prothrombotic diseases.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan E. El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence: ; Tel.: +961-01-350-000 (ext. 4765)
| |
Collapse
|
7
|
Kaynak A, Davis HW, Kogan AB, Lee JH, Narmoneva DA, Qi X. Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2536. [PMID: 35626139 PMCID: PMC9139557 DOI: 10.3390/cancers14102536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. In recent years, many cancer-associated biomarkers have been identified that are used for cancer diagnosis, prognosis, screening, and early detection, as well as for predicting and monitoring carcinogenesis and therapeutic effectiveness. Phosphatidylserine (PS) is a negatively charged phospholipid which is predominantly located in the inner leaflet of the cell membrane. In many cancer cells, PS externalizes to the outer cell membrane, a process regulated by calcium-dependent flippases and scramblases. Saposin C coupled with dioleoylphosphatidylserine (SapC-DOPS) nanovesicle (BXQ-350) and bavituximab, (Tarvacin, human-mouse chimeric monoclonal antibodies) are cell surface PS-targeting drugs being tested in clinical trial for treating a variety of cancers. Additionally, a number of other PS-selective agents have been used to trigger cytotoxicity in tumor-associated endothelial cells or cancer cells in pre-clinical studies. Recent studies have demonstrated that upregulation of surface PS exposure by chemodrugs, radiation, and external electric fields can be used as a novel approach to sensitize cancer cells to PS-targeting anticancer drugs. The objectives of this review are to provide an overview of a unique dual-role of PS as a biomarker/target for cancer imaging and therapy, and to discuss PS-based anticancer strategies that are currently under active development.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Harold W. Davis
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Andrei B. Kogan
- Physics Department, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Xiaoyang Qi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| |
Collapse
|
8
|
Pfeifer P, Zietzer A, Hölscher M, Jehle J, Nickenig G, Werner N, Gestrich C, Jansen F. Transverse aortic constriction-induced heart failure leads to increased levels of circulating microparticles. Int J Cardiol 2022; 347:54-58. [PMID: 34767895 DOI: 10.1016/j.ijcard.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/07/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Circulating microparticles represent one type of signal transmission between cells. Previous studies revealed increased levels of circulating microparticles in patients with heart failure, while composition, temporal occurrence and biological effects are largely unknown. METHODS Circulating microparticles were quantified by flow cytometry in mice following TAC. Microparticles were characterized by NTA and immunoblotting for Flotillin-1. Microparticle content was investigated by microRNA analyses. RESULTS After TAC induction of heart failure could be demonstrated. Simultaneously we observed increased numbers of circulating microparticles in the first week after TAC with a rapid decline thereafter. The most relevant fraction of circulating EVs after TAC derived from lymphocytes containing has-miR-26a-5p and / -146b-5p known to be involved in inflammatory processes. CONCLUSION This work provides a previously unknown timely limited occurrence of circulating microparticles after new onset of heart failure which might have important influence on disease development and progression and thereby are of probable therapeutic relevance.
Collapse
Affiliation(s)
- Philipp Pfeifer
- University Hospital Bonn Clinic II of Cardiology Angiology and Pulmonology, Germany.
| | - Andreas Zietzer
- University Hospital Bonn Clinic II of Cardiology Angiology and Pulmonology, Germany.
| | - Marion Hölscher
- University Hospital Bonn Clinic II of Cardiology Angiology and Pulmonology, Germany.
| | - Julian Jehle
- University Hospital Bonn Clinic II of Cardiology Angiology and Pulmonology, Germany.
| | - Georg Nickenig
- University Hospital Bonn Clinic II of Cardiology Angiology and Pulmonology, Germany.
| | - Nikos Werner
- University Hospital Bonn Clinic II of Cardiology Angiology and Pulmonology, Germany.
| | - Christopher Gestrich
- University Hospital Bonn Clinic II of Cardiology Angiology and Pulmonology, Germany.
| | - Felix Jansen
- University Hospital Bonn Clinic II of Cardiology Angiology and Pulmonology, Germany.
| |
Collapse
|
9
|
Balbi C. Editorial: Transverse aortic constriction-induced heart failure leads to increased levels of circulating microparticles. Int J Cardiol 2021; 348:109-110. [PMID: 34915076 DOI: 10.1016/j.ijcard.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland; Center for Molecular Cardiology, Zurich, Switzerland.
| |
Collapse
|
10
|
Dow R, Ridger V. Neutrophil microvesicles and their role in disease. Int J Biochem Cell Biol 2021; 141:106097. [PMID: 34655813 DOI: 10.1016/j.biocel.2021.106097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Microvesicles are formed through shedding from the plasma membrane, a process shared by almost all human cells. Microvesicles are highly abundant and have been detected in blood, urine, cerebrospinal fluid, and saliva. They contain a library of cargo derived from their parental cell during formation, including proteases, micro-RNAs and lipids and delivery of this parental cell-derived cargo to other cells can alter target cell function and drive disease. Cell specific molecules on the surface of microvesicles, obtained during microvesicle formation, allows their parental cell to be identified and populations of microvesicles to be investigated for roles in the pathogenesis of various diseases. For instance, recent work by our group has identified a role for neutrophil microvesicles in atherosclerosis. Microvesicle profiles could in future be associated with certain diseases and act as a biomarker to allow for earlier diagnosis. This short review will discuss some of the processes central to all microvesicles before focusing on neutrophil microvesicles, their potential role in cardiovascular disease and the mechanisms that may underpin this.
Collapse
Affiliation(s)
- Reece Dow
- Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
Zifkos K, Dubois C, Schäfer K. Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. Int J Mol Sci 2021; 22:ijms22179317. [PMID: 34502228 PMCID: PMC8431093 DOI: 10.3390/ijms22179317] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) compose a heterogenous group of membrane-derived particles, including exosomes, microvesicles and apoptotic bodies, which are released into the extracellular environment in response to proinflammatory or proapoptotic stimuli. From earlier studies suggesting that EV shedding constitutes a cellular clearance mechanism, it has become evident that EV formation, secretion and uptake represent important mechanisms of intercellular communication and exchange of a wide variety of molecules, with relevance in both physiological and pathological situations. The putative role of EVs in hemostasis and thrombosis is supported by clinical and experimental studies unraveling how these cell-derived structures affect clot formation (and resolution). From those studies, it has become clear that the prothrombotic effects of EVs are not restricted to the exposure of tissue factor (TF) and phosphatidylserines (PS), but also involve multiplication of procoagulant surfaces, cross-linking of different cellular players at the site of injury and transfer of activation signals to other cell types. Here, we summarize the existing and novel clinical and experimental evidence on the role and function of EVs during arterial and venous thrombus formation and how they may be used as biomarkers as well as therapeutic vectors.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, D-55131 Mainz, Germany;
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l’Agriculture, l’alimentation et l’Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), F-13380 Marseille, France;
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, D-55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
12
|
Abstract
Extracellular vesicles (EVs) have received considerable attention in biological and clinical research due to their ability to mediate cell-to-cell communication. Based on their size and secretory origin, EVs are categorized as exosomes, microvesicles, and apoptotic bodies. Increasing number of studies highlight the contribution of EVs in the regulation of a wide range of normal cellular physiological processes, including waste scavenging, cellular stress reduction, intercellular communication, immune regulation, and cellular homeostasis modulation. Altered circulating EV level, expression pattern, or content in plasma of patients with cardiovascular disease (CVD) may serve as diagnostic and prognostic biomarkers in diverse cardiovascular pathologies. Due to their inherent characteristics and physiological functions, EVs, in turn, have become potential candidates as therapeutic agents. In this review, we discuss the evolving understanding of the role of EVs in CVD, summarize the current knowledge of EV-mediated regulatory mechanisms, and highlight potential strategies for the diagnosis and therapy of CVD. We also attempt to look into the future that may advance our understanding of the role of EVs in the pathogenesis of CVD and provide novel insights into the field of translational medicine.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
13
|
Aliotta A, Bertaggia Calderara D, Zermatten MG, Marchetti M, Alberio L. Thrombocytopathies: Not Just Aggregation Defects-The Clinical Relevance of Procoagulant Platelets. J Clin Med 2021; 10:jcm10050894. [PMID: 33668091 PMCID: PMC7956450 DOI: 10.3390/jcm10050894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Platelets are active key players in haemostasis. Qualitative platelet dysfunctions result in thrombocytopathies variously characterized by defects of their adhesive and procoagulant activation endpoints. In this review, we summarize the traditional platelet defects in adhesion, secretion, and aggregation. In addition, we review the current knowledge about procoagulant platelets, focusing on their role in bleeding or thrombotic pathologies and their pharmaceutical modulation. Procoagulant activity is an important feature of platelet activation, which should be specifically evaluated during the investigation of a suspected thrombocytopathy.
Collapse
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Maxime G. Zermatten
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Matteo Marchetti
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Service de Médecine Interne, Hôpital de Nyon, CH-1260 Nyon, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Correspondence:
| |
Collapse
|
14
|
Zhao M, Xie J, Shen H, Wang X, Wu Q, Xia L. Role of endothelial-microparticles and the tissue factor pathway in ginsenoside Rb1-mediated prevention of umbilical vein endothelial cell injury. Biomed Rep 2020; 14:8. [PMID: 33235723 PMCID: PMC7678614 DOI: 10.3892/br.2020.1384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/20/2020] [Indexed: 01/15/2023] Open
Abstract
Hepatic veno-occlusive disease (VOD) is a life-threatening complication of hematopoietic stem cell transplantation, which urgently requires effective prevention and treatment. Endothelial damage is recognized as the first event in patients with hepatic VOD. However, the mechanism by which endothelial injury induces thrombosis in hepatic VOD is still not clear. In the present study, monocrotaline (MCT) was used to induce endothelial cell injury in EA.hy926 cells to imitate in vitro hepatic VOD. MCT significantly increased apoptosis in EA.hy926 endothelial cells and the secretion of endothelial microparticles (EMPs) which can be used to reflect the level of endothelial injury. Additionally, MCT significantly enhanced the expression of soluble tissue factor (TF) and EMP-bound TF protein, suggesting that EMPs may participate in the development of hepatic VOD by regulating coagulation. Ginsenoside Rb1, a major constituent and effective ingredient of Panax ginseng, was found to significantly decrease MCT-induced endothelial injury and release of EMPs. Moreover, Ginsenoside Rb1 decreased soluble TF released by EA.hy926 cells and EMP-bound TF protein induced by MCT. These data suggest that ginsenoside Rb1 may serve as a potent prophylactic and/or as a treatment of hepatic VOD by protecting endothelial cells and preventing microthrombosis induced by endothelial injury.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Juan Xie
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Haorui Shen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xiaoxiao Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
15
|
Li YP, Wang CY, Shang HT, Hu RR, Fu H, Xiao XF. A high-throughput and untargeted lipidomics approach reveals new mechanistic insight and the effects of salvianolic acid B on the metabolic profiles in coronary heart disease rats using ultra-performance liquid chromatography with mass spectrometry. RSC Adv 2020; 10:17101-17113. [PMID: 35521479 PMCID: PMC9053481 DOI: 10.1039/d0ra00049c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022] Open
Abstract
High-throughput lipidomics provides the possibility for the development of new therapeutic drugs. Accordingly, herein, we reveal the protective role of salvianolic acid B (Sal B) in rats with coronary heart disease (CHD) and propose a new mechanism for its action through a high-throughput and non-targeted lipidomics strategy. A CHD animal model was induced by consecutive high-fat diet feeding with vitamin D3 injection. At the end of the 8th week, the serum sample was analyzed to explore the metabolic biomarker and pathway changes using untargeted lipidomics based on ultra-performance liquid chromatography with mass spectrometry (UPLC/MS). In addition, blood and heart tissue samples were collected and processed for the detection of biochemical indicators and liver histological observation. After salvianolic acid B treatment, the levels of LDH, CK, CK-MB, MYO, CTn1, TG, TC, LDL-c, and Apo(b) were significantly lower than that in the model group, while the levels of HDL-c and Apo(a1) were significantly higher than that in the model group. Furthermore, the histological features of fibrosis and steatosis were also evidently relieved in the model group. A total of twenty-six potential biomarkers were identified to express the lipid metabolic turbulence in the CHD animal models, of which twenty-two were regulated by salvianolic acid B trending to the normal state, including TG(20:0/20:4/o-18:0), PC(20:4/18:1(9Z)), PC(18:3/20:2), PA(18:0/18:2), LysoPE(18:2/0:0), SM(d18:0/22:1), PE(22:6/0:0), LysoPE (20:4/0:0), sphinganine, Cer(d18:0/18:0), PS(14:0/14:1), PC (18:0/16:0), LysoPC(17:0), PE(22:2/20:1), PC(20:3/20:4), PE(20:4/P-16:0), PS(20:3/18:0), cholesterol sulfate, TG(15:0/22:6/18:1), prostaglandin E2, arachidonic acid and sphingosine-1-phosphate. According to the metabolite enrichment and pathway analyses, the pharmacological activity of salvianolic acid B on CHD is mainly involved in three vital metabolic pathways including glycerophospholipid metabolism, sphingolipid metabolism and arachidonic acid metabolism. Thus, based on the lipidomics-guided biochemical analysis of the lipid biomarkers and pathways, Sal B protects against CHD with good therapeutic effect by regulating glycerophospholipid metabolism, sphingolipid metabolism and arachidonic acid metabolism, inhibiting oxidative stress damage and lipid peroxidation. High-throughput lipidomics provides the possibility for the development of new therapeutic drugs.![]()
Collapse
Affiliation(s)
- Ying-Peng Li
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Cong-Ying Wang
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Hong-Tao Shang
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Rui-Rui Hu
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Hui Fu
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| | - Xue-Feng Xiao
- Tianjin University of Traditional Chinese Medicine Tianjin 301617 China
| |
Collapse
|
16
|
Berezin AE, Berezin AA. Extracellular Endothelial Cell-Derived Vesicles: Emerging Role in Cardiac and Vascular Remodeling in Heart Failure. Front Cardiovasc Med 2020; 7:47. [PMID: 32351973 PMCID: PMC7174683 DOI: 10.3389/fcvm.2020.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles play a pivotal role in numerous physiological (immune response, cell-to-cell cooperation, angiogenesis) and pathological (reparation, inflammation, thrombosis/coagulation, atherosclerosis, endothelial dysfunction) processes. The development of heart failure is strongly associated with endothelial dysfunction, microvascular inflammation, alteration in tissue repair, and cardiac and vascular remodeling. It has been postulated that activated endothelial cell-derived vesicles are not just transfer forms of several active molecules (such as regulatory peptides, coagulation factors, growth factors, active molecules, hormones that are embedded onto angiogenesis, tissue reparation, proliferation, and even prevention from ischemia/hypoxia), but are instead involved in direct myocardial and vascular damage due to regulation of epigenetic responses of the tissue. These responses are controlled by several factors, such as micro-RNAs, that are transferred inside extracellular vesicles from mother cells to acceptor cells and are transductors of epigenetic signals. Finally, it is not a uniform opinion whether different phenotypes of heart failure are the result of altered cardiac and vascular reparation due to certain epigenetic responses, which are yielded by co-morbidities, such as diabetes mellitus and obesity. The aim of the review is to summarize knowledge regarding the role of various types of extracellular endothelial cell-derived vesicles in the regulation of cardiac and vascular remodeling in heart failure.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| |
Collapse
|
17
|
Northrop EF, Milbauer LC, Rudser KD, Fox CK, Solovey AN, Kaizer AM, Hebbel RP, Kelly AS, Ryder JR. Reproducibility of endothelial microparticles in children and adolescents. Biomark Med 2020; 14:43-51. [PMID: 31729246 PMCID: PMC7202266 DOI: 10.2217/bmm-2019-0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Aim: We assessed reproducibility of endothelial microparticles (EMPs) enumeration among youth. Methods & results: Four microparticle (MP) indices - total MP per microliter platelet free plasma (PFP), total EMPs per microliter PFP, percent activated EMPs and percent lactadherin positive (LACT[+]) of total EMPs - were measured at two visits (baseline and 7 ± 3 days follow-up) to determine reproducibility overall and by obesity status. We examined CD31+ or CD144+ with CD41-EMP events of size 0.3-1.0 μm. No statistically significant differences were observed between visits for any of the four MP indices. The within-participant and between-participant coefficient of variation was acceptable (range: 1.13-2.37) with good intraclass-correlation coefficient for all indices except total MP per microliter (range: 0.10-1.00). Conclusion: Total EMPs per microliter PFP, percent-activated EMPs and percent LACT(+) of total EMPs are reproducible among youth.
Collapse
Affiliation(s)
- Elise F Northrop
- Division of Biostatistics, School of Public Health, Minneapolis, MN 55455, USA
| | - Liming C Milbauer
- Department of Biochemistry, University of Minnesota, St Paul, MN 55418, USA
| | - Kyle D Rudser
- Division of Biostatistics, School of Public Health, Minneapolis, MN 55455, USA
- Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Claudia K Fox
- Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Anna N Solovey
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Alexander M Kaizer
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO 80045, USA
| | - Robert P Hebbel
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Aaron S Kelly
- Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Justin R Ryder
- Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|