1
|
Bugeda A, Shi X, Castillo L, Marcos JF, Manzanares P, López-Moya JJ, Coca M. High yield production of the antifungal proteins PeAfpA and PdAfpB by vacuole targeting in a TMV-based expression vector. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40318202 DOI: 10.1111/pbi.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
Antifungal proteins (AFPs) derived from filamentous fungi show great potential against economically significant fungi that cause plant diseases and consequently threat food safety and security. This study focuses on the Penicillium expansum PeAfpA and Penicillium digitatum PdAfpB proteins and their activity against several phytopathogens. The AFPs were synthesized through a highly productive tobacco mosaic virus-based expression vector in the fast-growing model plant Nicotiana benthamiana, combining signalling sequences for apoplastic and vacuolar compartmentalization to increase yields. Adding a vacuolar signalling peptide from a Nicotiana sylvestris chitinase at the C-termini of the AFPs in combination with an apoplastic N-terminal signalling peptide from N. benthamiana osmotin significantly enhanced AFP yields without altering functionality. Results showed an improvement of ninefold for PeAfpA and 3,5-fold for PdAfpB compared to constructs with only the apoplastic N-terminal signalling. Transmission electron microscopy and immunogold labelling confirmed the localization of AFPs in both the apoplast and the vacuole, highlighting its compatibility with vacuolar environments. In vitro and in vivo assessments against key pathogenic fungi, including Magnaporthe oryzae, Botrytis cinerea and Fusarium proliferatum, revealed that the activities of easily purified PeAfpA- and PdAfpB-enriched plant extracts closely mirrored those of their purified fungal counterparts. This innovative approach represents a notable advance towards the application of AFPs as effective, safe and environmentally friendly 'green biofungicides' for safeguarding crop and postharvest produce and could also be applied to control other pathogenic fungi that threat human health.
Collapse
Affiliation(s)
- Adrià Bugeda
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jose F Marcos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - Paloma Manzanares
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Valencia, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Holzknecht J, Marx F. Navigating the fungal battlefield: cysteine-rich antifungal proteins and peptides from Eurotiales. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1451455. [PMID: 39323611 PMCID: PMC11423270 DOI: 10.3389/ffunb.2024.1451455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Fungi are ubiquitous in the environment and play a key role in the decomposition and recycling of nutrients. On the one hand, their special properties are a great asset for the agricultural and industrial sector, as they are used as source of nutrients, producers of enzymes, pigments, flavorings, and biocontrol agents, and in food processing, bio-remediation and plant growth promotion. On the other hand, they pose a serious challenge to our lives and the environment, as they are responsible for fungal infections in plants, animals and humans. Although host immunity opposes invading pathogens, certain factors favor the manifestation of fungal diseases. The prevalence of fungal infections is on the rise, and there is an alarming increase in the resistance of fungal pathogens to approved drugs. The limited number of antimycotics, the obstacles encountered in the development of new drugs due to the poor tolerability of antifungal agents in patients, the limited number of unique antifungal targets, and the low species specificity contribute to the gradual depletion of the antifungal pipeline and newly discovered antifungal drugs are rare. Promising candidates as next-generation therapeutics are antimicrobial proteins and peptides (AMPs) produced by numerous prokaryotic and eukaryotic organisms belonging to all kingdom classes. Importantly, filamentous fungi from the order Eurotiales have been shown to be a rich source of AMPs with specific antifungal activity. A growing number of published studies reflects the efforts made in the search for new antifungal proteins and peptides (AFPs), their efficacy, species specificity and applicability. In this review, we discuss important aspects related to fungi, their impact on our life and issues involved in treating fungal infections in plants, animals and humans. We specifically highlight the potential of AFPs from Eurotiales as promising alternative antifungal therapeutics. This article provides insight into the structural features, mode of action, and progress made toward their potential application in a clinical and agricultural setting. It also identifies the challenges that must be overcome in order to develop AFPs into therapeutics.
Collapse
Affiliation(s)
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Innsbruck Medical University,
Innsbruck, Austria
| |
Collapse
|
4
|
Muguerza MB, Gondo T, Ishigaki G, Shimamoto Y, Umami N, Nitthaisong P, Rahman MM, Akashi R. Tissue Culture and Somatic Embryogenesis in Warm-Season Grasses—Current Status and Its Applications: A Review. PLANTS 2022; 11:plants11091263. [PMID: 35567264 PMCID: PMC9101205 DOI: 10.3390/plants11091263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
Warm-season grasses are C4 plants and have a high capacity for biomass productivity. These grasses are utilized in many agricultural production systems with their greatest value as feeds for livestock, bioethanol, and turf. However, many important warm-season perennial grasses multiply either by vegetative propagation or form their seeds by an asexual mode of reproduction called apomixis. Therefore, the improvement of these grasses by conventional breeding is difficult and is dependent on the availability of natural genetic variation and its manipulation through breeding and selection. Recent studies have indicated that plant tissue culture system through somatic embryogenesis complements and could further develop conventional breeding programs by micropropagation, somaclonal variation, somatic hybridization, genetic transformation, and genome editing. This review summarizes the tissue culture and somatic embryogenesis in warm-season grasses and focus on current status and above applications including the author’s progress.
Collapse
Affiliation(s)
- Melody Ballitoc Muguerza
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; (M.B.M.); (G.I.); (Y.S.); (R.A.)
| | - Takahiro Gondo
- Frontier Science Research Center, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
- Correspondence:
| | - Genki Ishigaki
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; (M.B.M.); (G.I.); (Y.S.); (R.A.)
| | - Yasuyo Shimamoto
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; (M.B.M.); (G.I.); (Y.S.); (R.A.)
| | - Nafiatul Umami
- Faculty of Animal Science, Universitas Gadjah Mada, Jl Fauna 3, Yogyakarta 55281, Indonesia;
| | - Pattama Nitthaisong
- Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Mohammad Mijanur Rahman
- Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia;
| | - Ryo Akashi
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; (M.B.M.); (G.I.); (Y.S.); (R.A.)
| |
Collapse
|
5
|
Medina-Lozano I, Díaz A. Applications of Genomic Tools in Plant Breeding: Crop Biofortification. Int J Mol Sci 2022; 23:3086. [PMID: 35328507 PMCID: PMC8950180 DOI: 10.3390/ijms23063086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Crop breeding has mainly been focused on increasing productivity, either directly or by decreasing the losses caused by biotic and abiotic stresses (that is, incorporating resistance to diseases and enhancing tolerance to adverse conditions, respectively). Quite the opposite, little attention has been paid to improve the nutritional value of crops. It has not been until recently that crop biofortification has become an objective within breeding programs, through either conventional methods or genetic engineering. There are many steps along this long path, from the initial evaluation of germplasm for the content of nutrients and health-promoting compounds to the development of biofortified varieties, with the available and future genomic tools assisting scientists and breeders in reaching their objectives as well as speeding up the process. This review offers a compendium of the genomic technologies used to explore and create biodiversity, to associate the traits of interest to the genome, and to transfer the genomic regions responsible for the desirable characteristics into potential new varieties. Finally, a glimpse of future perspectives and challenges in this emerging area is offered by taking the present scenario and the slow progress of the regulatory framework as the starting point.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Aurora Díaz
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón—IA2, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
6
|
Olive ( Olea europaea L.) Genetic Transformation: Current Status and Future Prospects. Genes (Basel) 2021; 12:genes12030386. [PMID: 33803172 PMCID: PMC7998262 DOI: 10.3390/genes12030386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Olive (Olea europaea L.) is the most characteristic and important oil crop of the Mediterranean region. Traditional olive cultivation is based on few tens cultivars of ancient origin. To improve this crop, novel selections with higher tolerance to biotic and abiotic stress, adaptable to high-density planting systems and resilient to climate change are needed; however, breeding programs are hindered by the long juvenile period of this species and few improved genotypes have been released so far. Genetic transformation could be of great value, in the near future, to develop new varieties or rootstocks in a shorter time; in addition, it has currently become an essential tool for functional genomic studies. The recalcitrance of olive tissues to their in vitro manipulation has been the main bottleneck in the development of genetic transformation procedures in this species; however, some important traits such as fungal resistance, flowering or lipid composition have successfully been manipulated through the genetic transformation of somatic embryos of juvenile or adult origin, providing a proof of the potential role that this technology could have in olive improvement. However, the optimization of these protocols for explants of adult origin is a prerequisite to obtain useful materials for the olive industry. In this review, initially, factors affecting plant regeneration via somatic embryogenesis are discussed. Subsequently, the different transformation approaches explored in olive are reviewed. Finally, transgenic experiments with genes of interest undertaken to manipulate selected traits are discussed.
Collapse
|
7
|
Tóth L, Boros É, Poór P, Ördög A, Kele Z, Váradi G, Holzknecht J, Bratschun‐Khan D, Nagy I, Tóth GK, Rákhely G, Marx F, Galgóczy L. The potential use of the Penicillium chrysogenum antifungal protein PAF, the designed variant PAF opt and its γ-core peptide Pγ opt in plant protection. Microb Biotechnol 2020; 13:1403-1414. [PMID: 32207883 PMCID: PMC7415367 DOI: 10.1111/1751-7915.13559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
The prevention of enormous crop losses caused by pesticide-resistant fungi is a serious challenge in agriculture. Application of alternative fungicides, such as antifungal proteins and peptides, provides a promising basis to overcome this problem; however, their direct use in fields suffers limitations, such as high cost of production, low stability, narrow antifungal spectrum and toxicity on plant or mammalian cells. Recently, we demonstrated that a Penicillium chrysogenum-based expression system provides a feasible tool for economic production of P. chrysogenum antifungal protein (PAF) and a rational designed variant (PAFopt ), in which the evolutionary conserved γ-core motif was modified to increase antifungal activity. In the present study, we report for the first time that γ-core modulation influences the antifungal spectrum and efficacy of PAF against important plant pathogenic ascomycetes, and the synthetic γ-core peptide Pγopt , a derivative of PAFopt , is antifungal active against these pathogens in vitro. Finally, we proved the protective potential of PAF against Botrytis cinerea infection in tomato plant leaves. The lack of any toxic effects on mammalian cells and plant seedlings, as well as the high tolerance to harsh environmental conditions and proteolytic degradation further strengthen our concept for applicability of these proteins and peptide in agriculture.
Collapse
Affiliation(s)
- Liliána Tóth
- Institute of Plant BiologyBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
| | - Éva Boros
- Institute of BiochemistryBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
| | - Péter Poór
- Department of Plant BiologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H‐6726SzegedHungary
| | - Attila Ördög
- Department of Plant BiologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H‐6726SzegedHungary
| | - Zoltán Kele
- Department of Medical ChemistryFaculty of MedicineUniversity of SzegedDóm tér 8H‐6720SzegedHungary
| | - Györgyi Váradi
- Department of Medical ChemistryFaculty of MedicineUniversity of SzegedDóm tér 8H‐6720SzegedHungary
| | - Jeanett Holzknecht
- Institute of Molecular BiologyBiocenterMedical University of InnsbruckInnrain 80‐82A‐6020InnsbruckAustria
| | - Doris Bratschun‐Khan
- Institute of Molecular BiologyBiocenterMedical University of InnsbruckInnrain 80‐82A‐6020InnsbruckAustria
| | - István Nagy
- Institute of BiochemistryBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
| | - Gábor K. Tóth
- Department of Medical ChemistryFaculty of MedicineUniversity of SzegedDóm tér 8H‐6720SzegedHungary
- MTA‐SZTE Biomimetic Systems Research GroupUniversity of SzegedDóm tér 8H‐6720SzegedHungary
| | - Gábor Rákhely
- Department of BiotechnologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H‐6726SzegedHungary
- Institute of BiophysicsBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
| | - Florentine Marx
- Institute of Molecular BiologyBiocenterMedical University of InnsbruckInnrain 80‐82A‐6020InnsbruckAustria
| | - László Galgóczy
- Institute of Plant BiologyBiological Research CentreTemesvári krt. 62H‐6726SzegedHungary
- Department of BiotechnologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H‐6726SzegedHungary
| |
Collapse
|
8
|
Shi X, Cordero T, Garrigues S, Marcos JF, Daròs J, Coca M. Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1069-1080. [PMID: 30521145 PMCID: PMC6523586 DOI: 10.1111/pbi.13038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop new antifungal therapies in medicine and agriculture. They are small highly stable proteins with specific potent activity against fungal pathogens. However, their exploitation requires efficient, sustainable and safe production systems. Here, we report the development of an easy-to-use, open access viral vector based on Tobacco mosaic virus (TMV). This new system allows the fast and efficient assembly of the open reading frames of interest in small intermediate entry plasmids using the Gibson reaction. The manipulated TMV fragments are then transferred to the infectious clone by a second Gibson assembly reaction. Recombinant proteins are produced by agroinoculating plant leaves with the resulting infectious clones. Using this simple viral vector, we have efficiently produced two different AFPs in Nicotiana benthamiana leaves, namely the Aspergillus giganteus AFP and the Penicillium digitatum AfpB. We obtained high protein yields by targeting these bioactive small proteins to the apoplastic space of plant cells. However, when AFPs were targeted to intracellular compartments, we observed toxic effects in the host plants and undetectable levels of protein. We also demonstrate that this production system renders AFPs fully active against target pathogens, and that crude plant extracellular fluids containing the AfpB can protect tomato plants from Botrytis cinerea infection, thus supporting the idea that plants are suitable biofactories to bring these antifungal proteins to the market.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CRAGCSIC‐IRTA‐UAB‐UB)Cerdanyola del VallèsSpain
| | - Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (IBMCPCSIC‐Universitat Politècnica de València)ValenciaSpain
| | - Sandra Garrigues
- Instituto de Agroquímica y Tecnología de Alimentos (IATA, CSIC)PaternaSpain
| | - Jose F. Marcos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA, CSIC)PaternaSpain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCPCSIC‐Universitat Politècnica de València)ValenciaSpain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAGCSIC‐IRTA‐UAB‐UB)Cerdanyola del VallèsSpain
| |
Collapse
|
9
|
Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. Int J Food Microbiol 2018; 283:45-51. [DOI: 10.1016/j.ijfoodmicro.2018.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023]
|
10
|
Narvaez I, Khayreddine T, Pliego C, Cerezo S, Jiménez-Díaz RM, Trapero-Casas JL, López-Herrera C, Arjona-Girona I, Martín C, Mercado JA, Pliego-Alfaro F. Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive. FRONTIERS IN PLANT SCIENCE 2018; 9:680. [PMID: 29875785 PMCID: PMC5974197 DOI: 10.3389/fpls.2018.00680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 05/09/2023]
Abstract
The antifungal protein (AFP) produced by Aspergillus giganteus, encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix, was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. 'Picual' were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae.
Collapse
Affiliation(s)
- Isabel Narvaez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora", Departamento de Biología Vegetal, Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Titouh Khayreddine
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora", Departamento de Biología Vegetal, Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | | | - Sergio Cerezo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora", Departamento de Biología Vegetal, Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Rafael M. Jiménez-Díaz
- Departamento de Agronomía, College of Agriculture and Forestry, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, Edificio C-4 Celestino Mutis, Córdoba, Spain
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - José L. Trapero-Casas
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - Carlos López-Herrera
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - Isabel Arjona-Girona
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - Carmen Martín
- Departamento de Biotecnología-Biología Vegetal, ETS Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - José A. Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora", Departamento de Biología Vegetal, Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Fernando Pliego-Alfaro
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora", Departamento de Biología Vegetal, Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
11
|
Guleria P, Kumar V, Guleria S. Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation. Mol Biotechnol 2017; 59:499-517. [PMID: 28828714 DOI: 10.1007/s12033-017-0033-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.
Collapse
Affiliation(s)
- Praveen Guleria
- Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India.
| | - Vineet Kumar
- Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shiwani Guleria
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
12
|
Shivhare R, Lata C. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2017; 7:2069. [PMID: 28167949 PMCID: PMC5253385 DOI: 10.3389/fpls.2016.02069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/27/2016] [Indexed: 05/05/2023]
Abstract
Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional genes and assist in crop improvement programs through molecular breeding approaches. This review thus summarizes the exploration of pearl millet genetic and genomic resources for improving abiotic and biotic stress resistance and development of cultivars superior in stress tolerance.
Collapse
Affiliation(s)
- Radha Shivhare
- National Botanical Research Institute (CSIR)Lucknow, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Charu Lata
- National Botanical Research Institute (CSIR)Lucknow, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
13
|
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger. PLoS One 2016; 11:e0165755. [PMID: 27835655 PMCID: PMC5106034 DOI: 10.1371/journal.pone.0165755] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.
Collapse
|
14
|
Tu CY, Chen YP, Yu MC, Hwang IE, Wu DY, Liaw LL. Characterization and expression of the antifungal protein from Monascus pilosus and its distribution among various Monascus species. J Biosci Bioeng 2016; 122:27-33. [DOI: 10.1016/j.jbiosc.2015.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/19/2015] [Accepted: 12/13/2015] [Indexed: 11/25/2022]
|
15
|
Dracatos PM, van der Weerden NL, Carroll KT, Johnson ED, Plummer KM, Anderson MA. Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. MOLECULAR PLANT PATHOLOGY 2014; 15:67-79. [PMID: 24015961 PMCID: PMC6638682 DOI: 10.1111/mpp.12066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Defensins are a large family of small, cysteine-rich, basic proteins, produced by most plants and plant tissues. They have a primary function in defence against fungal disease, although other functions have been described. This study reports the isolation and characterization of a class I secreted defensin (NaD2) from the flowers of Nicotiana alata, and compares its antifungal activity with the class II defensin (NaD1) from N. alata flowers, which is stored in the vacuole. NaD2, like all other class I defensins, lacks the C-terminal pro-peptide (CTPP) characteristic of class II defensins. NaD2 is most closely related to Nt-thionin from N. tabacum (96% identical) and shares 81% identity with MtDef4 from alfalfa. The concentration required to inhibit in vitro fungal growth by 50% (IC50 ) was assessed for both NaD1 and NaD2 for the biotrophic basidiomycete fungi Puccinia coronata f. sp. avenae (Pca) and P. sorghi (Ps), the necrotrophic pathogenic ascomycetes Fusarium oxysporum f. sp. vasinfectum (Fov), F. graminearum (Fgr), Verticillium dahliae (Vd) and Thielaviopsis basicola (Tb), and the saprobe Aspergillus nidulans. NaD1 was a more potent antifungal molecule than NaD2 against both the biotrophic and necrotrophic fungal pathogens tested. NaD2 was 5-10 times less effective at killing necrotrophs, but only two-fold less effective on Puccinia species. A new procedure for testing antifungal proteins is described in this study which is applicable to pathogens with spores that are not amenable to liquid culture, such as rust pathogens. Rusts are the most damaging fungal pathogens of many agronomically important crop species (wheat, barley, oats and soybean). NaD1 and NaD2 inhibited urediniospore germination, germ tube growth and germ tube differentiation (appressoria induction) of both Puccinia species tested. NaD1 and NaD2 were fungicidal on Puccinia species and produced stunted germ tubes with a granular cytoplasm. When NaD1 and NaD2 were sprayed onto susceptible oat plants prior to the plants being inoculated with crown rust, they reduced the number of pustules per leaf area, as well as the amount of chlorosis induced by infection. Similar to observations in vitro, NaD1 was more effective as an antifungal control agent than NaD2. Further investigation revealed that both NaD1 and NaD2 permeabilized the plasma membranes of Puccinia spp. This study provides evidence that both secreted (NaD2) and nonsecreted (NaD1) defensins may be useful for broad-spectrum resistance to pathogens.
Collapse
Affiliation(s)
- Peter M Dracatos
- Department of Botany, La Trobe University, Melbourne, Vic., 3086, Australia; La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic., 3086, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Orłowska E, Llorente B, Cvitanich C. Plant integrity: an important factor in plant-pathogen interactions. PLANT SIGNALING & BEHAVIOR 2013; 8:e22513. [PMID: 23221764 PMCID: PMC3745558 DOI: 10.4161/psb.22513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
The effect of plant integrity and of aboveground-belowground defense signaling on plant resistance against pathogens and herbivores is emerging as a subject of scientific research. There is increasing evidence that plant defense responses to pathogen infection differ between whole intact plants and detached leaves. Studies have revealed the importance of aboveground-belowground defense signaling for plant defenses against herbivores, while our studies have uncovered that the roots as well as the plant integrity are important for the resistance of the potato cultivar Sarpo Mira against the hemibiotrophic oomycete pathogen Phytophthora infestans. Furthermore, in the Sarpo Mira-P. infestans interactions, the plant's meristems, the stalks or both, seem to be associated with the development of the hypersensitive response and both the plant's roots and shoots contain antimicrobial compounds when the aerial parts of the plants are infected. Here, we present a short overview of the evidence indicating the importance of plant integrity on plant defense responses.
Collapse
Affiliation(s)
- Elżbieta Orłowska
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C, Denmark
| | - Briardo Llorente
- Department of Molecular Genetics; Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB; Barcelona, Spain
| | - Cristina Cvitanich
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C, Denmark
| |
Collapse
|
17
|
Ceasar SA, Ignacimuthu S. Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 2012; 34:995-1002. [PMID: 22350290 DOI: 10.1007/s10529-012-0871-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/02/2012] [Indexed: 11/29/2022]
Abstract
Fungal diseases damage crop plants and affect agricultural production. Transgenic plants have been produced by inserting antifungal genes to confer resistance against fungal pathogens. Genes of fungal cell wall-degrading enzymes, such as chitinase and glucanase, are frequently used to produce fungal-resistant transgenic crop plants. In this review, we summarize the details of various transformation studies to develop fungal resistance in crop plants.
Collapse
Affiliation(s)
- S Antony Ceasar
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, India
| | | |
Collapse
|
18
|
Kovács L, Virágh M, Takó M, Papp T, Vágvölgyi C, Galgóczy L. Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 2011; 32:1724-1731. [PMID: 21741420 DOI: 10.1016/j.peptides.2011.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 11/16/2022]
Abstract
A novel 6.6 kDa antifungal peptide (NFAP) from the culture supernatant of the mold, Neosartorya fischeri (anamorf: Aspergillus fischerianus), and its encoding gene were isolated in this study. NFAP is a small, basic and cysteine-rich protein consisting of 57 amino acid residues. It shows 37.9-50% homology to similar proteins described in literature from Aspergillus clavatus, Aspergillus giganteus, Aspergillus niger, and Penicillium chrysogenum. The in silico presumed tertiary structure of NFAP, e.g. the presence of five antiparallel β-sheet connected with filaments, and stabilized by three disulfide bridges, is very similar to those of the defensin-like molecules. NFAP exhibited growth inhibitory action against filamentous fungi in a dose-dependent manner, and maintained high antifungal activity within broad pH and temperature ranges. Furthermore, it exhibited relevant resistance to proteolysis. All these characteristics make NFAP a promising candidate for further in vitro and in vivo investigations aiming at the development of new antifungal compounds.
Collapse
Affiliation(s)
- Laura Kovács
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
19
|
Hegedus N, Leiter E, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu JH, Pócsi I. The small molecular mass antifungal protein of Penicillium chrysogenum--a mechanism of action oriented review. J Basic Microbiol 2011; 51:561-71. [PMID: 21780144 DOI: 10.1002/jobm.201100041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/02/2011] [Indexed: 12/16/2022]
Abstract
The β-lactam producing filamentous fungus Penicillium chrysogenum secretes a 6.25 kDa small molecular mass antifungal protein, PAF, which has a highly stable, compact 3D structure and is effective against a wide spectrum of plant and zoo pathogenic fungi. Its precise physiological functions and mode of action need to be elucidated before considering possible biomedical, agricultural or food technological applications. According to some more recent experimental data, PAF plays an important role in the fine-tuning of conidiogenesis in Penicillium chrysogenum. PAF triggers apoptotic cell death in sensitive fungi, and cell death signaling may be transmitted through two-component systems, heterotrimeric G protein coupled signal transduction and regulatory networks as well as via alteration of the Ca(2+) -homeostasis of the cells. Possible biotechnological applications of PAF are also outlined in the review.
Collapse
Affiliation(s)
- Nikoletta Hegedus
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, Centre of Arts, Humanities and Sciences, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barakat H, Spielvogel A, Hassan M, El-Desouky A, El-Mansy H, Rath F, Meyer V, Stahl U. The antifungal protein AFP from Aspergillus giganteus prevents secondary growth of different Fusarium species on barley. Appl Microbiol Biotechnol 2010; 87:617-24. [PMID: 20217075 DOI: 10.1007/s00253-010-2508-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
Secondary growth is a common post-harvest problem when pre-infected crops are attacked by filamentous fungi during storage or processing. Several antifungal approaches are thus pursued based on chemical, physical, or bio-control treatments; however, many of these methods are inefficient, affect product quality, or cause severe side effects on the environment. A protein that can potentially overcome these limitations is the antifungal protein AFP, an abundantly secreted peptide of the filamentous fungus Aspergillus giganteus. This protein specifically and at low concentrations disturbs the integrity of fungal cell walls and plasma membranes but does not interfere with the viability of other pro- and eukaryotic systems. We thus studied in this work the applicability of AFP to efficiently prevent secondary growth of filamentous fungi on food stuff and chose, as a case study, the malting process where naturally infested raw barley is often to be used as starting material. Malting was performed under lab scale conditions as well as in a pilot plant, and AFP was applied at different steps during the process. AFP appeared to be very efficient against the main fungal contaminants, mainly belonging to the genus Fusarium. Fungal growth was completely blocked after the addition of AFP, a result that was not observed for traditional disinfectants such as ozone, hydrogen peroxide, and chlorine dioxide. We furthermore detected reduced levels of the mycotoxin deoxynivalenol after AFP treatment, further supporting the fungicidal activity of the protein. As AFP treatments did not compromise any properties and qualities of the final products malt and wort, we consider the protein as an excellent biological alternative to combat secondary growth of filamentous fungi on food stuff.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Microbiology and Genetics, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expr Purif 2009; 70:206-10. [PMID: 19896535 DOI: 10.1016/j.pep.2009.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022]
Abstract
The mould Aspergillus giganteus produces a basic, low molecular weight protein (AFP) showing in vitro and in vivo antifungal properties against important plant pathogens. AFP is secreted as an inactive precursor containing an amino-terminal extension of six amino acids (lf-AFP) which is later removed to produce the active protein. The molecular basis to explain this behavior and the features that determine the fungal specificity of this protein are not completely solved. In this work, the mature AFP (AFP *) and a version of AFP with an extended amino-terminal (proAFP) have been cloned and produced in the yeast Pichia pastoris. The two proteins have been purified to homogeneity and characterized from structural and functional points of view. Recombinant AFP * produced is practically indistinguishable from the natural fungal protein in terms of its spectroscopic and antifungal properties while proAFP is mostly inactive under identical assay conditions. The availability of an active AFP protein produced in P. pastoris will permit investigation of the mode of action and targeting specificity of AFP by using site-directed mutagenesis approaches.
Collapse
|
22
|
Barna B, Leiter E, Hegedus N, Bíró T, Pócsi I. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. J Basic Microbiol 2009; 48:516-20. [PMID: 18798177 DOI: 10.1002/jobm.200800197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The small molecular mass antifungal protein of Penicillium chrysogenum (PAF) inhibited the growths of two obligate biotrophic fungal pathogens, Blumeria graminis f. sp. hordei and Puccinia recondita f.sp. tritici and, hence, mitigated the symptoms of barley powdery mildew and wheat leaf rust infections, respectively. PAF also affected adversely the germination of B. graminis conidia and P. recondita uredospores causing degenerative branching of germ tubes. Since powdery mildews and rusts cause serious economic losses the potential applicability of PAF to control these plant diseases is promising.
Collapse
Affiliation(s)
- Balázs Barna
- Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
23
|
Genetic engineering of millets: current status and future prospects. Biotechnol Lett 2009; 31:779-88. [PMID: 19205896 DOI: 10.1007/s10529-009-9933-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
This review summarizes progress on the genetic transformation of millets and discusses the future prospects for the development of improved varieties. Only a limited number of studies have been carried out on genetic improvement of millets despite their nutritional importance in supplying minerals, calories and protein. Most genetic transformation studies of millets have been restricted to pearl millet and bahiagrass and most studies have been limited to the assessment of reporter and marker gene expression. Biolistic-mediated gene delivery has been frequently used for the transformation of millets but Agrobacterium-mediated transformation is still lagging. Improved transformation of millets, allied to relevant gene targets which may offer, for example, improved nutritional quality, resistance to abiotic and biotic stresses, and resistance to fungal infection will play important roles in millet improvement.
Collapse
|
24
|
Meyer V. A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 2007; 78:17-28. [PMID: 18066545 DOI: 10.1007/s00253-007-1291-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/28/2022]
Abstract
As fungal infections are becoming more prevalent in the medical or agricultural fields, novel and more efficient antifungal agents are badly needed. Within the scope of developing new strategies for the management of fungal infections, antifungal compounds that target essential fungal cell wall components are highly preferable. Ideally, newly developed antimycotics should also combine major aspects such as sustainability, high efficacy, limited toxicity and low costs of production. A naturally derived molecule that possesses all the desired characteristics is the antifungal protein (AFP) secreted by the filamentous ascomycete Aspergillus giganteus. AFP is a small, basic and cysteine-rich peptide that exerts extremely potent antifungal activity against human- and plant-pathogenic fungi without affecting the viability of bacteria, yeast, plant and mammalian cells. This review summarises the current knowledge of the structure, mode of action and expression of AFP, and highlights similarities and differences concerning these issues between AFP and its related proteins from other Ascomycetes. Furthermore, the potential use of AFP in the combat against fungal contaminations and infections will be discussed.
Collapse
Affiliation(s)
- Vera Meyer
- TU Berlin, Institut für Biotechnologie, Fachgebiet Mikrobiologie und Genetik, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
25
|
Liu G, Kennedy R, Greenshields DL, Peng G, Forseille L, Selvaraj G, Wei Y. Detached and attached Arabidopsis leaf assays reveal distinctive defense responses against hemibiotrophic Colletotrichum spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1308-1319. [PMID: 17918632 DOI: 10.1094/mpmi-20-10-1308] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The agriculturally important genus Colletotrichum is an emerging model pathogen for studying defense in Arabidopsis. During the process of screening for novel pathogenic Colletotrichum isolates on Arabidopsis, we found significant differences in defense responses between detached and attached leaf assays. A near-adapted isolate Colletotrichum linicola A1 could launch a typical infection only on detached, but not attached, Arabidopsis leaves. Remarkably, resistance gene-like locus RCH1-mediated resistance in intact plants also was compromised in detached leaves during the attacks with the virulent reference isolate C. higginsianum. The differences in symptom development between the detached leaf and intact plant assays were further confirmed on defense-defective mutants following inoculation with C. higginsianum, where the greatest inconsistency occurred on ethylene-insensitive mutants. In intact Arabidopsis plants, both the salicylic acid- and ethylene-dependent pathways were required for resistance to C. higginsianum and were associated with induced expression of pathogenesis-related genes PR1 and PDF1.2. In contrast, disease symptom development in detached leaves appeared to be uncoupled from these defense pathways and more closely associated with senescence: an observation substantiated by coordinated gene expression analysis and disease symptom development, and chemically and genetically mimicking senescence.
Collapse
Affiliation(s)
- Guosheng Liu
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
|