1
|
Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera de los Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA. Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18:200. [PMID: 31727078 PMCID: PMC6854816 DOI: 10.1186/s12934-019-1248-0] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.
Collapse
Affiliation(s)
- Leticia Arregui
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Ximena Gómez-Gil
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Guadalupe Gutiérrez-Soto
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa, 66059 Colonia Ex hacienda El Canadá, General Escobedo, Nuevo León Mexico
| | - Carlos Eduardo Hernández-Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451 San Nicolás de los Garza, Nuevo León Mexico
| | - Mayra Herrera de los Santos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Laura Levin
- Laboratorio de Micología Experimental, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INMIBO-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, C1428BGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Daniel Romero-Martínez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Mario C. N. Saparrat
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Diag. 113 y 61, 327CC, 1900, La Plata, Argentina
- Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 53 # 477, 1900, La Plata, Argentina
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| |
Collapse
|
2
|
Lesage-Meessen L, Bou M, Ginies C, Chevret D, Navarro D, Drula E, Bonnin E, del Río JC, Odinot E, Bisotto A, Berrin JG, Sigoillot JC, Faulds CB, Lomascolo A. Lavender- and lavandin-distilled straws: an untapped feedstock with great potential for the production of high-added value compounds and fungal enzymes. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:217. [PMID: 30083230 PMCID: PMC6071384 DOI: 10.1186/s13068-018-1218-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Lavender (Lavandula angustifolia) and lavandin (a sterile hybrid of L. angustifolia × L. latifolia) essential oils are among those most commonly used in the world for various industrial purposes, including perfumes, pharmaceuticals and cosmetics. The solid residues from aromatic plant distillation such as lavender- and lavandin-distilled straws are generally considered as wastes, and consequently either left in the fields or burnt. However, lavender- and lavandin-distilled straws are a potentially renewable plant biomass as they are cheap, non-food materials that can be used as raw feedstocks for green chemistry industry. The objective of this work was to assess different pathways of valorization of these straws as bio-based platform chemicals and fungal enzymes of interest in biorefinery. RESULTS Sugar and lignin composition analyses and saccharification potential of the straw fractions revealed that these industrial by-products could be suitable for second-generation bioethanol prospective. The solvent extraction processes, developed specifically for these straws, released terpene derivatives (e.g. τ-cadinol, β-caryophyllene), lactones (e.g. coumarin, herniarin) and phenolic compounds of industrial interest, including rosmarinic acid which contributed to the high antioxidant activity of the straw extracts. Lavender and lavandin straws were also suitable inducers for the secretion of a wide panel of lignocellulose-acting enzymes (cellulases, hemicellulases and oxido-reductases) from the white-rot model fungus Pycnoporus cinnabarinus. Interestingly, high amounts of laccase and several lytic polysaccharide monooxygenases were identified in the lavender and lavandin straw secretomes using proteomics. CONCLUSIONS The present study demonstrated that the distilled straws of lavender and lavandin are lignocellulosic-rich materials that can be used as raw feedstocks for producing high-added value compounds (antioxidants, aroma) and fungal oxidative enzymes, which represent opportunities to improve the decomposition of recalcitrant lignocellulose into biofuel. Hence, the structure and the physico-chemical properties of these straws clearly open new perspectives for use in biotechnological processes involving especially filamentous fungi. These approaches represent sustainable strategies to foster the development of a local circular bioeconomy.
Collapse
Affiliation(s)
- Laurence Lesage-Meessen
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| | - Marine Bou
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| | - Christian Ginies
- UMR408 SQPOV Sécurité et Qualité des Produits d’Origine Végétale, INRA, Université d’Avignon, 33 rue Louis Pasteur, 84029 Avignon, France
| | - Didier Chevret
- UMR1319 MICALIS Microbiologie de l’Alimentation au Service de la Santé Humaine, PAPPSO, INRA, 78352 Jouy-en-Josas Cedex, France
| | - David Navarro
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| | - Elodie Drula
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
- USC1408 AFMB Architecture et Fonction des Macromolécules Biologiques, INRA, 13288 Marseille, France
| | - Estelle Bonnin
- UR 1268 BIA Biopolymères, Interactions, Assemblage, INRA, 44316 Nantes, France
| | - José C. del Río
- Department of Plant Biotechnology, IRNAS, CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Elise Odinot
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| | - Alexandra Bisotto
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| | - Jean-Guy Berrin
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| | - Jean-Claude Sigoillot
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| | - Craig B. Faulds
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| | - Anne Lomascolo
- UMR1163 BBF Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille Univ, 13288 Marseille Cedex 09, France
| |
Collapse
|
3
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
4
|
Laccase engineering: From rational design to directed evolution. Biotechnol Adv 2015; 33:25-40. [DOI: 10.1016/j.biotechadv.2014.12.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
|
5
|
Zelena K, Eisele N, Berger RG. Escherichia coli as a production host for novel enzymes from basidiomycota. Biotechnol Adv 2014; 32:1382-95. [DOI: 10.1016/j.biotechadv.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
|
6
|
Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:83-101. [PMID: 22284713 DOI: 10.1016/j.plantsci.2011.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 05/21/2023]
Abstract
Recombinant protein production in microbial hosts and animal cell cultures has revolutionized the pharmaceutical and industrial enzyme industries. Plants as alternative hosts for the production of recombinant proteins are being actively pursued, taking advantage of their unique characteristics. The key to cost-efficient production in any system is the level of protein accumulation, which is inversely proportional to the cost. Levels of up to 5 g/kg biomass have been obtained in plants, making this production system competitive with microbial hosts. Increasing protein accumulation at the cellular level by varying host, germplasm, location of protein accumulation, and transformation procedure is reviewed. At the molecular level increased expression by improving transcription, translation and accumulation of the protein is critically evaluated. The greatest increases in protein accumulation will occur when various optimized parameters are more fully integrated with each other. Because of the complex nature of plants, this will take more time and effort to accomplish than has been the case for the simpler unicellular systems. However the potential for plants to become one of the major avenues for protein production appears very promising.
Collapse
Affiliation(s)
- Erin Egelkrout
- Applied Biotechnology Institute, Cal Poly Technology Park, Building 83, San Luis Obispo, CA 93407, USA
| | | | | |
Collapse
|
7
|
Lomascolo A, Uzan-Boukhris E, Herpoël-Gimbert I, Sigoillot JC, Lesage-Meessen L. Peculiarities of Pycnoporus species for applications in biotechnology. Appl Microbiol Biotechnol 2011; 92:1129-49. [PMID: 22038244 DOI: 10.1007/s00253-011-3596-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/18/2011] [Indexed: 11/24/2022]
Abstract
The genus Pycnoporus forms a cosmopolitan group of four species belonging to the polyporoid white-rot fungi, the most representative group of homobasidiomycetes causing wood decay. Pycnoporus fungi are listed as food- and cosmetic-grade microorganisms and emerged in the early 1990s as a genus whose biochemistry, biodegradation and biotechnological properties have since been progressively detailed. First highlighted for their original metabolic pathways involved in the functionalization of plant cell wall aromatic compounds to yield high-value molecules, e.g. aromas and antioxidants, the Pycnoporus species were later explored for their potential to produce various enzymes of industrial interest, such as hydrolases and oxidases. However, the most noteworthy feature of the genus Pycnoporus is its ability to overproduce high redox potential laccase-a multi-copper extracellular phenoloxidase-as the predominant ligninolytic enzyme. A major potential use of the Pycnoporus fungi is thus to harness their laccases for various applications such as the bioconversion of agricultural by-products and raw plant materials into valuable products, the biopulping and biobleaching of paper pulp and the biodegradation of organopollutants, xenobiotics and industrial contaminants. All the studies performed in the last decade show the genus Pycnoporus to be a strong contender for white biotechnology. In this review, we describe the properties of Pycnoporus fungi in relation to their biotechnological applications and potential.
Collapse
Affiliation(s)
- Anne Lomascolo
- UMR INRA de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France.
| | | | | | | | | |
Collapse
|
8
|
Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S. Heterologous laccase production and its role in industrial applications. Bioeng Bugs 2011; 1:252-62. [PMID: 21327057 DOI: 10.4161/bbug.1.4.11438] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry.
Collapse
Affiliation(s)
- Alessandra Piscitelli
- Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, Napoli, Italy.
| | | | | | | | | |
Collapse
|
9
|
Uzan E, Portet B, Lubrano C, Milesi S, Favel A, Lesage-Meessen L, Lomascolo A. Pycnoporus laccase-mediated bioconversion of rutin to oligomers suitable for biotechnology applications. Appl Microbiol Biotechnol 2011; 90:97-105. [PMID: 21210103 DOI: 10.1007/s00253-010-3075-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/02/2010] [Accepted: 12/10/2010] [Indexed: 11/26/2022]
Abstract
The Pycnoporus fungi are white-rot basidiomycetes listed as food- and cosmetic-grade microorganisms. Three high redox potential laccases from Pycnoporus coccineus and Pycnoporus sanguineus were tested and compared, with the commercial Suberase® as reference, for their ability to synthesise natural active oligomers from rutin (quercetin-3-rutinoside, one of the best-known naturally occurring flavonoid glycosides). The aim of this work was to develop a process with technical parameters (solvent, temperature, reaction time and raw materials) that were easy to scale up for industrial production and compatible with cosmetic and pharmaceutical formulation guidelines. The aqueous mixture of glycerol/ethanol/buffer described in this study met this requirement and allowed the solubilisation of rutin and its oxidative bioconversion into oligomers. The four flavonoid oligomer mixtures synthesised using laccases as catalysts were analysed by high performance liquid chromatography-diode array detection-negative electrospray ionisation-multistage mass spectrometry. Their chromatographic elution profiles were compared and 16 compounds were characterised and identified as dimers and trimers of rutin. The oligorutins were different in Suberase® and Pycnoporus laccase reaction mixtures. They were evaluated for their antioxidant, anti-inflammatory and anti-ageing activities on specific enzymatic targets such as cyclooxygenase (COX-2) and human matrix metalloproteinase 3 (MMP-3). Expressed in terms of IC(50), the flavonoid oligomers displayed a 2.5- to 3-fold higher superoxide scavenging activity than monomeric rutin. Pycnoporus laccase and Suberase® oligorutins led to an inhibition of COX-2 of about 35% and 70%, respectively, while monomeric rutin showed a near-negligible inhibition effect, less than about 10%. The best results on MMP-3 activity were obtained with rutin oligomers from P. sanguineus IMB W006-2 laccase and Suberase® with about 70-75% inhibition.
Collapse
Affiliation(s)
- Eva Uzan
- UMR 1163 INRA de Biotechnologie des Champignons Filamenteux, ESIL, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Uzan E, Nousiainen P, Balland V, Sipila J, Piumi F, Navarro D, Asther M, Record E, Lomascolo A. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications. J Appl Microbiol 2009; 108:2199-213. [PMID: 19968731 DOI: 10.1111/j.1365-2672.2009.04623.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Exploitation of natural biodiversity in species Pycnoporus coccineus and Pycnoporus sanguineus to screen for a new generation of laccases with properties suitable for the lignin-processing sector. METHODS AND RESULTS Thirty strains originating from subtropical and tropical environments, mainly isolated from fresh specimens collected in situ, were screened for laccase activity. On the basis of levels of enzyme activity and percentage of similarity between protein sequences, the laccases from strains BRFM 938, BRFM 66 and BRFM 902 were selected for purification and characterization. Each BRFM 938, BRFM 66 and BRFM 902 laccase gene encoded a predicted protein of 518 amino acids; the three deduced proteins showed 68.7-97.5% similarity with other Polyporale laccases. The three laccases (59.5-62.9 kDa with 7-10% carbohydrate content) had high redox potentials (0.72-0.75 V vs normal hydrogen electrode at pH 6), remained highly stable up to 75-78 degrees C and at pH 5-7 mixtures, and were resistant to methyl and ethyl alcohols, acetonitrile and dimethylsulfoxide at concentrations as high as 50% (v/v). The best laccase-1-hydroxybenzotriazole systems permitted almost 100% of various polyphenolic dye decolourization and oxidation of adlerol and veratryl alcohol. CONCLUSIONS The three laccases showed complementary biochemical features. BRFM 938 laccase had the highest thermo- and pH stability, catalytic efficiency towards 2,2'-azino-bis-[3-ethylthiazoline-6-sulfonate] and resistance to alcoholic solvents. BRFM 66 laccase had the highest rates of dye decolourization and oxidation of nonphenolic compounds. SIGNIFICANCE AND IMPACT OF THE STUDY This study identified P. coccineus and P. sanguineus as outstanding producers of high redox potential laccases, easy to purify and scale-up for industrial production. Three new laccases proved to be suitable models for white biotechnology processes and for further molecular breeding to create a new generation of tailor-made enzymes.
Collapse
Affiliation(s)
- E Uzan
- UMR 1163 Biotechnologie des Champignons Filamenteux INRA-Universités de Provence et de la Méditerranée, ESIL, Case 925, Marseille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|