1
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
2
|
Zhang P, Zhu H. Anthocyanins in Plant Food: Current Status, Genetic Modification, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020866. [PMID: 36677927 PMCID: PMC9863750 DOI: 10.3390/molecules28020866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Anthocyanins are naturally occurring polyphenolic pigments that give food varied colors. Because of their high antioxidant activities, the consumption of anthocyanins has been associated with the benefit of preventing various chronic diseases. However, due to natural evolution or human selection, anthocyanins are found only in certain species. Additionally, the insufficient levels of anthocyanins in the most common foods also limit the optimal benefits. To solve this problem, considerable work has been done on germplasm improvement of common species using novel gene editing or transgenic techniques. This review summarized the recent advances in the molecular mechanism of anthocyanin biosynthesis and focused on the progress in using the CRISPR/Cas gene editing or multigene overexpression methods to improve plant food anthocyanins content. In response to the concerns of genome modified food, the future trends in developing anthocyanin-enriched plant food by using novel transgene or marker-free genome modified technologies are discussed. We hope to provide new insights and ideas for better using natural products like anthocyanins to promote human health.
Collapse
|
3
|
Liang Y, Yan X, Xu J, Liu Y, Xie K, Li J, Zhan Q. An efficient transformation method for tannin-containing sorghum. PeerJ 2023; 11:e15066. [PMID: 36935918 PMCID: PMC10022505 DOI: 10.7717/peerj.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Background Tannins are the main bottlenecks restricting the transformation efficiency of plants. Hongyingzi is a special tannin-containing sorghum cultivar used in brewing. Methods In this study, a highly efficient microprojectile transformation system for tannin-containing sorghum was successfully exploited using immature embryos (IEs) of Hongyingzi as explants. Results Hongyingzi presented two types of calli. Type II calli were found to be the most suitable and effective explants for transformation. After optimization of the geneticin (G418) concentration and tissue culture medium, an average transformation frequency of 27% was achieved. Molecular analyzis showed that all transgenic plants were positive and showed transgenes expression. The inheritance analyzis confirmed that the transgenes could be inherited into the next generation. Thus, we successfully established an efficient transformation system for tannin-containing sorghum and demonstrated the possibility of breaking the restriction imposed by tannins in plants.
Collapse
Affiliation(s)
- Yuan Liang
- College of Agricultural, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Xuehui Yan
- College of Agricultural, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jingyi Xu
- College of Agricultural, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Yanlong Liu
- College of Agricultural, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Ke Xie
- Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jieqin Li
- College of Agricultural, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Qiuwen Zhan
- College of Agricultural, Anhui Science and Technology University, Fengyang, Anhui, China
| |
Collapse
|
4
|
De Saeger J, Park J, Thoris K, De Bruyn C, Chung HS, Inzé D, Depuydt S. IMPLANT: a new technique for transgene copy number estimation in plants using a single end-point PCR reaction. PLANT METHODS 2022; 18:132. [PMID: 36494670 PMCID: PMC9732982 DOI: 10.1186/s13007-022-00965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Copy number determination is one of the first steps in the characterization of transgenic plant lines. The classical approach to this, Southern blotting, is time-consuming, expensive and requires massive amounts of high-quality genomic DNA. Other PCR-based techniques are either inaccurate, laborious, or expensive. RESULTS Here, we propose a new technique, IMPLANT (Insertion of competitive PCR calibrator for copy number estimation), a competitive PCR-based technique in which the competitor (based on an endogenous gene) is also incorporated in the T-DNA, which then gets integrated in the genome together with the gene of interest. As the number of integrated competitor molecules directly corresponds to the number of transgene copies, the transgene copy number can be determined by a single PCR reaction. We demonstrate that the results of this technique closely correspond with those obtained by segregation analysis in Arabidopsis and digital PCR In rice, indicating that it is a powerful alternative for other techniques for copy number determination. CONCLUSIONS We show that this technique is not only reliable, but is also faster, easier, and cheaper as compared with other techniques. Accurate results are obtained in both Arabidopsis and rice, but this technique can be easily extended to other organisms and as such can be widely adopted in the field of biotechnology.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea
- Department of Marine Sciences, Incheon National University, Incheon, 406-840, South Korea
| | - Kai Thoris
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Charlotte De Bruyn
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, 406-840, South Korea
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| |
Collapse
|
5
|
Li J, Xu Z, Zeng T, Zhou L, Li J, Hu H, Luo J, Wang C. Overexpression of TcCHS Increases Pyrethrin Content When Using a Genotype-Independent Transformation System in Pyrethrum ( Tanacetum cinerariifolium). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121575. [PMID: 35736726 PMCID: PMC9229838 DOI: 10.3390/plants11121575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 05/09/2023]
Abstract
Pyrethrum (Tanacetum cinerariifolium) is one of the most important industrial crops for the extraction of pyrethrins, which are natural insecticidal compounds. Progress in pyrethrum molecular breeding with the objective of increasing pyrethrin content has been slow for lack of a suitable gene transfer system. Regeneration recalcitrance is a crucial barrier to establishing a genetic transformation system in pyrethrum. Therefore, in this study, an Agrobacterium-mediated transformation system in pyrethrum was developed using shoot apical meristems from germinated seedlings. Factors affecting transformation efficiency were optimized. Optimal conditions included explants at the "no true leaf" stage with a half apical meristem, an Agrobacterium tumefaciens cell density of OD600 = 0.5, two days of cocultivation, and the incorporation of 1.5 mg L-1 6-BA and 30 mg L-1 kanamycin into the selection medium. Under the optimized conditions, two expression cassettes (proTcCHS-GUS and proRbcS-TcCHS) were successfully transformed into pyrethrum. Polymerase chain reaction (PCR), Southern blotting, reverse-transcription quantitative PCR (RT-qPCR), and histochemical staining confirmed the identity of proTcCHS-GUS transgenic plants. PCR and RT-qPCR analyses confirmed the identity of proRbcS-TcCHS transgenic plants. The transformation efficiency was 0.83% (5 transgenic lines/600 infected explants). The relative concentration of pyrethrins in proRbcS-TcCHS transformants (OX T0-1: 1.50% or OX T0-2: 1.24%) was higher than that in nontransformed plants (WT: 0.76%). Thus, the genetic transformation system overcame the low regeneration efficiency and integrated a foreign gene into the pyrethrum genome. The new system is a suitable and effective tool for creating high-yielding cultivars of pyrethrum.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Jinjin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Hao Hu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
- Correspondence: (J.L.); (C.W.)
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
- Correspondence: (J.L.); (C.W.)
| |
Collapse
|
6
|
Zhu G, Zhu H. Modified Gene Editing Systems: Diverse Bioengineering Tools and Crop Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:847169. [PMID: 35371136 PMCID: PMC8969578 DOI: 10.3389/fpls.2022.847169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Gene-editing systems have emerged as bioengineering tools in recent years. Classical gene-editing systems include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9), and these tools allow specific sequences to be targeted and edited. Various modified gene-editing systems have been established based on classical gene-editing systems. Base editors (BEs) can accurately carry out base substitution on target sequences, while prime editors (PEs) can replace or insert sequences. CRISPR systems targeting mitochondrial genomes and RNA have also been explored and established. Multiple gene-editing techniques based on CRISPR/Cas9 have been established and applied to genome engineering. Modified gene-editing systems also make transgene-free plants more readily available. In this review, we discuss the modifications made to gene-editing systems in recent years and summarize the capabilities, deficiencies, and applications of these modified gene-editing systems. Finally, we discuss the future developmental direction and challenges of modified gene-editing systems.
Collapse
Affiliation(s)
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Zobrist JD, Martin-Ortigosa S, Lee K, Azanu MK, Ji Q, Wang K. Transformation of Teosinte ( Zea mays ssp. parviglumis) via Biolistic Bombardment of Seedling-Derived Callus Tissues. FRONTIERS IN PLANT SCIENCE 2021; 12:773419. [PMID: 34956270 PMCID: PMC8696365 DOI: 10.3389/fpls.2021.773419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 05/17/2023]
Abstract
Modern maize exhibits a significantly different phenotype than its wild progenitor teosinte despite many genetic similarities. Of the many subspecies of Zea mays identified as teosinte, Zea mays ssp. parviglumis is the most closely related to domesticated maize. Understanding teosinte genes and their regulations can provide great insights into the maize domestication process and facilitate breeding for future crop improvement. However, a protocol of genetic transformation, which is essential for gene functional analyses, is not available in teosinte. In this study, we report the establishment of a robust callus induction and regeneration protocol using whorl segments of seedlings germinated from mature seeds of Zea parviglumis. We also report, for the first time, the production of fertile, transgenic teosinte plants using the particle bombardment. Using herbicide resistance genes such as mutant acetolactate synthase (Als) or bialaphos resistance (bar) as selectable markers, we achieved an average transformation frequency of 4.17% (percentage of independent transgenic events in total bombarded explants that produced callus). Expression of visual marker genes of red fluorescent protein tdTomato and β-glucuronidase (gus) could be detected in bombarded callus culture and in T1 and T2 progeny plants. The protocol established in this work provides a major enabling technology for research toward the understanding of this important plant in crop domestication.
Collapse
Affiliation(s)
- Jacob D. Zobrist
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
- Interdepartmental Genetics and Genomics Major, Iowa State University, Ames, IA, United States
| | | | - Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| | - Mercy K. Azanu
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA, United States
| | - Q Ji
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Oz MT, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-Mediated Multi-Allelic Gene Targeting in Sugarcane Confers Herbicide Tolerance. Front Genome Ed 2021; 3:673566. [PMID: 34713261 PMCID: PMC8525412 DOI: 10.3389/fgeed.2021.673566] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Sugarcane is the source of 80% of the sugar and 26% of the bioethanol produced globally. However, its complex, highly polyploid genome (2n = 100 - 120) impedes crop improvement. Here, we report efficient and reproducible gene targeting (GT) in sugarcane, enabling precise co-editing of multiple alleles via template-mediated and homology-directed repair (HDR) of DNA double strand breaks induced by the programmable nuclease CRISPR/Cas9. The evaluation of 146 independently transformed plants from five independent experiments revealed a targeted nucleotide replacement that resulted in both targeted amino acid substitutions W574L and S653I in the acetolactate synthase (ALS) in 11 lines in addition to single, targeted amino acid substitutions W574L or S653I in 25 or 18 lines, respectively. Co-editing of up to three ALS copies/alleles that confer herbicide tolerance was confirmed by Sanger sequencing of cloned long polymerase chain reaction (PCR) amplicons. This work will enable crop improvement by conversion of inferior alleles to superior alleles through targeted nucleotide substitutions.
Collapse
Affiliation(s)
- Mehmet Tufan Oz
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Angelika Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Aldo Merotto
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| |
Collapse
|
9
|
Wang C, Ma H, Zhu W, Zhang J, Zhao X, Li X. Seedling-derived leaf and root tip as alternative explants for callus induction and plant regeneration in maize. PHYSIOLOGIA PLANTARUM 2021; 172:1570-1581. [PMID: 33502786 DOI: 10.1111/ppl.13347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 05/24/2023]
Abstract
While being one of the world's most important crops, maize (Zea mays L.) is still relatively difficult to regenerate in tissue culture, which severely limits its improvement by genetic engineering. Currently, immature zygotic embryos provide the predominant material for transformation and regeneration. However, the procedures involved are often laborious and season-dependent. Therefore, new explants to replace or complement immature embryos are desirable. Here, we exploited root tips and young leaves isolated from 3-day-old dark-grown seedlings as alternative explant sources for establishing plant regeneration. As novel explants, the root tips could generate embryogenic calli similar to that from the young leaves. The rate of primary callus induction from root tips reached 97.2% and almost as high as 98.8% from immature embryos. The difference in callus induction rates among these explants may be closely related to the differences in expression level of stem cell-related genes in callus tissue. Moreover, the alternative explants are easy to obtain in large quantities. These combined results indicate that explants from seedling-derived root tips and leaf tissue have the potential to replace immature embryos for plant regeneration and transformation.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Haizhen Ma
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Bioengineering, Qilu University of Technology, Jinan, China
| | - Weiwei Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Jiedao Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| |
Collapse
|
10
|
Manan S. Current status of crops genetic transformation. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Biolistic DNA Delivery in Turfgrass Embryonic Callus Initiated from Mature Seeds. Methods Mol Biol 2020. [PMID: 32277458 DOI: 10.1007/978-1-0716-0356-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We describe a protocol for the establishment and preparation of creeping bentgrass (Agrostis stolonifera L.) cultivar "Penn A-4" embryonic calli, biolistic transformation, selection, and regeneration of transgenic plants. The embryonic callus is initiated from mature seeds, maintained by visual selection under the dissecting microscope and subjected to bombardment with plasmid DNA containing a bialaphos-resistance (bar) gene. PCR, Southern, and Northern blot analyses are used to confirm the transgene integration and expression.
Collapse
|
12
|
Santos CM, Romeiro D, Silva JP, Basso MF, Molinari HBC, Centeno DC. An improved protocol for efficient transformation and regeneration of Setaria italica. PLANT CELL REPORTS 2020; 39:501-510. [PMID: 31915913 DOI: 10.1007/s00299-019-02505-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
An efficient and improved transformation method for functional genetics studies in S. italica, being a boon for the Setaria scientific community and for crop improvement. Foxtail millet (Setaria italica) is a short life cycle C4 plant, with sequenced genome, and a potential model plant for C4 species. S. italica is also important on a global food security and healthiness context due to its importance in arid and semi-arid areas. However, despite its importance, there are just few transformation protocols directed to this species. The current protocols reached about 5.5-9% of efficiency, which do not make it a valuable model organism. Different types of explants were used in the above mentioned methods, such as immature and mature inflorescence and shoot apex. However, these techniques have many limitations, such as unavailability of explants throughout the year and a crucial, laborious and considerable time-consuming selection. Aiming a simplified and efficient methodology, we adopted dry mature seeds as explants, which are available in abundance, are constant along the year and well responsive to tissue culture, in addition to a differentiated approach that reaches on an average 19.2% transformation efficiency of S. italica. Thus, we propose a protocol that optimizes the transformation efficiency of this cereal crop allowing a high increase on transformation and regeneration rates. Our transformation protocol provides an interesting tool for Setaria community research as well as enables new strategies for breeding enhanced productivity in the species.
Collapse
Affiliation(s)
- C M Santos
- Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil
| | - D Romeiro
- Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil
| | - J P Silva
- Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil
| | - M F Basso
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF, Brazil
| | - H B C Molinari
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF, Brazil
| | - D C Centeno
- Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil.
| |
Collapse
|
13
|
Dawe RK. Charting the path to fully synthetic plant chromosomes. Exp Cell Res 2020; 390:111951. [PMID: 32151492 DOI: 10.1016/j.yexcr.2020.111951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
The concepts of synthetic biology have the potential to transform plant genetics, both in how we analyze genetic pathways and how we transfer that knowledge into useful applications. While synthetic biology can be applied at the level of the single gene or small groups of genes, this commentary focuses on the ultimate challenge of designing fully synthetic plant chromosomes. Engineering at this scale will allow us to manipulate whole genome architecture and to modify multiple pathways and traits simultaneously. Advances in genome synthesis make it likely that the initial phases of plant chromosome construction will occur in bacteria and yeast. Here I discuss the next steps, including specific ways of overcoming technical barriers associated with plant transformation, functional centromere design, and ensuring accurate meiotic transmission.
Collapse
Affiliation(s)
- R Kelly Dawe
- Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
He Y, Zhao Y. Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. ABIOTECH 2020; 1:88-96. [PMID: 36305007 PMCID: PMC9584093 DOI: 10.1007/s42994-019-00013-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
CRISPR/Cas9 gene-editing technologies have been very effective in editing target genes in all major crop plants and offer unprecedented potentials in crop improvement. A major challenge in using CRISPR gene-editing technology for agricultural applications is that the target gene-edited crop plants need to be transgene free to maintain trait stability and to gain regulatory approval for commercial production. In this article, we present various strategies for generating transgene-free and target gene-edited crop plants. The CRISPR transgenes can be removed by genetic segregation if the crop plants are reproduced sexually. Marker-assisted tracking and eliminating transgenes greatly decrease the time and labor needed for identifying the ideal transgene-free plants. Transgenes can be programed to undergo self-elimination when CRISPR genes and suicide genes are sequentially activated, greatly accelerating the isolation of transgene-free and target gene-edited plants. Transgene-free plants can also be generated using approaches that are considered non-transgenic such as ribonucleoprotein transfection, transient expression of transgenes without DNA integration, and nano-biotechnology. Here, we discuss the advantages and disadvantages of the various strategies in generating transgene-free plants and provide guidance for adopting the best strategies in editing a crop plant.
Collapse
Affiliation(s)
- Yubing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0116 USA
| |
Collapse
|
15
|
Zhao Y, Kim JY, Karan R, Jung JH, Pathak B, Williamson B, Kannan B, Wang D, Fan C, Yu W, Dong S, Srivastava V, Altpeter F. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. PLANT MOLECULAR BIOLOGY 2019; 100:247-263. [PMID: 30919152 DOI: 10.1007/s11103-019-00856-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/15/2019] [Indexed: 05/23/2023]
Abstract
A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.
Collapse
Affiliation(s)
- Yang Zhao
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Jae Y Kim
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Je H Jung
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Smart Farm Research Center, Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, 25451, Republic of Korea
| | - Bhuvan Pathak
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Bruce Williamson
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Baskaran Kannan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Duoduo Wang
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Chunyang Fan
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Wenjin Yu
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Shujie Dong
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Vibha Srivastava
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
16
|
Angulo-Bejarano PI, Sharma A, Paredes-López O. Factors affecting genetic transformation by particle bombardment of the prickly pear cactus ( O. ficus-indica). 3 Biotech 2019; 9:98. [PMID: 30800609 PMCID: PMC6385058 DOI: 10.1007/s13205-019-1627-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/10/2019] [Indexed: 11/29/2022] Open
Abstract
In the present study, a novel transformation protocol for Opuntia ficus-indica was generated by means of particle bombardment. The best conditions obtained were: 900 psi rupture disk pressure, 8 cm microprojectile travel distance, and 4 h of exposition to 0.2 M mannitol. For all experiments, gold particles coated with 1.0 µg/µL of pBI426 plasmid DNA were used. With all these conditions, a 23% of transformation efficiency in terms of regeneration in selection media (100 mg/L kanamycin) was obtained. Interestingly, the presence of both transgenes: nptII and uidA, by means of PCR and RT-PCR assays was detected. The regeneration percentage achieved in terms of stable integration for both genes was 10%. In addition, we also detected adequate amounts of β-glucuronidase activity by means of the GUS fluorometric assay. The procedure described in the present investigation reveals the feasibility of using nopal for the introduction, expression, and possible production of heterologous proteins.
Collapse
Affiliation(s)
- Paola Isabel Angulo-Bejarano
- Centro de Investigación y de Estudios Avanzados-IPN, Unidad Irapuato, Km 9.6 Libr. Norte Carr. Irapuato-León, Apdo. Postal 629, Irapuato, 36824 Guanajuato, Mexico.,2Tecnologico de Monterrey, School of Engineering and Sciences, Epigmenio González No. 500 Fracc. San Pablo, 76130 Queretaro, Queretaro Mexico
| | - Ashutosh Sharma
- 2Tecnologico de Monterrey, School of Engineering and Sciences, Epigmenio González No. 500 Fracc. San Pablo, 76130 Queretaro, Queretaro Mexico
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados-IPN, Unidad Irapuato, Km 9.6 Libr. Norte Carr. Irapuato-León, Apdo. Postal 629, Irapuato, 36824 Guanajuato, Mexico
| |
Collapse
|
17
|
Vaghchhipawala Z, Radke S, Nagy E, Russell ML, Johnson S, Gelvin SB, Gilbertson LA, Ye X. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS One 2018; 13:e0200972. [PMID: 30412579 PMCID: PMC6226153 DOI: 10.1371/journal.pone.0200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
A native repABC replication origin from pRiA4b was previously reported as a single copy plasmid in Agrobacterium tumefaciens and can improve the production of transgenic plants with a single copy insertion of transgenes when it is used in binary vectors for Agrobacterium-mediated transformation. A high copy pRi-repABC variant plasmid, pTF::Ri, which does not improve the frequency of single copy transgenic plants, has been reported in the literature. Sequencing the high copy pTF::Ri repABC operon revealed the presence of two mutations: one silent mutation and one missense mutation that changes a tyrosine to a histidine (Y299H) in a highly conserved area of the C-terminus of the RepB protein (RepBY299H). Reproducing these mutations in the wild-type pRi-repABC binary vector showed that Agrobacterium cells with the RepBY299H mutation grow faster on both solidified and in liquid medium, and have higher plasmid copy number as determined by ddPCR. In order to investigate the impact of the RepBY299H mutation on transformation and quality plant production, the RepBY299H mutated pRi-repABC binary vector was compared with the original wild-type pRi-repABC binary vector and a multi-copy oriV binary vector in canola transformation. Molecular analyses of the canola transgenic plants demonstrated that the multi-copy pRi-repABC with the RepBY299H mutation provides no advantage in generating high frequency single copy, backbone-free transgenic plants in comparison with the single copy wild-type pRi-repABC binary vector.
Collapse
Affiliation(s)
| | - Sharon Radke
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Ervin Nagy
- Monsanto Company, St. Louis, MO, United States of America
| | - Mary L. Russell
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Susan Johnson
- Monsanto Company, St. Louis, MO, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | | | - Xudong Ye
- Monsanto Company, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ismagul A, Yang N, Maltseva E, Iskakova G, Mazonka I, Skiba Y, Bi H, Eliby S, Jatayev S, Shavrukov Y, Borisjuk N, Langridge P. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC PLANT BIOLOGY 2018; 18:135. [PMID: 29940859 PMCID: PMC6020210 DOI: 10.1186/s12870-018-1326-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/24/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The relatively low efficiency of biolistic transformation and subsequent integration of multiple copies of the introduced gene/s significantly complicate the genetic modification of wheat (Triticum aestivum) and other plant species. One of the key factors contributing to the reproducibility of this method is the uniformity of the DNA/gold suspension, which is dependent on the coating procedure employed. It was also shown recently that the relative frequency of single copy transgene inserts could be increased through the use of nanogram quantities of the DNA during coating. RESULTS A simplified DNA/gold coating method was developed to produce fertile transgenic plants, via microprojectile bombardment of callus cultures induced from immature embryos. In this method, polyethyleneglycol (PEG) and magnesium salt solutions were utilized in place of the spermidine and calcium chloride of the standard coating method, to precipitate the DNA onto gold microparticles. The prepared microparticles were used to generate transgenics from callus cultures of commercial bread wheat cv. Gladius resulting in an average transformation frequency of 9.9%. To increase the occurrence of low transgene copy number events, nanogram amounts of the minimal expression cassettes containing the gene of interest and the hpt gene were used for co-transformation. A total of 1538 transgenic wheat events were generated from 15,496 embryos across 19 independent experiments. The variation of single copy insert frequencies ranged from 16.1 to 73.5% in the transgenic wheat plants, which compares favourably to published results. CONCLUSIONS The DNA/gold coating procedure presented here allows efficient, large scale transformation of wheat. The use of nanogram amounts of vector DNA improves the frequency of single copy transgene inserts in transgenic wheat plants.
Collapse
Affiliation(s)
- Ainur Ismagul
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Nannan Yang
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW 2650 Australia
| | - Elina Maltseva
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Gulnur Iskakova
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Inna Mazonka
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Yuri Skiba
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Huihui Bi
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Serik Eliby
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Satyvaldy Jatayev
- S.Seifullin Kazakh AgroTechnical University, Astana, 010011 Kazakhstan
| | - Yuri Shavrukov
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- College of Science and Engineering, School of Biological Sciences, Flinders University, Bedford Park, SA 5042 Australia
| | - Nikolai Borisjuk
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: School of Life Science, Huaiyin Normal University, Huaian, 223300 China
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| |
Collapse
|
19
|
Ben Ali SE, Schamann A, Dobrovolny S, Indra A, Agapito-Tenfen SZ, Hochegger R, Haslberger AG, Brandes C. Genetic and epigenetic characterization of the cry1Ab coding region and its 3′ flanking genomic region in MON810 maize using next-generation sequencing. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3062-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Raji JA, Frame B, Little D, Santoso TJ, Wang K. Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred. Methods Mol Biol 2018; 1676:15-40. [PMID: 28986902 DOI: 10.1007/978-1-4939-7315-6_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell's ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10-14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T0 callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16-21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.
Collapse
Affiliation(s)
- Jennifer A Raji
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA
| | - Bronwyn Frame
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA
| | - Daniel Little
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA
| | - Tri Joko Santoso
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA.,Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD-IAARD), Bogor, Indonesia
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA. .,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA.
| |
Collapse
|
21
|
Belide S, Vanhercke T, Petrie JR, Singh SP. Robust genetic transformation of sorghum ( Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. PLANT METHODS 2017; 13:109. [PMID: 29234458 PMCID: PMC5723044 DOI: 10.1186/s13007-017-0260-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/28/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Sorghum (Sorghum bicolor L.) is one of the world's most important cereal crops grown for multiple applications and has been identified as a potential biofuel crop. Despite several decades of study, sorghum has been widely considered as a recalcitrant major crop for transformation due to accumulation of phenolic compounds, lack of model genotypes, low regeneration frequency and loss of regeneration potential through sub-cultures. Among different explants used for genetic transformation of sorghum, immature embryos are ideal over other explants. However, the continuous supply of quality immature embryos for transformation is labour intensive and expensive. In addition, transformation efficiencies are also influenced by environmental conditions (light and temperature). Despite these challenges, immature embryos remain the predominant choice because of their success rate and also due to non-availability of other dependable explants without compromising the transformation efficiency. RESULTS We report here a robust genetic transformation method for sorghum (Tx430) using differentiating embryogenic calli (DEC) with nodular structures induced from immature embryos and maintained for more than a year without losing regeneration potential on modified MS media. The addition of lipoic acid (LA) to callus induction media along with optimized growth regulators increased callus induction frequency from 61.3 ± 3.2 to 79 ± 6.5% from immature embryos (1.5-2.0 mm in length) isolated 12-15 days after pollination. Similarly, the regeneration efficiency and the number of shoots from DEC tissue was enhanced by LA. The optimized regeneration system in combination with particle bombardment resulted in an average transformation efficiency (TE) of 27.2 or 46.6% based on the selection strategy, 25% to twofold higher TE than published reports in Tx430. Up to 100% putative transgenic shoots were positive for npt-II by PCR and 48% of events had < 3 copies of transgenes as determined by digital droplet PCR. Reproducibility of this method was demonstrated by generating ~ 800 transgenic plants using 10 different gene constructs. CONCLUSIONS This protocol demonstrates significant improvements in both efficiency and ease of use over existing sorghum transformation methods using PDS, also enables quick hypothesis testing in the production of various high value products in sorghum.
Collapse
|
22
|
Jia R, Zhao H, Huang J, Kong H, Zhang Y, Guo J, Huang Q, Guo Y, Wei Q, Zuo J, Zhu YJ, Peng M, Guo A. Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci Rep 2017; 7:12636. [PMID: 28974762 PMCID: PMC5626737 DOI: 10.1038/s41598-017-13049-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
Papaya ringspot virus (PRSV) seriously limits papaya (Carica papaya L.) production in tropical and subtropical areas throughout the world. Coat protein (CP)- transgenic papaya lines resistant to PRSV isolates in the sequence-homology-dependent manner have been developed in the U.S.A. and Taiwan. A previous investigation revealed that genetic divergence among Hainan isolates of PRSV has allowed the virus to overcome the CP-mediated transgenic resistance. In this study, we designed a comprehensive RNAi strategy targeting the conserved domain of the PRSV CP gene to develop a broader-spectrum transgenic resistance to the Hainan PRSV isolates. We used an optimized particle-bombardment transformation system to produce RNAi-CP-transgenic papaya lines. Southern blot analysis and Droplet Digital PCR revealed that line 474 contained a single transgene insert. Challenging this line with different viruses (PRSV I, II and III subgroup) under greenhouse conditions validated the transgenic resistance of line 474 to the Hainan isolates. Northern blot analysis detected the siRNAs products in virus-free transgenic papaya tissue culture seedlings. The siRNAs also accumulated in PRSV infected transgenic papaya lines. Our results indicated that this transgenic papaya line has a useful application against PRSV in the major growing area of Hainan, China.
Collapse
Affiliation(s)
- Ruizong Jia
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
- Hawaii Agriculture Research Center, 96797, Waipahu, HI, USA
| | - Hui Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
| | - Jing Huang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
- School of Basic and Life Science, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Hua Kong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
| | - Yuliang Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
| | - Jingyuan Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
| | - Qixing Huang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
| | - Yunling Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
| | - Qing Wei
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
- Institute of Banana and Plantain, Haikou Substation, Chinese Academy of Tropical Agriculture Sciences, 570102, Haikou, Hainan, China
| | - Jiao Zuo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China
| | - Yun J Zhu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China.
- Hawaii Agriculture Research Center, 96797, Waipahu, HI, USA.
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China.
| | - Anping Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, 571101, Haikou, Hainan, China.
| |
Collapse
|
23
|
Feng D, Wang Y, Wu J, Lu T, Zhang Z. Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Sivamani E, Li X, Nalapalli S, Barron Y, Prairie A, Bradley D, Doyle M, Que Q. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize. Transgenic Res 2015; 24:1017-27. [PMID: 26338266 DOI: 10.1007/s11248-015-9902-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/14/2015] [Indexed: 01/16/2023]
Abstract
Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.
Collapse
Affiliation(s)
| | - Xianggan Li
- Syngenta Biotechnology China Co. Ltd, Beijing, People's Republic of China
| | | | - Yoshimi Barron
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Anna Prairie
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - David Bradley
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Michele Doyle
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| |
Collapse
|
25
|
Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton MDM. Maize transformation technology development for commercial event generation. FRONTIERS IN PLANT SCIENCE 2014; 5:379. [PMID: 25140170 PMCID: PMC4122164 DOI: 10.3389/fpls.2014.00379] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 05/22/2023]
Abstract
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.
Collapse
Affiliation(s)
- Qiudeng Que
- Syngenta Biotechnology, Inc.Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Plackett AR, Huang L, Sanders HL, Langdale JA. High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment. PLANT PHYSIOLOGY 2014; 165:3-14. [PMID: 24623851 PMCID: PMC4012588 DOI: 10.1104/pp.113.231357] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/11/2014] [Indexed: 05/18/2023]
Abstract
Ferns represent the most closely related extant lineage to seed plants. The aquatic fern Ceratopteris richardii has been subject to research for a considerable period of time, but analyses of the genetic programs underpinning developmental processes have been hampered by a large genome size, a lack of available mutants, and an inability to create stable transgenic lines. In this paper, we report a protocol for efficient stable genetic transformation of C. richardii and a closely related species Ceratopteris thalictroides using microparticle bombardment. Indeterminate callus was generated and maintained from the sporophytes of both species using cytokinin treatment. In proof-of-principle experiments, a 35S::β-glucuronidase (GUS) expression cassette was introduced into callus cells via tungsten microparticles, and stable transformants were selected via a linked hygromycin B resistance marker. The presence of the transgene in regenerated plants and in subsequent generations was validated using DNA-blot analysis, reverse transcription-polymerase chain reaction, and GUS staining. GUS staining patterns in most vegetative tissues corresponded with constitutive gene expression. The protocol described in this paper yields transformation efficiencies far greater than those previously published and represents a significant step toward the establishment of a tractable fern genetic model.
Collapse
|
27
|
King ZR, Bray AL, Lafayette PR, Parrott WA. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.). PLANT CELL REPORTS 2014; 33:313-22. [PMID: 24177598 DOI: 10.1007/s00299-013-1531-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 05/07/2023]
Abstract
Transformation of elite switchgrass (Panicum virgatum L.) genotypes would facilitate the characterization of genes related to cell wall recalcitrance to saccharification. However, transformation of explants from switchgrass plants has remained difficult. Therefore, the objective of this study was to develop a biolistic transformation protocol for elite genotypes. Three switchgrass genotypes (ST1, ST2, and AL2) were previously selected for tissue culture responsiveness. One genotype, SA37, was selected for further use due to its improved formation of callus amenable to transformation. Various medium sets were compared and a previously published medium set provided cultures with >96 % embryogenic callus, and data on transient and stable gene expression of RFP were used to optimize biolistic parameters, and further validate the switchgrass (PvUbi1) promoter. SA37 proved to be the most transformable, whereas eight transgenic calli on average were recovered per bombardment of 20 calli (40 % efficiency) when using a three-day day preculture step, 0.6 M osmotic adjustment medium, 4,482 kPa rupture disks and 0.4 μm gold particles which traveled 9 cm before hitting the target callus tissue. Regenerability was high, especially for ST2, for which it is possible to recover on average over 400 plants per half-gram callus tissue. It is now possible to routinely and efficiently engineer elite switchgrass genotypes using biolistic transformation.
Collapse
Affiliation(s)
- Zachary R King
- Institute for Plant Breeding, Genetics and Genomics, The University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA,
| | | | | | | |
Collapse
|
28
|
Liu G, Campbell BC, Godwin ID. Sorghum genetic transformation by particle bombardment. Methods Mol Biol 2014; 1099:219-34. [PMID: 24243207 DOI: 10.1007/978-1-62703-715-0_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Particle bombardment transformation describes the acceleration of high-velocity microparticles coated with exotic genes through the plant-protective cell walls, in order for the introduced genes to be integrated into the host genome. This technique has proven to be an effective and versatile approach towards plant genetic modification in preceding decades. Particle bombardment has been successfully applied to cereals including rice, maize, wheat, barley, and sorghum. Historically, sorghum has been considered as one of the most recalcitrant major crops with regard to successful genetic transformation; however, tremendous progress has been made in recent years. Transformation efficiency by particle bombardment has now improved from approximately 1 % to in excess of 20 % utilizing an optimized tissue culture and DNA delivery system. The protocol described in this chapter routinely generates transformants at 10-25 % efficiency within sorghum genotype Tx430. The process generally takes 11-16 weeks from initiation of immature embryos to planting of transformants. This protocol covers the operation of both the Bio-Rad PDS-1000/He System and particle inflow gun. Three factors are crucial to an efficient particle bombardment transformation system: (1) an efficient tissue culture system, (2) a highly efficient DNA delivery system, and (3) an effective selection strategy.
Collapse
Affiliation(s)
- Guoquan Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
29
|
Davies KM, Deroles SC, Boase MR, Hunter DA, Schwinn KE. Biolistics-based gene silencing in plants using a modified particle inflow gun. Methods Mol Biol 2013; 940:63-74. [PMID: 23104334 DOI: 10.1007/978-1-62703-110-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi) is one of the most commonly used techniques for examining the function of genes of interest. In this chapter we present two examples of RNAi that use the particle inflow gun for delivery of the DNA constructs. In one example transient RNAi is used to show the function of an anthocyanin regulatory gene in flower petals. In the second example stably transformed cell cultures are produced with an RNAi construct that results in a change in the anthocyanin hydroxylation pattern.
Collapse
Affiliation(s)
- Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
30
|
Vyacheslavova AO, Berdichevets IN, Tyurin AA, Shimshilashvili KR, Mustafaev ON, Goldenkova-Pavlova IV. Expression of heterologous genes in plant systems: New possibilities. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412110130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Nandy S, Srivastava V. Marker-free site-specific gene integration in rice based on the use of two recombination systems. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:904-12. [PMID: 22686401 DOI: 10.1111/j.1467-7652.2012.00715.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transgene integration mediated by heterologous site-specific recombination (SSR) systems into the dedicated genomic sites has been demonstrated in a few different plant species. This approach of plant transformation generates a precise site-specific integration (SSI) structure consisting of a single copy of the transgene construct. As a result, stable transgene expression correlated with promoter strength and gene copy number is observed among independent transgenic lines and faithfully transmitted through subsequent generations. Site-specific integration approaches use selectable marker genes, removal of which is necessary for the implementation of this approach as a biotechnology application. As SSR systems are also excellent tools for excising marker genes from transgene locus, a molecular strategy involving gene integration followed by marker excision, each mediated by a distinct recombination system, was earlier proposed. Experimental validation of this approach is the focus of this work. Using FLPe-FRT system for site-specific gene integration and heat-inducible Cre-lox for marker gene excision, marker-free SSI lines were developed in the first generation itself. More importantly, progeny derived from these lines inherited the marker-free locus, indicating efficient germinal transmission. Finally, as the transgene expression from SSI locus was not altered upon marker excision, this method is suitable for streamlining the production of marker-free SSI lines.
Collapse
Affiliation(s)
- Soumen Nandy
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
32
|
Jackson MA, Anderson DJ, Birch RG. Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 2012; 22:143-51. [PMID: 22869288 DOI: 10.1007/s11248-012-9639-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022]
Abstract
Transgene integration complexity in the recipient genome can be an important determinant of transgene expression and field performance in transgenic crops. We provide the first direct comparison of Agrobacterium-mediated transformation (AMT) and particle bombardment using whole plasmid (WP) and excised minimal cassettes (MC), for transformation efficiency, transgene integration complexity and transgene expression in plants. To enable direct comparison, a selectable marker and a luciferase reporter gene were linked in identical configurations in plasmids suitable for AMT or direct gene transfer into sugarcane. Transformation efficiencies were similar between WP and MC when equal molar DNA quantities were delivered. When the MC concentration was reduced from 66 to 6.6 ng per shot, transformation efficiency dropped fourfold, to a level equivalent with AMT in amenable genotype Q117. The highest proportion of transformants combining low copy number (estimated below two integrated copies by qPCR) with expression of the non-selected reporter gene was obtained using AMT (55 %) or MC at low DNA concentration (30 %). In sugarcane, both of these methods yielded high-expressing, single-copy transgenic plant lines at a workable efficiency for practical plant improvement; but AMT is currently limited to a few amenable genotypes. These methods are best coupled with rapid early screens for desired molecular characteristics of transformants, e.g. PCR screens for low copy number and/or transcription of the gene of practical interest.
Collapse
Affiliation(s)
- Mark A Jackson
- The University of Queensland, Hines Plant Science Building, Mansfield Place, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
33
|
Qin S, Lin H, Jiang P. Advances in genetic engineering of marine algae. Biotechnol Adv 2012; 30:1602-13. [PMID: 22634258 DOI: 10.1016/j.biotechadv.2012.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/12/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.
Collapse
Affiliation(s)
- Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | | | | |
Collapse
|
34
|
Mann DGJ, Lafayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H, Dixon RA, Parrott WA, Neal Stewart C. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:226-36. [PMID: 21955653 DOI: 10.1111/j.1467-7652.2011.00658.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.
Collapse
Affiliation(s)
- David G J Mann
- Department of Plant Sciences, The University of Tennessee, Knoxville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Peterhansel C. Best practice procedures for the establishment of a C(4) cycle in transgenic C(3) plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3011-3019. [PMID: 21335437 DOI: 10.1093/jxb/err027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
C(4) plants established a mechanism for the concentration of CO(2) in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase in order to saturate the enzyme with substrate and substantially to reduce the alternative fixation of O(2) that results in energy losses. Transfer of the C(4) mechanism to C(3) plants has been repeatedly tested, but none of the approaches so far resulted in transgenic plants with enhanced photosynthesis or growth. Instead, often deleterious effects were observed. A true C(4) cycle requires the co-ordinated activity of multiple enzymes in different cell types and in response to diverse environmental and metabolic stimuli. This review summarizes our current knowledge about the most appropriate regulatory elements and coding sequences for the establishment of C(4) protein activities in C(3) plants. In addition, technological breakthroughs for the efficient transfer of the numerous genes probably required to transform a C(3) plant into a C(4) plant will be discussed.
Collapse
Affiliation(s)
- Christoph Peterhansel
- Institute of Botany, Leibniz University Hannover, Herrenhaeuser Straße 2, D-30419 Hannover, Germany.
| |
Collapse
|
36
|
Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue. Methods Mol Biol 2011; 710:343-54. [PMID: 21207279 DOI: 10.1007/978-1-61737-988-8_23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maize (Zea mays L.) is the most important cereal food crop in sub-Saharan Africa and Latin America, and a key feed crop in Asia, whereas pearl millet (Pennisetum glaucum (L.) R. Br.) is a staple food that supplies a major proportion of calories and protein to large segments of the populations living in the semi-arid tropical regions of Africa and Asia. The limitations of biological gene transfer with Agrobacterium tumefaciens specifically related to recalcitrant cereal crops, led to the development of alternative methods of which high-velocity microprojectiles, biolistic genetic transfer is the most successful and also the most widely employed. Agrobacterium facilitated transformation is the method of choice especially for deregulation of commercial transgenic food crop products, but biolistic-mediated transformation is still valid for proof of concept and functional genomics applications. Biolistic-mediated transformation and the production of transgenic plantlets via somatic embryogenesis of two maize strains viz. Hi-II (a laboratory strain) and M37W (a South African elite white maize genotype) as well as a pearl millet strain (842B) are described in this chapter. The stages described include: (1) proliferation of immature zygotic embryos for biolistic-mediated transformation, (2) induction and maintenance of transgenic embryogenic tissue on selection medium; (3) maturation (both morphological and physiological) of transgenic somatic embryos; and (4) germination of the somatic embryos to putative transgenic primary events. Maize and pearl millet cultures were regenerated via somatic embryogenesis as they are bipolar structures that shoot and root simultaneously. The culture media described in this chapter rarely induced or regenerated plantlets via organogenesis.
Collapse
|
37
|
Abstract
Plant genetic engineering has become one of the most important molecular tools in the modern molecular breeding of crops. Over the last decade, significant progress has been made in the development of new and efficient transformation methods in plants. Despite a variety of available DNA delivery methods, Agrobacterium- and biolistic-mediated transformation remain the two predominantly employed approaches. In particular, progress in Agrobacterium-mediated transformation of cereals and other recalcitrant dicot species has been quite remarkable. In the meantime, other transgenic-enabling technologies have emerged, including generation of marker-free transgenics, gene targeting, and chromosomal engineering. Although transformation of some plant species or elite germplasm remains a challenge, further advancement in transformation technology is expected because the mechanisms of governing the regeneration and transformation processes are now better understood and are being creatively applied to designing improved transformation methods or to developing new enabling technologies.
Collapse
|
38
|
Beyene G, Buenrostro-Nava MT, Damaj MB, Gao SJ, Molina J, Mirkov TE. Unprecedented enhancement of transient gene expression from minimal cassettes using a double terminator. PLANT CELL REPORTS 2011; 30:13-25. [PMID: 20967448 DOI: 10.1007/s00299-010-0936-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/16/2010] [Accepted: 09/24/2010] [Indexed: 05/24/2023]
Abstract
The potential of using vector-free minimal gene cassettes (MGCs) with a double terminator for the enhancement and stabilization of transgene expression was tested in sugarcane biolistic transformation. The MGC system used consisted of the enhanced yellow fluorescent protein (EYFP) reporter gene driven by the maize ubiquitin-1 (Ubi) promoter and a single or double terminator from nopaline synthase (Tnos) or/and Cauliflower mosaic virus 35S (35ST). Transient EYFP expression from Tnos or 35ST single terminator MGC was very low and unstable, typically peaking early (8-16 h) and diminishing rapidly (48-72 h) after bombardment. Addition of a ~260 bp vector sequence (VS) to the single MGC downstream of Tnos (Tnos + VS) or 35ST (35ST + VS) enhanced EYFP expression by 1.25- to 25-fold. However, a much more significant increase in EYFP expression was achieved when the VS in 35ST + VS was replaced by Tnos to generate a 35ST-Tnos double terminator MGC, reaching its maximum at 24 h post-bombardment. The enhanced EYFP expression from the double terminator MGC was maintained for a long period of time (168 h), resulting in an overall increase of 5- to 65-fold and 10- to 160-fold as compared to the 35ST and Tnos single terminator MGCs, respectively. The efficiency of the double terminator MGC in enhancing EYFP expression was also demonstrated in sorghum and tobacco, suggesting that the underlying mechanism is highly conserved among monocots and dicots. Our results also suggest the involvement of posttranscriptional gene silencing in the reduced and unstable transgene expression from single terminator MGCs in plants.
Collapse
Affiliation(s)
- Getu Beyene
- Department of Plant Pathology and Microbiology, Texas AgriLife Research, Texas A&M System, Weslaco, TX 78596-8344, USA
| | | | | | | | | | | |
Collapse
|
39
|
Strategies for high-level recombinant protein expression in transgenic microalgae: A review. Biotechnol Adv 2010; 28:910-8. [DOI: 10.1016/j.biotechadv.2010.08.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/03/2010] [Accepted: 08/13/2010] [Indexed: 11/22/2022]
|
40
|
Shiva Prakash N, Bhojaraja R, Shivbachan SK, Hari Priya GG, Nagraj TK, Prasad V, Srikanth Babu V, Jayaprakash TL, Dasgupta S, Spencer TM, Boddupalli RS. Marker-free transgenic corn plant production through co-bombardment. PLANT CELL REPORTS 2009; 28:1655-1668. [PMID: 19701639 DOI: 10.1007/s00299-009-0765-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 05/28/2023]
Abstract
The use of particle gun for the production of marker-free plants is scant in published literature. Perhaps this is a reflection of the widely held notion that the events generated through bombardment tend to have multiple copies of transgenes, usually integrated at a single locus, features which precludes segregating away the selectable marker gene. However, our previous studies have shown that single-copy integrants are obtained at a high frequency if limited quantity of DNA is used for bombardment. Also, the concatemerized insertion of transgenes has been demonstrated to be greatly reduced if "cassette DNA" is employed in place of whole plasmid DNA for bombardment. Based on the above findings, in the present study the feasibility of co-bombardment was evaluated for the production of marker-free plants in corn, employing a combination of limited quantity DNA and cassette DNA approaches for bombardment. Transgenic events were generated after co-bombardment of a selectable marker cassette containing the nptII gene (2.5 ng per shot) and a GUS gene cassette (15 ng per shot). Among these events single-copy integrants for nptII gene occurred at an average frequency of 68% within which the co-expression frequency of GUS and nptII genes ranged from 41% to 80%. Marker-free corn plants could be identified from the progeny of 28 out of the 103 R0 co-expressing events screened. The results demonstrate that by using cassette DNA and low quantities of DNA for bombardment, marker-free plants are produced at efficiencies comparable to that of Agrobacterium-based co-transformation methods.
Collapse
|