1
|
Martins L, Amorim BR, Salmon CR, Leme AFP, Kantovitz KR, Nociti FH. Novel LRAP-binding partner revealing the plasminogen activation system as a regulator of cementoblast differentiation and mineral nodule formation in vitro. J Cell Physiol 2019; 235:4545-4558. [PMID: 31621902 DOI: 10.1002/jcp.29331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
Abstract
Amelogenin isoforms, including full-length amelogenin (AMEL) and leucine-rich amelogenin peptide (LRAP), are major components of the enamel matrix, and are considered as signaling molecules in epithelial-mesenchymal interactions regulating tooth development and periodontal regeneration. Nevertheless, the molecular mechanisms involved are still poorly understood. The aim of the present study was to identify novel binding partners for amelogenin isoforms in the cementoblast (OCCM-30), using an affinity purification assay (GST pull-down) followed by mass spectrometry and immunoblotting. Protein-protein interaction analysis for AMEL and LRAP evidenced the plasminogen activation system (PAS) as a potential player regulating OCCM-30 response to amelogenin isoforms. For functional assays, PAS was either activated (plasmin) or inhibited (ε-aminocaproic acid [aminocaproic]) in OCCM-30 cells and the cell morphology, mineral nodule formation, and gene expression were assessed. PAS inhibition (EACA 100 mM) dramatically decreased mineral nodule formation and expression of OCCM-30 differentiation markers, including osteocalcin (Bglap), bone sialoprotein (Ibsp), osteopontin (Spp1), tissue-nonspecific alkaline phosphatase (Alpl) and collagen type I (Col1a1), and had no effect on runt-related transcription factor 2 (Runx2) and Osterix (Osx) mRNA levels. PAS activation (plasmin 5 µg/µl) significantly increased Col1a1 and decreased Bglap mRNA levels (p < .05). Together, our findings shed new light on the potential role of plasminogen signaling pathway in the control of the amelogenin isoform-mediated response in cementoblasts and provide new insights into the development of targeted therapies.
Collapse
Affiliation(s)
- Luciane Martins
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Bruna Rabelo Amorim
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Cristiane Ribeiro Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.,UNIP, Dental Research Division, School of Dentistry, Paulista University, Sao Paulo, SP, Brazil
| | - Adriana Franco Paes Leme
- LNBio, Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory, Campinas, SP, Brazil
| | - Kamila Rosamilia Kantovitz
- Department of Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.,Department of Dental Materials, São Leopoldo Mandic School of Dentistry and Research Center, São Leopoldo Mandic College, Campinas, SP, Brazil
| | - Francisco Humberto Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
2
|
Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge. PLoS One 2017; 12:e0188658. [PMID: 29190757 PMCID: PMC5708666 DOI: 10.1371/journal.pone.0188658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
We investigated whether long-lived weight-reduced αMUPA mice differ from their wild types in postnatal body composition and leptin level, and whether these differences are affected by maternal-borne factors. Newborn αMUPA and wild type mice had similar body weight and composition up to the third postnatal week, after which αMUPA mice maintained lower body weight due to lower fat-free mass. Both strains showed a surge in leptin levels at the second postnatal week, initiating earlier in αMUPA mice, rising higher and lasting longer than in the wild types, mainly in females. Leptin level in dams' serum and breast milk, and in their pup's stomach content were also higher in αMUPA than in the WT during the surge peak. Leptin surge preceded the strain divergence in body weight, and was associated with an age-dependent decrease in the leptin:fat mass ratio-suggesting that postnatal sex and strain differences in leptin ontogeny are strongly influenced by processes independent of fat mass, such as production and secretion, and possibly outside fat tissues. Dam removal elevated corticosterone level in female pups from both strains similarly, yet mitigated the leptin surge only in αMUPA-eliminating the strain differences in leptin levels. Overall, our results indicate that αMUPA's postnatal leptin surge is more pronounced than in the wild type, more sensitive to maternal deprivation, less related to pup's total adiposity, and is associated with a lower post-weaning fat-free mass. These strain-related postnatal differences may be related to αMUPA's higher milk-borne leptin levels. Thus, our results support the use of αMUPA mice in future studies aimed to explore the relationship between maternal (i.e. milk-borne) factors, postnatal leptin levels, and post-weaning body composition and energy homeostasis.
Collapse
|
3
|
Wehner C, Janjić K, Agis H. Relevance of the plasminogen system in physiology, pathology, and regeneration of oral tissues - From the perspective of dental specialties. Arch Oral Biol 2016; 74:136-145. [PMID: 27743595 DOI: 10.1016/j.archoralbio.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Abstract
Plasmin is a proteolytic enzyme that is crucial in fibrinolysis. In oral tissues, the plasminogen system plays an essential role in physiological and pathological processes, which in addition to fibrinolysis include degradation of extracellular matrix, inflammation, immune response, angiogenesis, tissue remodeling, cell migration, and wound healing. Oral tissues reveal a change in the plasminogen system during pathological processes such as periodontitis, peri-implantitis, or pulpitis, as well as in response to mechanical load. The plasminogen system is also a key element in tissue regeneration. The number of studies investigating the plasminogen system in dentistry have grown continuously in recent years, highlighting its increasing relevance in dental medicine. In this review, we present the diverse functions of the plasminogen system in physiology and its importance for dental specialists in pathology and regeneration. We thus provide an overview of the current knowledge on the role of the plasminogen system in the different fields of dentistry, including endodontics, orthodontics, periodontics, and oral surgery.
Collapse
Affiliation(s)
- Christian Wehner
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
4
|
Lee SH, Gupta MK, Ho YT, Kim T, Lee HT. Transgenic chickens expressing human urokinase-type plasminogen activator. Poult Sci 2013; 92:2396-2403. [DOI: 10.3382/ps.2013-03223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
|
5
|
Immunocytochemical and biochemical detection of the urokinase-type plasminogen activator receptor (uPAR) in the rat tooth germ and in lipid rafts of PMA-stimulated dental epithelial cells. Histochem Cell Biol 2013; 140:649-58. [DOI: 10.1007/s00418-013-1109-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2013] [Indexed: 11/25/2022]
|
6
|
Chapnik N, Solomon G, Genzer Y, Miskin R, Gertler A, Froy O. A superactive leptin antagonist alters metabolism and locomotion in high-leptin mice. J Endocrinol 2013; 217:283-90. [PMID: 23482705 DOI: 10.1530/joe-13-0033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transgenic alpha murine urokinase-type plasminogen activator (αMUPA) mice are resistant to obesity and their locomotor activity is altered. As these mice have high leptin levels, our objective was to test whether leptin is responsible for these characteristics. αMUPA, their genetic background control (FVB/N), and C57BL mice were injected s.c. every other day with 20 mg/kg pegylated superactive mouse leptin antagonist (PEG-SMLA) for 6 weeks. We tested the effect of PEG-SMLA on body weight, locomotion, and bone health. The antagonist led to a rapid increase in body weight and subsequent insulin resistance in all treated mice. Food intake of PEG-SMLA-injected animals increased during the initial period of the experiment but then declined to a similar level to that of the control animals. Interestingly, αMUPA mice were found to have reduced bone volume (BV) than FVB/N mice, although PEG-SMLA increased bone mass in both strains. In addition, PEG-SMLA led to disrupted locomotor activity and increased corticosterone levels in C57BL but decreased levels in αMUPA or FVB/N mice. These results suggest that leptin is responsible for the lean phenotype and reduced BV in αMUPA mice; leptin affects corticosterone levels in mice in a strain-specific manner; and leptin alters locomotor activity, a behavior determined by the central circadian clock.
Collapse
Affiliation(s)
- Nava Chapnik
- Robert H Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
7
|
Muto T, Miyoshi K, Horiguchi T, Noma T. Dissection of morphological and metabolic differentiation of ameloblasts via ectopic SP6 expression. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 59:59-68. [PMID: 22449994 DOI: 10.2152/jmi.59.59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tooth enamel is the hardest organ in the body. In rodent incisor, the enamel is exclusively produced by ameloblasts with yellowish-brown pigmentation, indicating normal enamel formation. However, the molecular mechanisms of ameloblast differentiation and amelogenesis are not fully understood. Specificity protein (Sp) 6 has been reported as one of the critical factors for tooth development. To explore SP6 function, we generated Sp6 transgenic (Tg) rats. Unexpectedly, the enamel surfaces of the incisors in Tg rats were discolored, even though enamel formation and serum iron concentrations were normal. Histological analysis of incisors from 6-week-old Tg rats demonstrated that the ameloblast layer at the pigmentation stage was elongated up to the gingival margin with ectopic SP6 expression in longitudinal incisor sections. In contrast, the incisors from 10-week-old Tg rats revealed that the pigmented ameloblasts were morphologically changed to those of the reduced stage, concomitant with the sporadic disappearance of ectopic SP6 expression. Here we report that morphological differentiation and metabolism of the iron-containing pigment in ameloblasts are independently regulated during amelogenesis by means of ectopic SP6 expression.
Collapse
Affiliation(s)
- Taro Muto
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | |
Collapse
|
8
|
Froy O, Miskin R. Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging (Albany NY) 2010; 2:7-27. [PMID: 20228939 PMCID: PMC2837202 DOI: 10.18632/aging.100116] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 01/09/2010] [Indexed: 01/19/2023]
Abstract
Increased longevity and improved health can be achieved in mammals by two feeding regimens, caloric restriction (CR), which limits the amount of daily calorie intake, and intermittent fasting (IF), which allows the food to be available ad libitum every other day. The precise mechanisms mediating these beneficial effects are still unresolved. Resetting the circadian clock is another intervention that can lead to increased life span and well being, while clock disruption is associated with aging and morbidity. Currently, a large body of evidence links circadian rhythms with metabolism and feeding regimens. In particular, CR, and possibly also IF, can entrain the master clock located in the suprachiasmatic nuclei (SCN) of the brain hypothalamus. These findings raise the hypothesis that the beneficial effects exerted by these feeding regimens could be mediated, at least in part, through resetting of the circadian clock, thus leading to synchrony in metabolism and physiology. This hypothesis is reinforced by a transgenic mouse model showing spontaneously reduced eating alongside robust circadian rhythms and increased life span. This review will summarize recent findings concerning the relationships between feeding regimens, circadian rhythms, and metabolism with implications for ageing attenuation and life span extension.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
9
|
Davaadorj P, Tokuyama R, Ide S, Tadokoro S, Kudoh K, Satomura K. Possible involvement of maspin in tooth development. Histochem Cell Biol 2010; 134:603-14. [PMID: 21069375 DOI: 10.1007/s00418-010-0756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Maspin is a 42 kDa serine protease inhibitor that possesses tumor suppressive and anti-angiogenic activities. Despite of a huge amount of data concerning the expression pattern of maspin in various tissues and its relevance to the biological properties of a variety of human cancer cells, little is known on the maspin expression in skeletal and tooth tissues. Recently, we reported that maspin may play an important role in extracellular matrix formation in bone by enhancing the accumulation of latent TGF-β in the extracellular matrix. This study was performed to elucidate the possible role of maspin in tooth development. First, an immunohistochemical analysis for human tooth germs at the late bell stage showed the expression of maspin by active ameloblasts and odontoblasts that were forming enamel and dentin, respectively. During rat tooth development, maspin expression was observed for the first time in inner and outer enamel epithelial cells and dental papilla cells at early bell stage. The neutralizing anti-maspin antibody inhibited the proper dental tissue formation in organ cultures of mandibular first molars obtained from 21-day-old rat embryos. In addition, the proliferation of HAT-7 cells, a rat odontogenic epithelial cell line, and human dental papilla cells were suppressed in a dose-dependent manner with anti-maspin antibody. Moreover, RT-PCR analysis showed that the expression of mRNA for tooth-related genes including dentin matrix protein 1, dentin sialophosphoprotein and osteopontin in human dental papilla cells was inhibited when treated with anti-maspin antibody. These findings suggest that maspin expressed in ameloblasts and odontoblasts plays an important physiological role in tooth development through the regulation of matrix formation in dental tissues.
Collapse
Affiliation(s)
- Purevsuren Davaadorj
- Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Smith CE, Wazen R, Hu Y, Zalzal SF, Nanci A, Simmer JP, Hu JCC. Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin. Eur J Oral Sci 2009; 117:485-97. [PMID: 19758243 DOI: 10.1111/j.1600-0722.2009.00666.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the nonamelogenin proteins, ameloblastin and enamelin, are both low-abundance and rapidly degrading components of forming enamel, they seem to serve essential developmental functions, as suggested by findings that an enamel layer fails to appear on teeth of mice genetically engineered to produce either a truncated form of ameloblastin (exons 5 and 6 deleted) or no enamelin at all (null). The purpose of this study was to characterize, by direct micro weighing, changes in enamel mineralization occurring on maxillary and mandibular incisors of mice bred for these alterations in nonamelogenin function (Ambn(+/+, +/-5,6, -5,6/-5,6), Enam(+/+, +/- ,-/-)). The results indicated similar changes to enamel-mineralization patterns within the altered genotypes, including significant decreases by as much as 50% in the mineral content of maturing enamel from heterozygous mice and the formation of a thin, crusty, and disorganized mineralized layer, rather than true enamel, on the labial (occlusal) surfaces of incisors and molars along with ectopic calcifications within enamel organ cells in Ambn(-5,6/-5,6) and Enam(-/-) homozygous mice. These findings confirm that both ameloblastin and enamelin are required by ameloblasts to create an enamel layer by appositional growth as well as to assist in achieving its unique high level of mineralization.
Collapse
Affiliation(s)
- Charles E Smith
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montreal, QC, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Moffatt P, Smith CE, St-Arnaud R, Nanci A. Characterization of Apin, a secreted protein highly expressed in tooth-associated epithelia. J Cell Biochem 2008; 103:941-56. [PMID: 17647262 DOI: 10.1002/jcb.21465] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We previously reported expression of a protein by enamel organ (EO) cells in rat incisors, originally isolated from the amyloid of Pindborg odontogenic tumors called Apin. The aim of the present study was to further characterize the Apin gene and its protein in various species, assess tissue specificity, and clarify its localization within the EO. Northern blotting and RT-PCR revealed that expression of Apin was highest in the EO and gingiva, moderate in nasal and salivary glands, and lowest in the epididymis. The protein sequences deduced from the cloned cDNA for rat, mouse, pig, and human were aligned together with those obtained from four other mammal genomes. Apin is highly conserved in mammals but is absent in fish, birds, and amphibians. Comparative SDS-PAGE analyses of the protein obtained from bacteria, transfected cells, and extracted from EOs all indicated that Apin is post-translationally modified, a finding consistent with the presence of predicted sites for phosphorylation and O-linked glycosylation. In rodent incisors, Apin was detected only in the ameloblast layer of the EO, starting at post-secretory transition and extending throughout the maturation stage. Intense labeling was visible over the Golgi region as well as on the apices of ameloblasts abutting the enamel matrix. Apin was also immunodetected in epithelial cells of the gingiva which bind it to the tooth surface (junctional epithelium). The presence of Apin at cell-tooth interfaces suggests involvement in adhesive mechanisms active at these sites, but its presence among other epithelial tissues indicates Apin likely possesses broader physiological roles.
Collapse
Affiliation(s)
- Pierre Moffatt
- Genetics Unit, Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | | | | | | |
Collapse
|
12
|
Kumamoto H, Ooya K. Immunohistochemical detection of uPA, uPAR, PAI-1, and maspin in ameloblastic tumors. J Oral Pathol Med 2007; 36:488-94. [PMID: 17686008 DOI: 10.1111/j.1600-0714.2007.00554.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND To evaluate the roles of extracellular matrix (ECM)-degrading serine proteinase in progression of odontogenic tumors, expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1), and maspin was analyzed in ameloblastic tumors as well as in tooth germs. METHODS Tissue specimens of 10 tooth germs, 45 ameloblastomas, and 5 malignant ameloblastic tumors were examined immunohistochemically with the use of antibodies against uPA, uPAR, PAI-1, and maspin. RESULTS Immunohistochemical reactivity for uPA, uPAR, PAI-1, and maspin was detected in normal and neoplastic odontogenic tissues: uPA was recognized predominantly in mesenchymal cells, uPAR was evident in epithelial cells, PAI-1 was found in both epithelial and mesenchymal cells, and maspin was expressed only in epithelial cells. The levels of uPA and uPAR immunoreactivity in ameloblastic tumors were slightly higher than the levels in tooth germs, while PAI-1 reactivity in ameloblastomas tended to be lower than that in tooth germs. The level of maspin immunoreactivity in ameloblastomas was significantly higher than that in tooth germs, and ameloblastic carcinoma showed decreased maspin reactivity. CONCLUSION Expression of uPA, uPAR, PAI-1, and maspin in tooth germs and ameloblastic tumors suggests that interactions among these molecules contribute to ECM degradation and cell migration during tooth development and tumor progression. Altered expression of the serine proteinase and its associated molecules in ameloblastic tumors may be involved in oncogenesis of odontogenic epithelium.
Collapse
Affiliation(s)
- H Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | |
Collapse
|