1
|
Tian W, Zhang T, Zhao J, Dong Y, Li Y, Zhao Z, Gao F, Wu X, Zhang B, Fang Y, Xie Z, Guo H. HIGS-mediated crop protection against cotton aphids. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:692-694. [PMID: 39636291 PMCID: PMC11869182 DOI: 10.1111/pbi.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Wen Tian
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Tao Zhang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Present address:
Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
| | - Jian‐Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Yong‐Mei Dong
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources UtilizationInstitute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation ScienceShiheziChina
| | - You‐Zhong Li
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources UtilizationInstitute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation ScienceShiheziChina
| | - Zeng‐Qiang Zhao
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources UtilizationInstitute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation ScienceShiheziChina
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xue‐Ming Wu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Bo‐Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yuan‐Yuan Fang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zong‐Ming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources UtilizationInstitute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation ScienceShiheziChina
| | - Hui‐Shan Guo
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Wang W, Ghafar MA, Liuyang L, Haq IU, Cui L, Yuan H, Wang L. Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cycloxaprid and Pooled siRNAs to Enhance Control Efficacy in Diaphorina citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3353-3362. [PMID: 39886846 DOI: 10.1021/acs.jafc.4c08172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
RNA pesticides have emerged as a promising alternative to conventional chemical pesticides due to their high specificity and minimal environmental impact. However, the instability of RNA molecules in the environment and the challenges associated with their effective delivery to target pests limit their broader application. This study addresses these challenges by developing a dual delivery system using chitosan (CS) and Metal-Organic Frameworks (MOFs) to enhance the delivery and efficacy of double-stranded RNA (dsRNA) and cycloxaprid against Diaphorina citri, a vector of citrus greening disease. The CS-MOF nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and dynamic light scattering (DLS). Insect bioassays demonstrated that the codelivery system significantly improved insecticidal activity, achieving over 80% mortality in D. citri within 2 days. The results indicate that the encapsulation of dsRNA within MOFs enhances its stability, while the controlled release properties of the nanoparticles improve the efficacy of cycloxaprid. This novel approach shows great potential in overcoming the limitations of RNA pesticides and offers a sustainable solution for pest management in agriculture. Future research should optimize the delivery system, conduct field trials, and explore its applicability to other agricultural pests.
Collapse
Affiliation(s)
- Wenjie Wang
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Muhammad Adeel Ghafar
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liuyang
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Inzamam Ul Haq
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liande Wang
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Chaudhary D, Jeena AS, Rohit, Gaur S, Raj R, Mishra S, Kajal, Gupta OP, Meena MR. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol 2024; 196:5681-5710. [PMID: 38175411 DOI: 10.1007/s12010-023-04850-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.
Collapse
Affiliation(s)
- Divya Chaudhary
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anand Singh Jeena
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Rohit
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Sonali Gaur
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Rishi Raj
- ICAR- Sugarcane Breeding Institute-Regional Centre, Karnal, 132001, Haryana, India
| | | | - Kajal
- Department of Biotechnology, Chandigarh University, Chandigarh, 140143, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India.
| | | |
Collapse
|
4
|
Saakre M, Jaiswal S, Rathinam M, Raman KV, Tilgam J, Paul K, Sreevathsa R, Pattanayak D. Host-Delivered RNA Interference for Durable Pest Resistance in Plants: Advanced Methods, Challenges, and Applications. Mol Biotechnol 2024; 66:1786-1805. [PMID: 37523020 DOI: 10.1007/s12033-023-00833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops.
Collapse
Affiliation(s)
- Manjesh Saakre
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Sandeep Jaiswal
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
- ICAR-Research Complex for NEH Region, Umiam, Meghalaya- 793103, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - K Venkat Raman
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Jyotsana Tilgam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Krishnayan Paul
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
5
|
Cedden D, Güney G, Scholten S, Rostás M. Lethal and sublethal effects of orally delivered double-stranded RNA on the cabbage stem flea beetle, Psylliodes chrysocephala. PEST MANAGEMENT SCIENCE 2024; 80:2282-2293. [PMID: 37020381 DOI: 10.1002/ps.7494] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The cabbage stem flea beetle (Psylliodes chrysocephala) is one of the most important insect pests of oilseed rape (Brassica napus) in northern Europe. The emergence of insecticide-resistant populations and the ban on neonicotinoid seed treatments have made the management of this pest challenging and research is needed to develop alternative strategies such as RNA interference (RNAi). We investigated lethal and sublethal effects of orally delivered double-stranded (ds)RNAs targeting P. chrysocephala orthologs of Sec23 and vacuolar adenosine triphosphatase subunit G (VatpG), which are involved in endoplasmic reticulum-Golgi transport and organelle acidification, respectively. RESULTS Feeding bioassays on P. chrysocephala adults showed that the highest concentration (200 ng/leaf disk) of dsSec23 caused mortalities of 76% and 56% in pre-aestivating and post-aestivating beetles, respectively, while the same concentration of dsVatpG led to mortality rates of ~34% in both stages. Moreover, sublethal effects, such as decreased feeding rates and attenuated locomotion were observed. Small RNA sequencing and gene expression measurements following the delivery of dsRNAs demonstrated the generation of ~21 nucleotide-long small interfering RNAs and a systemic RNAi response in P. chrysocephala. CONCLUSION We demonstrate that P. chrysocephala is a promising candidate for developing RNAi-based pest management strategies. Further research is necessary to identify more effective target genes and to assess potential non-target effects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Doga Cedden
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Li X, Li W, Zhang S, Sang W, Peng Y, Zhao Y. RNA interference against the putative insulin receptor substrate gene IRS1 affects growth and development in the pest natural enemy Pardosa pseudoannulata. PEST MANAGEMENT SCIENCE 2024; 80:648-660. [PMID: 37756442 DOI: 10.1002/ps.7792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Insulin signalling pathways play crucial roles in regulating growth and development in insects, but their effects on the growth and development of Arachnids, such as spiders, have rarely been studied. As a valuable pest natural enemy in agricultural fields, the molecular mechanisms of insulin signalling pathway-mediated growth and development of the wolf spider, Pardosa pseudoannulata, are of particular interest. RESULTS In this study, we identified and characterized six insulin signalling pathway genes - InR, InR2, IRS1, PI3K1, PI3K2, and PDK - in Pardosa pseudoannulata. Real-time quantitative polymerase chain reaction results were used to analyse the relative expression levels of the six genes in different developmental instars and tissues, and in response to starvation treatment. In addition, the function of the insulin receptor substrate (IRS1) gene was investigated using RNA interference technology, which found that IRS1 significantly influenced nutrient content, developmental duration, body weight, and gonad development. CONCLUSION This study revealed the roles of six key insulin signalling pathway genes in Pardosa pseudoannulata, and in particular the importance of the IRS1 gene in regulating growth and development in the spider. The results lay the foundation for further research on the internal regulation mechanisms of growth and development in Araneae species, and also provide a reference for the artificial breeding of spiders. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuelai Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wen Sang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Ahmad S, Jamil M, Jaworski CC, Wu Y, Palma-Onetto V, Lyu B, Luo Y. Knockdown of the ecdysone receptor disrupts development and causes mortality in the melon fly, Zeugodacus cucurbitae. INSECT MOLECULAR BIOLOGY 2023; 32:738-747. [PMID: 37646607 DOI: 10.1111/imb.12867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Cucurbits are important economic plants that are attacked by numerous pests, among which the melon fly Zeugodacus cucurbitae is extremely problematic. New sustainable pest control strategies are necessary to replace chemical insecticides that are harmful to the environment, human health and nontarget species. The RNA interference (RNAi) technology is one of the most promising tools due to high efficiency and species specificity. We developed an RNAi strategy targeting the ecdysone receptor (ECR) of Z. cucurbitae, which plays an important role in moulting and reproduction. We identified, described and isolated the ECR gene of Z. cucurbitae and measured its expression pattern across developmental stages and tissues. ZcECR knockdown via dsZcECR ingestion caused a significant larval mortality and abnormal phenotypes in pupae and adults. About 68% of larvae fed with a dsZcECR-treated diet failed to enter the pupal stage and died. In addition, ZcECR knockdown dramatically reduced pupal weight (by 3.24 mg on average) and fecundity (by about 23%). RNAi targeting the ECR gene is therefore a promising method to control Z. cucurbitae, paving the way for the development of novel sustainable and highly specific control strategies.
Collapse
Affiliation(s)
- Shakil Ahmad
- School of Plant Protection, Department of Pesticide Science, Hainan University, Haikou, Hainan, China
| | - Momana Jamil
- School of Plant Protection, Department of Pesticide Science, Hainan University, Haikou, Hainan, China
| | | | - Yuejie Wu
- School of Plant Protection, Department of Pesticide Science, Hainan University, Haikou, Hainan, China
| | - Valeria Palma-Onetto
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Baoqian Lyu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Yanping Luo
- School of Plant Protection, Department of Pesticide Science, Hainan University, Haikou, Hainan, China
| |
Collapse
|
8
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Gao L, Wang Y, Abbas M, Zhang T, Ma E, Merzendorfer H, Zhu KY, Zhang J. Both LmDicer-1 and two LmDicer-2s participate in siRNA-mediated RNAi pathway and contribute to high gene silencing efficiency in Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103865. [PMID: 36336194 DOI: 10.1016/j.ibmb.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Dicers belong to a class of large RNase III multidomain ribonucleases and are central components of the RNA interference (RNAi) pathways. In insects, Dicer-2 has been known to cleave long double-stranded RNA (dsRNA) in small interfering RNA (siRNA)-mediated-RNAi pathway. However, Dicer-1 is responsible for cleaving precursor microRNAs (pre28 miRNAs) in miRNA-mediated RNAi pathway. In this study, we identified one LmDicer-1 and two LmDicer-2 (LmDicer-2a and LmDicer-2b) genes in Locusta migratoria. The RNAi of RNAi assay showed that knockdown of each of the Dicer genes reduced RNAi efficiency against a target gene (Lmβ-Tubulin), suggesting that all these genes participated in the siRNA-mediated RNAi pathway. Sequence analyses of the siRNAs generated from dsLmβ-Tubulin after silencing each LmDicer gene showed no significant difference in the pattern of siRNAs mapped to dsLmβ-Tubulin. This result indicated that all the three LmDicers are capable of generating siRNAs from the dsRNA. We then generated recombinant proteins consisting of different domains using Escherichia coli expression system and incubated each recombinant protein with dsLmβ-Tubulin. We found that the recombinant Dicer proteins successfully cleaved dsLmβ-Tubulin. However, LmDicer-2a-R lacking dsRBD domain lost activity, suggesting that dsRBD domain is critical for Dicer function. Furthermore, overexpression of these proteins in Drosophila S2 cells improved RNAi efficiency. Our siRNA affinity chromatography and LC-MS/MS analysis identified LmDicer-2a, LmDicer-2b, LmR2D2, LmAgo2a, LmAgo1, LmStaufen and LmTARBP2 as constituents of RNA-induced silencing complex. Taken together, these data show that both LmDicer-1 and two LmDicer-2s all participate in siRNA-mediated RNAi pathway and likely contribute to high RNAi efficiency in L. migratoria.
Collapse
Affiliation(s)
- Lu Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tingting Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | | | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS, 66506, USA.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
10
|
Ribeiro TP, Vasquez DDN, Macedo LLP, Lourenço-Tessutti IT, Valença DC, Oliveira-Neto OB, Paes-de-Melo B, Rodrigues-Silva PL, Firmino AAP, Basso MF, Lins CBJ, Neves MR, Moura SM, Tripode BMD, Miranda JE, Silva MCM, Grossi-de-Sa MF. Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW ( Anthonomus grandis). Int J Mol Sci 2022; 23:13713. [PMID: 36430188 PMCID: PMC9691246 DOI: 10.3390/ijms232213713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.
Collapse
Affiliation(s)
- Thuanne P. Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Biotechnology and Molecular Biology Department, Federal University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - David C. Valença
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Osmundo B. Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
- Biochemistry and Molecular Biology Department, Integrated Faculties of the Educational Union of Planalto Central, Brasilia 70675-760, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | - Alexandre A. P. Firmino
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Max Planck Institute Molecular Plant Physiol, 14476 Potsdam, Germany
| | - Marcos F. Basso
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Camila B. J. Lins
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Maysa R. Neves
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Stefanie M. Moura
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | | | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| |
Collapse
|
11
|
Hough J, Howard JD, Brown S, Portwood DE, Kilby PM, Dickman MJ. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front Bioeng Biotechnol 2022; 10:980592. [PMID: 36299286 PMCID: PMC9588923 DOI: 10.3389/fbioe.2022.980592] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 01/09/2023] Open
Abstract
Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides.
Collapse
Affiliation(s)
- James Hough
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - John D. Howard
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingtom
| | - David E. Portwood
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M. Kilby
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| |
Collapse
|
12
|
Niu L, Yan H, Sun Y, Zhang D, Ma W, Lin Y. Nanoparticle facilitated stacked-dsRNA improves suppression of the Lepidoperan pest Chilo suppresallis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105183. [PMID: 36127045 DOI: 10.1016/j.pestbp.2022.105183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, gene knockdown technology using double-stranded RNA (dsRNA) has been widely used as an environment-friendly pest control strategy, but its instability and limited cellular uptake have limited its overall effect. Studies have shown that the efficiency of single dsRNA can be improved by using various nanomaterials. However, the effect of stacked-dsRNA wrapped by nanomaterial on pests remains unclear. In the present study, both CYP15C1 and C-factor genes were cloned from the midgut of C. suppressalis, and the transcript of C-factor is most highly expressed in heads. Feeding a dsCYP15C1 or dsC-factor - nanomaterial mixture can downregulate the gene expression and significantly increase larval mortality. More importantly, feeding the stacked-dsRNA wrapped by nanomaterial can significantly increase the mortality of C. suppressalis, compared with feeding dsCYP15C1 or dsC-factor - nanomaterial mixture alone. These results showed that CYP15C1 and C-factor could be potential targets for an effective management of C. suppressalis, and we developed a nanoparticle-facilitated stacked-dsRNA strategy in the control of C. suppresallis. Our research provides a theoretical basis for gene function analysis and field pest control, and will promote the application of RNAi technology in the stacked style of pest control.
Collapse
Affiliation(s)
- Lin Niu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haixia Yan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - Yajie Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| |
Collapse
|
13
|
Li X, Liu X, Lu W, Yin X, An S. Application progress of plant-mediated RNAi in pest control. Front Bioeng Biotechnol 2022; 10:963026. [PMID: 36003536 PMCID: PMC9393288 DOI: 10.3389/fbioe.2022.963026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-based biopesticides are novel biologic products, developed using RNAi principles. They are engineered to target genes of agricultural diseases, insects, and weeds, interfering with their target gene expression so as to hinder their growth and alleviate their damaging effects on crops. RNAi-based biopesticides are broadly classified into resistant plant-based plant-incorporated protectants (PIPs) and non-plant-incorporated protectants. PIP RNAi-based biopesticides are novel biopesticides that combine the advantages of RNAi and resistant transgenic crops. Such RNAi-based biopesticides are developed through nuclear or plastid transformation to breed resistant plants, i.e., dsRNA-expressing transgenic plants. The dsRNA of target genes is expressed in the plant cell, with pest and disease control being achieved through plant-target organism interactions. Here, we review the action mechanism and strategies of RNAi for pest management, the development of RNAi-based transgenic plant, and the current status and advantages of deploying these products for pest control, as well as the future research directions and problems in production and commercialization. Overall, this study aims to elucidate the current development status of RNAi-based biopesticides and provide guidelines for future research.
Collapse
|
14
|
Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Sci Rep 2022; 12:10405. [PMID: 35729318 PMCID: PMC9213516 DOI: 10.1038/s41598-022-14667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
RNA interference (RNAi) triggered by exogenous double-stranded RNA (dsRNA) is a powerful tool to knockdown genetic targets crucial for the growth and development of agriculturally important insect pests. Helicoverpa armigera is a pest feeding on more than 30 economically important crops worldwide and a major threat. Resistance to insecticides and Bt toxins has been gradually increasing in the field. RNAi-mediated knockdown of H. armigera genes by producing dsRNAs homologous to genetic targets in bacteria and plants has a high potential for insect management to decrease agricultural loss. The acetylcholinesterase (AChE), ecdysone receptor (EcR) and v-ATPase-A (vAA) genes were selected as genetic targets. Fragments comprising a coding sequence of < 500 bp were cloned into the L4440 vector for dsRNA production in bacteria and in a TRV-VIGS vector in antisense orientation for transient expression of dsRNA in Solanum tuberosum leaves. After ingesting bacterial-expressed dsRNA, the mRNA levels of the target genes were significantly reduced, leading to mortality and abnormal development in larva of H. armigera. Furthermore, the S. tuberosum plants transformed with TRV-VIGS expressing AChE exhibited higher mortality > 68% than the control plants 17%, recorded ten days post-feeding and significant resistance in transgenic (transient) plants was observed. Moreover, larval lethality and molting defects were observed in larva fed on potato plants expressing dsRNA specific to EcR. Analysis of transcript levels by quantitative RT–PCR revealed that larval mortality was attributable to the knockdown of genetic targets by RNAi. The results demonstrated that down-regulation of H. armigera genes involved in ATP hydrolysis, transcriptional stimulation of development genes and neural conduction has aptitude as a bioinsecticide to control H. armigera population sizes and therefore decreases crop loss.
Collapse
|
15
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:885128. [PMID: 35645997 PMCID: PMC9141053 DOI: 10.3389/fpls.2022.885128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, New Delhi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, New Delhi, India
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
16
|
Wang G, Xu Z, Wang F, Huang Y, Xin Y, Liang S, Li B, Si H, Sun L, Wang Q, Ding X, Zhu X, Chen L, Yu L, Lindsey K, Zhang X, Jin S. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biol 2022; 20:45. [PMID: 35164736 PMCID: PMC8845244 DOI: 10.1186/s12915-022-01232-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/13/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Base editors (BEs) display diverse applications in a variety of plant species such as Arabidopsis, rice, wheat, maize, soybean, and cotton, where they have been used to mediate precise base pair conversions without the collateral generation of undesirable double-stranded breaks (DSB). Studies of single-nucleotide polymorphisms (SNPs) underpinning plant traits are still challenging, particularly in polyploidy species where such SNPs are present in multiple copies, and simultaneous modification of all alleles would be required for functional analysis. Allotetraploid cotton has a number of homoeologous gene pairs located in the A and D sub-genomes with considerable SNPs, and it is desirable to develop adenine base editors (ABEs) for efficient and precise A-to-G single-base editing without DSB in such complex genome. RESULTS We established various ABE vectors based on different engineered adenosine deaminase (TadA) proteins fused to Cas9 variants (dCas9, nCas9), enabling efficient A to G editing up to 64% efficiency on-target sites of the allotetraploid cotton genome. Comprehensive analysis showed that GhABE7.10n exhibited the highest editing efficiency, with the main editing sites specifically located at the position A5 (counting the PAM as positions 21-23). Furthermore, DNA and RNA off-target analysis of cotton plants edited with GhABE7.10n and GhABE7.10d by whole genome and whole-transcriptome sequencing revealed no DNA off-target mutations, while very low-level RNA off-target mutations were detected. A new base editor, namely GhABE7.10dCpf1 (7.10TadA + dCpf1), that recognizes a T-rich PAM, was developed for the first time. Targeted A-to-G substitutions generated a single amino acid change in the cotton phosphatidyl ethanolamine-binding protein (GhPEBP), leading to a compact cotton plant architecture, an ideotype for mechanized harvesting of modern cotton production. CONCLUSIONS Our data illustrate the robustness of adenine base editing in plant species with complex genomes, which provides efficient and precise toolkit for cotton functional genomics and precise molecular breeding.
Collapse
Affiliation(s)
- Guanying Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Yuefan Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Yanfeng Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Sijia Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Bo Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Wulumuqi, Xinjaing, 830000, People's Republic of China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xiao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xiangqian Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Luo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lu Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
17
|
Lei J, Tan Y, List F, Puckett R, Tarone AM, Vargo EL, Zhu-Salzman K. Cloning and Functional Characterization of a Double-Stranded RNA-Degrading Nuclease in the Tawny Crazy Ant (Nylanderia fulva). Front Physiol 2022; 13:833652. [PMID: 35153841 PMCID: PMC8836465 DOI: 10.3389/fphys.2022.833652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
RNA interference is a powerful tool that post-transcriptionally silences target genes. However, silencing efficacy varies greatly among different insect species. Recently, we attempted to knock down some housekeeping genes in the tawny crazy ant (Nylanderia fulva), a relatively new invasive species in the southern United States, but only achieved relatively low silencing efficiency when dsRNA was orally administered. Here, we detected divalent cation-dependent, dsRNA-degrading activity in the midgut fluid of worker ants in ex vivo assays. To determine whether dsRNA degradation could contribute to low effectiveness of oral RNAi in N. fulva, we cloned its sole dsRNase gene (NfdsRNase). The deduced amino acid sequence contained a signal peptide and an endonuclease domain. Sequence alignment indicated a high degree of similarity with well-characterized dsRNases, particularly the six key residues at active sites. We also identified dsRNase homologs from five other ant species and found a tight phylogenetic relationship among ant dsRNases. NfdsRNase is expressed predominantly in the abdomen of worker ants. Oral delivery of dsRNA of NfdsRNase significantly reduced the expression of NfdsRNase transcripts, and substantially suppressed dsRNA-degrading activity of worker ants’ midgut fluids as well. Our data suggest that dsRNA stability in the alimentary tract is an important factor for gene silencing efficiency in N. fulva, and that blocking NfdsRNase in gut lumen could potentially improve RNAi, a novel pest management tactic in control of N. fulva and other ant species.
Collapse
Affiliation(s)
- Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Yongan Tan
- Department of Entomology, Texas A&M University, College Station, TX, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fabian List
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Robert Puckett
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Edward L. Vargo
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, United States
- *Correspondence: Keyan Zhu-Salzman,
| |
Collapse
|
18
|
Hafeez M, Li X, Chen L, Ullah F, Huang J, Zhang Z, Zhang J, Siddiqui JA, Zhou SX, Ren XY, Imran M, Assiri MA, Lou Y, Lu Y. Molecular characterization and functional analysis of cytochrome P450-mediated detoxification CYP302A1 gene involved in host plant adaptation in Spodoptera frugieprda. FRONTIERS IN PLANT SCIENCE 2022; 13:1079442. [PMID: 36762173 PMCID: PMC9906809 DOI: 10.3389/fpls.2022.1079442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/30/2022] [Indexed: 05/13/2023]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a destructive and polyphagous pest of many essential food crops including maize and rice. The FAW is hard to manage, control, or eradicate, due to its polyphagous nature and voracity of feeding. Here, we report the characterization and functional analysis of the detoxification gene CYP302A1 and how S. frugieprda larvae use a detoxification mechanism to adapt host plants. Results demonstrated that CYP302A1 expression levels were much higher in midgut tissue and the older S. frugiperda larvae. Our current studies revealed the enhanced P450 activity in the midguts of S. frugiperda larvae after exposure to rice plants as compared to corn plants and an artificial diet. Furthermore, higher mortality was observed in PBO treated larvae followed by the exposure of rice plants as compared to the corn plant. The dsRNA-fed larvae showed downregulation of CYP302A1 gene in the midgut. At the same time, higher mortality, reduced larval weight and shorter developmental time was observed in the dsRNA-fed larvae followed by the exposure of rice plant as compared to the corn plant and DEPC-water treated plants as a control. These results concluded that the inducible P450 enzyme system and related genes could provide herbivores with an ecological opportunity to adapt to diverse host plants by utilizing secondary compounds present in their host plants.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Shu-xing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-yun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| |
Collapse
|
19
|
RNAi technology for plant protection and its application in wheat. ABIOTECH 2021; 2:365-374. [PMID: 36304420 PMCID: PMC9590511 DOI: 10.1007/s42994-021-00036-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
The RNAi technology takes advantage of the intrinsic RNA interference (RNAi) mechanism that exists in nearly all eukaryotes in which target mRNAs are degraded or functionally suppressed. Significant progress has been made in recent years where RNAi technology is applied to several crops and economic plants for protection against diseases like fungi, pests, and nematode. RNAi technology is also applied in controlling pathogen damages in wheat, one of the most important crops in the world. In this review, we first give a brief introduction of the RNAi technology and the underneath mechanism. We then review the recent progress of its utilization in crops, particular wheat. Finally, we discuss the existing challenges and prospect future development of this technology in crop protection.
Collapse
|
20
|
Wang WK, Yang HJ, Wang YL, Yang KL, Jiang LS, Li SL. Gossypol detoxification in the rumen and Helicoverpa armigera larvae: A review. ACTA ACUST UNITED AC 2021; 7:967-972. [PMID: 34703914 PMCID: PMC8521185 DOI: 10.1016/j.aninu.2021.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 11/18/2022]
Abstract
Gossypol, a phenolic compound found in the cotton plant, is widely distributed in cottonseed by-products. Although ruminant animals are believed to be more tolerant of gossypol toxicity than monogastric animals due to rumen microbial fermentation, the actual mechanisms of detoxification remain unclear. In contrast, the metabolic detoxification of gossypol by Helicoverpa armigera (Lepidoptera: Noctuidae) larvae has achieved great advances. The present review discusses the clinical signs of gossypol in ruminant animals, as well as summarizing advances in the study of gossypol detoxification in the rumen. It also examines the regulatory roles of several key enzymes in gossypol detoxification and transformation known in H. armigera. With the rapid development of modern molecular biotechnology and -omics technology strategies, evidence increasingly indicates that research into the biological degradation of gossypol in H. armigera larvae and some microbes, in terms of these key enzymes, could provide scientific insights that would underpin future work on microbial gossypol detoxification in the rumen, with the ultimate aim of further alleviating gossypol toxicity in ruminant animals.
Collapse
Affiliation(s)
- Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Corresponding author.
| | - Yan-Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai-Lun Yang
- College of Animal Sciences, Xinjiang Agricultural University, Urumuqi, 830052, China
| | - Lin-Shu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Sheng-Li Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Kaur R, Choudhury A, Chauhan S, Ghosh A, Tiwari R, Rajam MV. RNA interference and crop protection against biotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2357-2377. [PMID: 34744371 PMCID: PMC8526635 DOI: 10.1007/s12298-021-01064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Arundhati Ghosh
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ruby Tiwari
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
22
|
Salvador R, Maskin L, Niz J, Turica M, Pedarros A, Hopp E, Lewi D. RNAi Expression in Cotton for Control of Herbivorous Insects. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2360:217-233. [PMID: 34495518 DOI: 10.1007/978-1-0716-1633-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cultivated cotton (Gossypium hirsutum) is heavily attacked by various species of insects worldwide and breeding of new varieties resistant to pests is still a hard battle to win. RNAi technology is an important reverse genetics tool to induce gene silencing in eukaryotic organisms and produce phenotypic modifications. In cotton, RNAi was applied to investigate gene function and enhance resistance to insects and pathogens. Different methods and techniques can be used to synthetize double stranded RNA (dsRNA) into plant cells. The Agrobacterium-mediated transformation is a common method to introduce RNAi binary plasmids into cotton genome and obtain stable transgenics plants. This methodology includes the coculture of cotton tissues with Agrobacterium cultures, selection of transgenic cells and induction of somatic embryogenesis to finally obtain transgenic plants after a relatively long period of time. The transient synthesis of dsRNA mediated by virus-induced gene silencing (VIGS) in cotton is an alternative to anticipate the silencing effect of a specific RNA sequence, prior to the development of a stable transgenic plant. VIGS vectors are incorporated into the plant by agroinfiltration technique. During VIGS replication inside plant cells, synthetized dsRNA allows the study on specific heterologous gene expression including the phenotypic effect on herbivorous target pests, thus facilitating a rapid evaluation of dsRNA expressed in cotton plants against individual insect target genes. Here we describe the complementation of these two techniques to evaluate RNAi-based cotton plant protection against insect pests.
Collapse
Affiliation(s)
- Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola (IMYZA-CICVyA), INTA, Hurlingham, Provincia de Buenos Aires, Argentina.
| | - Laura Maskin
- Instituto de Genética (IGEAF-CICVyA), INTA, Hurlingham, Provincia de Buenos Aires, Argentina
| | - José Niz
- Instituto de Microbiología y Zoología Agrícola (IMYZA-CICVyA), INTA, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Mariana Turica
- Instituto de Genética (IGEAF-CICVyA), INTA, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Analía Pedarros
- Instituto de Microbiología y Zoología Agrícola (IMYZA-CICVyA), INTA, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Esteban Hopp
- IABIMO-Instituto de Biotecnología (IB-CICVyA), INTA-CONICET, Hurlingham, Provincia de Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dalia Lewi
- Instituto de Genética (IGEAF-CICVyA), INTA, Hurlingham, Provincia de Buenos Aires, Argentina
| |
Collapse
|
23
|
Moreira-Pinto CE, Coelho RR, Leite AGB, Silveira DA, de Souza DA, Lopes RB, Macedo LLP, Silva MCM, Ribeiro TP, Morgante CV, Antonino JD, Grossi-de-Sa MF. Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. PEST MANAGEMENT SCIENCE 2021; 77:4054-4063. [PMID: 33896113 DOI: 10.1002/ps.6430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The hemolymph and insect gut together have an essential role in the immune defense against microorganisms, including the production of antimicrobial peptides (AMP). AMPs are mainly induced by two specific signaling pathways, Toll and immune deficiency (IMD). Here, we characterize the expression profile of four genes from both pathways and describe the importance of AgraRelish in the immune defense of Anthonomus grandis against the entomopathogenic fungus Metarhizium anisopliae by RNA interference (RNAi). RESULTS To characterize the pathway that is activated early during the A. grandis-M. anisopliae interaction, we assessed the expression profiles of AgraMyD88 and AgraDorsal (Toll pathway), AgraIMD and AgraRelish (IMD pathway), and several AMP genes. Interestingly, we found that IMD pathway genes are upregulated early, and Toll pathway genes are upregulated just 3 days after inoculation (DAI). Furthermore, nine AMPs were upregulated 24 h after fungus inoculation, including attacins, cecropins, coleoptericins, and defensins. AgraRelish knockdown resulted in a reduction in median lethal time (LT50 ) for M. anisopliae-treated insects of around 2 days compared to control treatments. In addition, AgraRelish remained knocked down at 3 DAI. Finally, we identified that AgraRelish knockdown increased fungal loads at 2 DAI compared to control treatments, possibly indicating a faster infection. CONCLUSIONS Our data indicate the influence of the IMD pathway on the antifungal response in A. grandis. Combining biocontrol and RNAi could significantly improve cotton boll weevil management. Hence, AgraRelish is a potential target for the development of biotechnological tools aimed at improving the efficacy of M. anisopliae against A. grandis.
Collapse
Affiliation(s)
- Clidia E Moreira-Pinto
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Roberta R Coelho
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Ana G B Leite
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Daniela A Silveira
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | | | - Rogerio B Lopes
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Leonardo L P Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
| | - Thuanne P Ribeiro
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Embrapa Semi-Arid, Petrolina, Brazil
| | - José D Antonino
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Departamento de Agronomia-Entomologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Catholic University of Brasilia, Brasília, Brazil
| |
Collapse
|
24
|
Bao W, Li A, Zhang Y, Diao P, Zhao Q, Yan T, Zhou Z, Duan H, Li X, Wuriyanghan H. Improvement of host-induced gene silencing efficiency via polycistronic-tRNA-amiR expression for multiple target genes and characterization of RNAi mechanism in Mythimna separata. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1370-1385. [PMID: 33484609 PMCID: PMC8313139 DOI: 10.1111/pbi.13555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 05/09/2023]
Abstract
Host-induced gene silencing (HIGS) emerged as a new strategy for pest control. However, RNAi efficiency is reported to be low in Lepidoptera, which are composed of many important crop pests. To address this, we generated transgenic plants to develop HIGS effects in a maize pest, Mythimna separata (Lepidoptera, Noctuidae), by targeting chitinase encoding genes. More importantly, we developed an artificial microRNA (amiR) based PTA (polycistronic-tRNA-amiR) system for silencing multiple target genes. Compared with hpRNA (hairpin RNA), transgenic expression of a PTA cassette including an amiR for the gut-specific dsRNA nuclease gene MsREase, resulted in improved knockdown efficiency and caused more pronounced developmental abnormalities in recipient insects. When target gene siRNAs were analysed after HIGS and direct dsRNA/siRNA feeding, common features such as sense polarity and siRNA hotspot regions were observed, however, they differed in siRNA transitivity and major 20-24nt siRNA species. Core RNAi genes were identified in M. separata, and biochemical activities of MsAGO2, MsSID1 and MsDcr2 were confirmed by EMSA (electrophoretic mobility shift assay) and dsRNA cleavage assays, respectively. Taken together, we provide compelling evidence for the existence of the RNAi mechanism in M. separata by analysis of both siRNA signatures and RNAi machinery components, and the PTA system could potentially be useful for future RNAi control of lepidopteran pests.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yanan Zhang
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Ting Yan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Xugang Li
- Sino‐German Joint Research Center on Agricultural BiologyState Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
25
|
Silver K, Cooper AM, Zhu KY. Strategies for enhancing the efficiency of RNA interference in insects. PEST MANAGEMENT SCIENCE 2021; 77:2645-2658. [PMID: 33440063 DOI: 10.1002/ps.6277] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Low RNA interference (RNAi) efficiency in many insect pests has significantly prevented its widespread application for insect pest management. This article provides a comprehensive review of recent research in developing various strategies for enhancing RNAi efficiency. Our review focuses on the strategies in target gene selection and double-stranded RNA (dsRNA) delivery technologies. For target gene selection, genome-wide or large-scale screening strategies have been used to identify most susceptible target genes for RNAi. Other strategies include the design of dsRNA constructs and manipulate the structure of dsRNA to maximize the RNA efficiency for a target gene. For dsRNA delivery strategies, much recent research has focused on the applications of complexed or encapsulated dsRNA using various reagents, polymers, or peptides to enhance dsRNA stability and cellular uptake. Other dsRNA delivery strategies include genetic engineering of microbes (e.g. fungi, bacteria, and viruses) and plants to produce insect-specific dsRNA. The ingestion of the dsRNA-producing organisms or tissues will have lethal or detrimental effects on the target insect pests. This article also identifies obstacles to further developing RNAi for insect pest management and suggests future avenues of research that will maximize the potential for using RNAi for insect pest management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
26
|
Rascón-Cruz Q, González-Barriga CD, Iglesias-Figueroa BF, Trejo-Muñoz JC, Siqueiros-Cendón T, Sinagawa-García SR, Arévalo-Gallegos S, Espinoza-Sánchez EA. Plastid transformation: Advances and challenges for its implementation in agricultural crops. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Wu JJ, Mu LL, Kang WN, Ze LJ, Shen CH, Jin L, Anjum AA, Li GQ. RNA interference targeting ecdysone receptor blocks the larval-pupal transition in Henosepilachna vigintioctopunctata. INSECT SCIENCE 2021; 28:419-429. [PMID: 32162469 DOI: 10.1111/1744-7917.12777] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 05/10/2023]
Abstract
Henosepilachna vigintioctopunctata is a serious insect pest which attacks a large number of nightshades and cucurbits in Asian countries, Brazil and Australia. Prolonged application of traditional pesticides has caused environmental pollution and exerted deleterious effects on human health. Finding new approaches with high target specificity and low environmental contamination has become an urgent task. RNA interference (RNAi) induced by double-stranded RNA (dsRNA) is expected to be applicable to managing this pest. Here we evaluated the effects of Escherichia coli-expressed dsRNAs targeting ecdysone receptor (EcR) gene via dietary delivery in laboratory and foliar spraying in a greenhouse. The target transcript was successfully knocked down when the 4th-instar larvae had fed on potato foliage dipped with dsEcR in a laboratory bioassay. Around 85% of the HvEcR RNAi larvae remained as prepupae or became abnormal pupae, and failed to emerge into adults. Ingestion of dsEcR-immersed foliage by the 3rd-instar larvae effectuated a comparable RNAi response and brought about more severe defects: all the resultant larvae arrested development, remained as prepupae and finally died. For assay in the greenhouse, a dsEcR-contained E. coli suspension was directly sprayed to the foliage of greenhouse-growing potato plants and the 3rd- and 4th-instar larvae were transferred to the leaves. High RNAi efficacy was obtained and identical RNAi phenotypes were observed in treated larvae. In addition, spraying dsEcR reduced leaf damage. Our results indicate a possibility of practical application of dsEcR as an environmentally friendly RNA pesticide to control H. vigintioctopunctata larvae.
Collapse
Affiliation(s)
- Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wei-Nan Kang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Long-Ji Ze
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chen-Hui Shen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ahmad Ali Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors. Pathogens 2021; 10:pathogens10030320. [PMID: 33803131 PMCID: PMC8001667 DOI: 10.3390/pathogens10030320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is the type member of the genus Orthotospovirus in the family Tospoviridae and order Bunyavirales. TSWV, transmitted by several species of thrips, causes significant disease losses to agronomic and horticultural crops worldwide, impacting both the yield and quality of the produce. Management strategies include growing virus-resistant cultivars, cultural practices, and managing thrips vectors through pesticide application. However, numerous studies have reported that TSWV isolates can overcome host-plant resistance, while thrips are developing resistance to pesticides that were once effective. RNA interference (RNAi) offers a means of host defence by using double-stranded (ds) RNA to initiate gene silencing against invading viruses. However, adoption of this approach requires production and use of transgenic plants and thus limits the practical application of RNAi against TSWV and other viruses. To fully utilize the potential of RNAi for virus management at the field level, new and novel approaches are needed. In this review, we summarize RNAi and highlight the potential of topical or exogenous application of RNAi triggers for managing TSWV and thrips vectors.
Collapse
|
29
|
Liu J, Wang Z, Zhao J, Zhao L, Wang L, Su Z, Wei J. HrCYP90B1 modulating brassinosteroid biosynthesis in sea buckthorn (Hippophae rhamnoides L.) against fruit fly (Rhagoletis batava obseuriosa Kol.) infection. TREE PHYSIOLOGY 2021; 41:444-459. [PMID: 33238299 DOI: 10.1093/treephys/tpaa164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Sea buckthorn is an important ecological and economic tree species, and its berries have been severely damaged by sea buckthorn fruit fly, Rhagoletis batava obseuriosa Kol. (Diptera: Tephritidae) (RBO). Brassinosteroid (BR) is widely involved in stress tolerance of plant. However, limited knowledge exists regarding the molecular mechanisms underlying insect resistance. Here, we found that BR content was much higher in sea buckthorn fruits with RBO infection than non-infection, and the damage rates of fruit with BR treatment were significantly lower than that of non-treatment. It indicated that BR could enhance RBO resistance in sea buckthorn. Several BR biosynthesis-related HrCYPs genes (CYP85A1/85A2/90A1/90B1/90C1/90D1/92A6/724B/734A1) were obtained and identified based on transcriptome analysis, of which the most up-regulated gene in fruits was HrCYP90B1 under RBO and mechanical damage. Overexpression of HrCYP90B1 in Arabidopsis thaliana showed BR and salicylic acid (SA) content was significantly increased, and the substrate campesterol (CR) of HrCYP90B1 content decreased. Further studies revealed that silencing HrCYP90B1 by virus-induced gene silencing resulted in decrease of BR, SA and defense-related enzymes contents, and increase of CR content. Silencing HrCYP90B1 also caused suppression of SA and activation of jasmonic acid pathways, enabling enhanced RBO susceptibility and more damage of fruits. Taken together, we obtained evidence that HrCYP90B1 was a positive regulator in RBO resistance improvement in sea buckthorn, which will provide comprehensive insights into the tree defense system of sea buckthorn to pest infection.
Collapse
Affiliation(s)
- Jianfeng Liu
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Zhaoyu Wang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jie Zhao
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Lin Zhao
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Lei Wang
- Hebei Research Center for Geoanalysis, Baoding 071051, China
| | - Zhi Su
- Desert Forest Experimental Center, Chinese Academy of Forestry, Dengkou 015200, China
| | - Jianrong Wei
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
30
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
31
|
Gao L, Wang Y, Fan Y, Abbas M, Ma E, Cooper AMW, Silver K, Zhu KY, Zhang J. Multiple Argonaute family genes contribute to the siRNA-mediated RNAi pathway in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104700. [PMID: 32980067 DOI: 10.1016/j.pestbp.2020.104700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/04/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Argonautes (Ago) are important core proteins in RNA interference (RNAi) pathways of eukaryotic cells. Generally, it is thought that Ago1, Ago2 and Ago3 are involved in the miRNA (microRNA), siRNA (small interfering RNA) and piRNA (Piwi-interacting RNA)-mediated RNAi pathways, respectively. As a main component of the RNA-induced silencing complex (RISC), Ago2 plays an indispensable role in using siRNA to recognize and cut target messenger RNAs resulting in suppression of transcript levels, but the contributions of Ago1 and Ago3 to the siRNA-mediated RNAi pathway remain to be explored in many insect species. In this study, we investigated the contributions of four Ago genes (named LmAgo1, LmAgo2a and LmAgo2b and LmAgo3) to RNAi efficiency in Locusta migratoria by using both in vivo and in vitro experiments. Our results showed that suppression of each of the Ago genes significantly impaired RNAi efficiency when targeting Lmβ-tubulin transcripts, resulting in recovery of 48, 43.3, 61.4 or 26% of Lmβ-tubulin transcripts following RNAi-mediated suppression of LmAgo1, LmAgo2a, LmAgo2b, and LmAgo3, respectively. Furthermore, overexpression of LmAgo1, LmAgo2a, LmAgo2b, or LmAgo3 in a PAc5.1-V5/HisB vector and co-transfection with psicheck2 fluorescence vector in S2 cells reduced luciferase fluorescence by 38.3, 58.9, 53.3 or 55.6%, respectively. Taken together, our results showed that LmAgo1, LmAgo2a, LmAgo2b, and LmAgo3 each make significant contributions to RNAi efficiency in L. migratoria and suggest that the involvement of all four enzymes could be one of the major factors supporting robust RNAi responses observed in this species.
Collapse
Affiliation(s)
- Lu Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yunhe Fan
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Anastasia M W Cooper
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
32
|
The relationship between structural properties and activation of RAW264.7 and natural killer (NK) cells by sulfated polysaccharides extracted from Astragalus membranaceus roots. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Jaiwal A, Natarajaswamy K, Rajam MV. RNA silencing of hormonal biosynthetic genes impairs larval growth and development in cotton bollworm, Helicoverpa armigera. J Biosci 2020. [DOI: 10.1007/s12038-020-00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Sun Y, Wang P, Abouzaid M, Zhou H, Liu H, Yang P, Lin Y, Hull JJ, Ma W. Nanomaterial-wrapped dsCYP15C1, a potential RNAi-based strategy for pest control against Chilo suppressalis. PEST MANAGEMENT SCIENCE 2020; 76:2483-2489. [PMID: 32061016 DOI: 10.1002/ps.5789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/26/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although the utility of double-stranded RNA (dsRNA)-mediated knockdown as an environmentally friendly pest management strategy has gained traction in recent years, its overall efficacy has been limited by poor stability and limited cellular uptake. Encapsulation of dsRNAs with various nanomaterials, however, has shown promise in overcoming these limitations. This study sought to investigate the biological efficacy of an oral dsRNA nanomaterial mixture targeting the CYP15C1 gene product in the economically important rice pest, Chilo suppressalis. RESULTS A putative CYP15C1 ortholog was cloned from C. suppressalis midguts. The transcript is downregulated in fifth-instar larvae and is most highly expressed in heads. RNA interference (RNAi)-mediated knockdown of CsCYP15C1 was associated with significantly increased mortality. More importantly, feeding a dsRNA-nanomaterial mixture significantly increased larval mortality compared with feeding dsRNA alone. CONCLUSION A critical role for CsCYP15C1 function in molting is supported by sequence similarity with known juvenile hormone epoxidases, its expression profile, and abnormal molting phenotypes associated with RNA-mediated knockdown. CsCYP15C1 is thus a prime target for controlling C. suppressalis. Furthermore, RNAi-mediated characterization of candidate gene function can be enhanced by incorporating an enveloping nanomaterial. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peipei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mostafa Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, U.S. Agricultural Research Service, Department of Agriculture, Maricopa, AZ, USA
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Jin M, Cheng Y, Guo X, Li M, Chakrabarty S, Liu K, Wu K, Xiao Y. Down-regulation of lysosomal protein ABCB6 increases gossypol susceptibility in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103387. [PMID: 32360956 DOI: 10.1016/j.ibmb.2020.103387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Cotton bollworm (Helicoverpa armigera) is the major insect herbivore of cotton plants. As its larvae feed and grow on cotton, H. armigera can likely tolerate gossypol, the main defense metabolite produced by cotton plants, through detoxification and sequestration mechanisms. Recent reports have shown that various P450 monooxygenases and UDP-glycosyltransferases in H. armigera are involved in gossypol detoxification, while the roles of ABC transporters, another gene family widely associated with metabolite detoxification, remain to be elucidated. Here, we show that ingestion of gossypol-infused artificial diet and cotton leaves significantly induced the expression of HaABCB6 in H. armigera larvae. Knockdown and knockout of HaABCB6 increased sensitivity of H. armigera larvae to gossypol. Moreover, HaABCB6-GFP fusion protein was localized on lysosomes in Hi5 cells and its overexpression significantly enhanced gossypol tolerance in vitro. These experimental results strongly support that HaABCB6 plays an important role in gossypol detoxification by H. armigera.
Collapse
Affiliation(s)
- Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Cheng
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xueqin Guo
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Meizhi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Swapan Chakrabarty
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
36
|
Yaqoob A, Ali Shahid A, Salisu IB, Shakoor S, Usmaan M, Shad M, Rao AQ. Comparative analysis of Constitutive and fiber-specific promoters under the expression pattern of Expansin gene in transgenic Cotton. PLoS One 2020; 15:e0230519. [PMID: 32187234 PMCID: PMC7080281 DOI: 10.1371/journal.pone.0230519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Promoters are specified segments of DNA that lead to the initiation of transcription of a specific gene. The designing of a gene cassette for plant transformation is significantly dependent upon the specificity of a promoter. Constitutive Cauliflower mosaic virus promoter, CaMV35S, due to its developmental role, is the most commonly used promoter in plant transformation. While Gossypium hirsutum (Gh) being fiber-specific promoter (GhSCFP) specifically activates transcription in seed coat and fiber associated genes. The Expansin genes are renowned for their versatile roles in plant growth. The overexpression of Expansin genes has been reported to enhance fiber length and fineness. Thus, in this study, a local Cotton variety was transformed with Expansin (CpEXPA1) gene, in the form of two separate cassettes, each with a different promoter, named as 35SEXPA1 and FSEXPA1 expressed under CaMV35S and GhSCFP promoters respectively. Integration and Spatiotemporal relative expression of the transgene were studied in an advanced generation. GhSCFP bearing transgene expression was significantly higher in Cotton fiber than other plant parts. While transgene with CaMV35S promoter was found to be continually expressing in all tissues but the expression was lower in fiber than that expressed under GhSCFP. The temporal expression profile was quite interesting with a gradual increasing pattern of both constructs from 1DPA (days post anthesis) to 18DPA and decreased expression from 24 to 30 DPA. Besides the relative expression of promoters, fiber cellulose quantification and fluorescence intensity were also observed. The study significantly compared the two most commonly used promoters and it is deduced from the results that the GhSCFP promoter could be used more efficiently in fiber when compared with CaMV35S which being constitutive in nature preferred for expression in all parts of the plant.
Collapse
Affiliation(s)
- Amina Yaqoob
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- * E-mail:
| | - Ibrahim Bala Salisu
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usmaan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohsin Shad
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
37
|
Wu H, Liu Y, Shi X, Zhang X, Ye C, Zhu KY, Zhu F, Zhang J, Ma E. Transcriptome analysis of antennal cytochrome P450s and their transcriptional responses to plant and locust volatiles in Locusta migratoria. Int J Biol Macromol 2020; 149:741-753. [PMID: 32018005 DOI: 10.1016/j.ijbiomac.2020.01.309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) constitute a large superfamily of heme-thiolate proteins that are involved in the biosynthesis or degradation of endogenous compounds and detoxification of exogenous chemicals. It has been reported that P450s could serve as odorant-degrading enzymes (ODEs) to inactivate odorants to avoid saturating the antennae. However, there is little information about P450s in the antennae of Locusta migratoria. In the current work, we conducted an antenna transcriptome analysis and identified 92 P450s, including 68 full-length and 24 partial sequences. Phylogenetic analysis showed that 68 full-length P450s were grouped into four clans: CYP2, CYP3, CYP4, and mitochondria clans. Tissue, stage, and sex-dependent expressions of these 68 P450s were investigated. The results showed that 4 P450s were antenna-specific, whereas others were antenna-rich but also expressed in other tissues, implying their various potential roles in the antennae. In addition, the responses of seven selected P450s to five gramineous plant volatiles and four locust volatiles were determined. CYP6MU1 could be induced by almost all compounds tested, suggesting its important roles in odorant processing. Different P450s exhibited diverse responses to odorants, indicating that specific regulation of P450 expression by odorants might modulate the sensitivity of the olfactory responses to various chemicals.
Collapse
Affiliation(s)
- Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Yongmei Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xuekai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Changlü Ye
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
38
|
Li Y, Hallerman EM, Wu K, Peng Y. Insect-Resistant Genetically Engineered Crops in China: Development, Application, and Prospects for Use. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:273-292. [PMID: 31594412 DOI: 10.1146/annurev-ento-011019-025039] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
With 20% of the world's population but just 7% of the arable land, China has invested heavily in crop biotechnology to increase agricultural productivity. We examine research on insect-resistant genetically engineered (IRGE) crops in China, including strategies to promote their sustainable use. IRGE cotton, rice, and corn lines have been developed and proven efficacious for controlling lepidopteran crop pests. Ecological impact studies have demonstrated conservation of natural enemies of crop pests and halo suppression of crop-pest populations on a local scale. Economic, social, and human health effects are largely positive and, in the case of Bt cotton, have proven sustainable over 20 years of commercial production. Wider adoption of IRGE crops in China is constrained by relatively limited innovation capacity, public misperception, and regulatory inaction, suggesting the need for further financial investment in innovation and greater scientific engagement with the public. The Chinese experience with Bt cotton might inform adoption of other Bt crops in China and other developing countries.
Collapse
Affiliation(s)
- Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Eric M Hallerman
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
39
|
Hafeez M, Qasim M, Ali S, Yousaf HK, Waqas M, Ali E, Ahmad MA, Jan S, Bashir MA, Noman A, Wang M, Gharmh HA, Khan KA. Expression and functional analysis of P450 gene induced tolerance/resistance to lambda-cyhalothrin in quercetin fed larvae of beet armyworm Spodoptera exigua (Hübner). Saudi J Biol Sci 2020; 27:77-87. [PMID: 31889821 PMCID: PMC6933212 DOI: 10.1016/j.sjbs.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/04/2022] Open
Abstract
Beet armyworm, Spodoptera exigua (Hübner) is an agronomical important and most devastating polyphagous pest that damages a variety of crops around the globe including China. Quercetin is one of the abundant dietary flavonoids and the important defense allelochemicals in plants. Therefore, the changes in insect detoxification enzymes activities in response to plants allelochemicals may result increased the sensitivity to insecticides. In this study, we examined the induced effect of quercetin on larval tolerance to lambda-cyhalothrin in S. exigua. Application of cytochrome P450 inhibitor piperonyl butoxide (PBO) significantly synergized the lambda-cyhalothrin toxicity in quercetin-fed S. exigua larvae. Moreover, larval weight significantly reduced in quercetin, lambda-cyhalothrin, and quercetin + lambda-cyhalothrin treatment. Furthermore, our results showed that the P450 detoxification enzyme effectively increased in all treatments as compared to the control. Quantitative Real-time PCR analysis revealed that expression level of CYP6AE10 significantly upregulated in larvae treated with quercetin, lambda-cyhalothrin and quercetin + lambda-cyhalothrin in the midgut and fat body respectively. In addition, RNAi mediated knockdown of CYP6AE10 in S. exigua larvae significantly decreased the transcription level of target cytochrome P450 gene followed by the exposure with quercetin, lambda-cyhalothrin, and quercetin + lambda-cyhalothrin. Similarly, the knockdown of CYP6AE10 by the injection of dsRNA led to increased mortality after the treatment with respective chemicals. Overall, these data showed that P450s might possibly play an important role in the metabolic adaptation of S. exigua larvae to its host plant defense allelochemicals as well as insecticides. In conclusion, S. exigua can take benefit from its host plant's secondary metabolites to elaborate its defense against synthetic insecticides.
Collapse
Affiliation(s)
- Muhammad Hafeez
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Muhammad Qasim
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda 24630, Pakistan
| | - Hafiz Kamran Yousaf
- College of Plant Protection Department of Entomology, China Agriculture University, Beijing 100193, China
| | - Muhammad Waqas
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Muhammad Afaq Ahmad
- College of Plant Health and Medicine, Qingdao Agricultural University, China
| | - Saad Jan
- Department of Agriculture Entomology Section, Bacha Khan University, Charsadda 24630, Pakistan
| | - Muhammad Amjad Bashir
- Department of Plant Protection, Faculty of Agriculture Sciences, Ghazi University, Dera Ghazi Khan 32200, Punjab, Pakistan
| | - Ali Noman
- Department of Botany Government College University, Faisalabad 38040, Pakistan
| | - Mo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Hamed A. Gharmh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
40
|
Chen FY, Chen XY, Mao YB. Heterogeneous signals in plant-biotic interactions and their applications. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1707-1709. [PMID: 31782081 DOI: 10.1007/s11427-019-1577-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Fang-Yan Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Xiao-Ya Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ying-Bo Mao
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
41
|
Zhang Y, Xu L, Li S, Zhang J. Bacteria-Mediated RNA Interference for Management of Plagiodera versicolora (Coleoptera: Chrysomelidae). INSECTS 2019; 10:insects10120415. [PMID: 31766384 PMCID: PMC6955681 DOI: 10.3390/insects10120415] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) has emerged as a novel and feasible strategy for pest management. Methods for cost-effective production and stable delivery of double-stranded RNA (dsRNA) to the target insects are crucial for the wide application of RNAi for pest control. In this study, we tested the expression of dsRNA in RNaseIII-deficient Escherichia coli HT115 which was then fed to Plagiodera versicolora larvae, an insect pest of Salicaceae plants worldwide. By targeting six potential genes, including actin (ACT), signal recognition particle protein 54k (SRP54), heat shock protein 70 (HSC70), shibire (SHI), cactus (CACT), and soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAP), we found that feeding bacteria-expressed dsRNA successfully triggered the silencing of the five target genes tested and the suppression of ACT and SRP54 genes caused significant mortality. Our results suggest that the oral delivery of bacteria-expressed dsRNA is a potential alternative for the control of P. versicolora, and that ACT and SRP54 genes are the potent targets.
Collapse
|
42
|
Morozov SY, Solovyev AG, Kalinina NO, Taliansky ME. Double-Stranded RNAs in Plant Protection Against Pathogenic Organisms and Viruses in Agriculture. Acta Naturae 2019; 11:13-21. [PMID: 31993231 PMCID: PMC6977960 DOI: 10.32607/20758251-2019-11-4-13-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
Recent studies have shown that plants are able to express the artificial genes responsible for the synthesis of double-stranded RNAs (dsRNAs) and hairpin double-stranded RNAs (hpRNAs), as well as uptake and process exogenous dsRNAs and hpRNAs to suppress the gene expression of plant pathogenic viruses, fungi, or insects. Both endogenous and exogenous dsRNAs are processed into small interfering RNAs (siRNAs) that can spread locally and systemically through the plant, enter pathogenic microorganisms, and induce RNA interference-mediated pathogen resistance in plants. There are numerous examples of the development of new biotechnological approaches to plant protection using transgenic plants and exogenous dsRNAs. This review summarizes new data on the use of transgenes and exogenous dsRNAs for the suppression of fungal and insect virulence genes, as well as viruses to increase the resistance of plants to these pathogens. We also analyzed the current ideas about the mechanisms of dsRNA processing and transport in plants.
Collapse
Affiliation(s)
- S. Y. Morozov
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - A. G. Solovyev
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - N. O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - M. E. Taliansky
- International Laboratory «Resistom», The Skolkovo Innovation Center, Moscow, 143026 Russia**
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997 Russia
| |
Collapse
|
43
|
Pan Y, Peng T, Xu P, Zeng X, Tian F, Song J, Shang Q. Transcription Factors AhR/ARNT Regulate the Expression of CYP6CY3 and CYP6CY4 Switch Conferring Nicotine Adaptation. Int J Mol Sci 2019; 20:E4521. [PMID: 31547315 PMCID: PMC6770377 DOI: 10.3390/ijms20184521] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotine is one of the most toxic secondary plant metabolites in nature and it is highly toxic to herbivorous insects. The overexpression of CYP6CY3 and its homologous isozyme CYP6CY4 in Myzus persicae nicotianae is correlated with nicotine tolerance. The expanded (AC)n repeat in promoter is the cis element for CYP6CY3 transcription. These repeat sequences are conserved in the CYP6CY3 gene from Aphis gossypii and the homologous P450 genes in Acyrthosiphon pisum. The potential transcriptional factors that may regulate CYP6CY3 were isolated by DNA pulldown and sequenced in order to investigate the underlying transcriptional regulation mechanism of CYP6CY3. These identified transcriptional factors, AhR and ARNT, whose abundance was highly correlated with an abundance of the CYP6CY3 gene, were validated. RNAi and co-transfection results further confirm that AhR and ARNT play a major role in the transcriptional regulation of the CYP6CY3 gene. When the CYP6CY3 transcript is destabilized by AhR/ARNT RNAi, the transcription of the CYP6CY4 is dramatically up-regulated, indicating a compensatory mechanism between the CYP6CY3 and CYP6CY4 genes. Our present study sheds light on the CYP6CY3 and CYP6CY4 mediated nicotine adaption of M. persicae nicotianae to tobacco. The current studies shed light on the molecular mechanisms that underlie the genotypic and phenotypic changes that are involved in insect host shifts and we conclude that AhR/ARNT regulate the expression of CYP6CY3 and CYP6CY4 cooperatively, conferring the nicotine adaption of M. persicae nicotianae to tobacco.
Collapse
Affiliation(s)
- Yiou Pan
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Pengjun Xu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiabao Song
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingli Shang
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
44
|
Vurro M, Miguel-Rojas C, Pérez-de-Luque A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. PEST MANAGEMENT SCIENCE 2019; 75:2403-2412. [PMID: 30672106 DOI: 10.1002/ps.5348] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 05/05/2023]
Abstract
Natural compounds and living organisms continue to play a limited role in crop protection, and few of them have reached the market, despite their attractiveness and the efforts made in research. Very often these products have negative characteristics compared to synthetic compounds, e.g., higher costs of production, lower effectiveness, lack of persistence, and inability to reach and penetrate the target plant. Conversely, nanotechnologies are having an enormous impact on all human activities, including agriculture, even if the production of some nanomaterials is not environmentally friendly or could have adverse effects on agriculture and the environment. Thus, certain nanomaterials could facilitate the development of formulated natural pesticides, making them more effective and more environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and increase shelf-life and persistence. Such controlled-release products can improve delivery to the target pest. This review considers certain available nanomaterials and nanotechnologies for use in agriculture, discussing their properties and the feasibility of their use in sustainable crop protection, in particular, in improving the effectiveness of natural bio-based agrochemicals. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council (CNR), Bari, Italy
| | - Cristina Miguel-Rojas
- Department of Science and High Technology, University of Insubria and Total Scattering Laboratory, Como, Italy
| | - Alejandro Pérez-de-Luque
- Genomic and Biotechnology, Centre Alameda del Obispo, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cordoba, Spain
| |
Collapse
|
45
|
Shen GM, Chen W, Li CZ, Ou SY, He L. RNAi targeting ecdysone receptor blocks the larva to adult development of Tetranychus cinnabarinus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:85-90. [PMID: 31400788 DOI: 10.1016/j.pestbp.2019.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
RNA interference (RNAi) is a potentially useful pest control method because of its high specificity. Silencing the expression of important RNAi target genes of pests will block important biological processes and reduce pest damage. Ecdysone is a unique arthropod hormone and the ecdysone receptor (EcR) is a key factor in molting pathway. We investigated the possibility that dsRNA targeting of the EcR of Tetranychus cinnabarinus (TcEcR) could effectively block development from larvae to adults. The mRNA level of TcEcR was highest in the larva stage, and 73.1% of the mites failed to survive the larva stage when TcEcR expression was silenced. Only 11.7% of T. cinnabarinus ingesting dsRNA successfully developed into adults, while 86.7% in the control succeeded in molting across each stage. RNAi significantly increased the developmental intervals of T. cinnabarinus. Under the effects of dsRNA, development times for the larva and first nymph doubled. Phenotype of body size change and death were observed during the development of T. cinnabarinus ingesting dsRNA. These findings suggest that RNAi is a potential means for the control of T. cinnabarinus. Genes in hormone pathways such as EcR are possible RNAi targets.
Collapse
Affiliation(s)
- Guang-Mao Shen
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wen Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shi-Yuan Ou
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
46
|
Pan Y, Xu P, Zeng X, Liu X, Shang Q. Characterization of UDP-Glucuronosyltransferases and the Potential Contribution to Nicotine Tolerance in Myzus persicae. Int J Mol Sci 2019; 20:E3637. [PMID: 31349586 PMCID: PMC6695686 DOI: 10.3390/ijms20153637] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are major phase II detoxification enzymes involved in glycosylation of lipophilic endobiotics and xenobiotics, including phytoalexins. Nicotine, one of the most abundant secondary plant metabolites in tobacco, is highly toxic to herbivorous insects. Plant-herbivore competition is the major impetus for the evolution of large superfamilies of UGTs and other detoxification enzymes. However, UGT functions in green peach aphid (Myzus persicae) adaptation are unknown. In this study, we show that UGT inhibitors (sulfinpyrazone and 5-nitrouracil) significantly increased nicotine toxicity in M. persicae nicotianae, suggesting that UGTs may be involved in nicotine tolerance. In total, 101 UGT transcripts identified in the M. persicae genome/transcriptome were renamed according to the UGT Nomenclature Committee guidelines and grouped into 11 families, UGT329, UGT330, UGT339, UGT341-UGT345, and UGT348-UGT350, with UGT344 containing the most (57). Ten UGTs (UGT330A3, UGT339A2, UGT341A6, UGT342B3, UGT343C3, UGT344D5, UGT344D8, UGT348A3, UGT349A3, and UGT350A3) were highly expressed in M. persicae nicotianae compared to M. persicae sensu stricto. Knockdown of four UGTs (UGT330A3, UGT344D5, UGT348A3, and UGT349A3) significantly increased M. persicae nicotianae sensitivity to nicotine, suggesting that UGT expression in this subspecies may be associated with nicotine tolerance and thus host adaptation. This study reveals possible UGTs relevant to nicotine adaptation in tobacco-consuming M. persicae nicotianae, and the findings will facilitate further validation of the roles of these UGTs in nicotine tolerance.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, China
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
| | - Pengjun Xu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, China.
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
47
|
Chen C, Zhang Y, Pi W, Yang W, Nie C, Liang J, Ma X, Zhang WJ. Optimization of the process parameters for reduction of gossypol levels in cottonseed meal by functional recombinant NADPH-cytochrome P450 reductase and cytochrome P450 CYP9A12 of Helicoverpa armigera. AMB Express 2019; 9:98. [PMID: 31278483 PMCID: PMC6611853 DOI: 10.1186/s13568-019-0823-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 11/23/2022] Open
Abstract
Gossypol is a toxic polyphenolic product that is derived from cotton plants. The toxicity of gossypol has limited the utilization of cottonseed meal (CSM) in the feed industry. The gene, Helicoverpa armigera CYP9A12, is a gossypol-inducible cytochrome P450 gene. The objective of our study was to obtain the functional recombinant H. armigera CYP9A12 enzyme in Pichia pastoris and to verify whether this candidate enzyme could decrease gossypol in vitro. Free and total gossypol contents were detected in the enzyme solution and in CSM. The H. armigera CYP9A12 enzyme degraded free concentration of gossypol. After optimization of the single-test and response surface method, free gossypol content could be decreased to 40.91 mg/kg in CSM by the H. armigera CYP9A12 enzyme when the initial temperature was 35 °C, the enzymatic hydrolysis time lasted 2.5 h, the enzyme addition was 2.5 mL, and the substrate moisture was 39%.
Collapse
|
48
|
Prentice K, Smagghe G, Gheysen G, Christiaens O. Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:80-89. [PMID: 31009678 DOI: 10.1016/j.ibmb.2019.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
RNA interference (RNAi) refers to the process of suppression of gene expression in eukaryotes, which has a great potential for the control of pest and diseases. Unfortunately, the efficacy of this technology is limited or at best variable in some insects. In the African sweet potato weevil (SPW) Cylas puncticollis, a devastating pest that affects the sweet potato production in Sub-Saharan Africa (SSA), the RNAi response was highly efficient when dsRNA was delivered by injection, but it showed a reduced response by oral feeding. In the present study, the role of nucleases in the reduced RNAi efficiency in C. puncticollis is investigated. Several putative dsRNases were first identified in the transcriptome of the SPW through homology search and were subsequently further characterized. Two of these dsRNases were specifically expressed in the gut tissue of the insect and we could demonstrate through RNAi experiments that these affected dsRNA stability in the gut. Furthermore, RNAi-of-RNAi studies, using snf7 as a reporter gene, demonstrated that silencing one of these nucleases, Cp-dsRNase-3, clearly increases RNAi efficacy. After silencing this nuclease, significantly higher mortality was observed in dssnf7-treated insects 14 days post-feeding as compared to control treatments, and the gene downregulation was confirmed at the transcript level via qPCR analysis. Taken together, our results demonstrate that the RNAi efficiency is certainly impaired by nuclease activity in the gut environment of the SPW Cylas puncticollis.
Collapse
Affiliation(s)
- Katterinne Prentice
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.
| |
Collapse
|
49
|
Knock-Down of Gossypol-Inducing Cytochrome P450 Genes Reduced Deltamethrin Sensitivity in Spodoptera exigua (Hübner). Int J Mol Sci 2019; 20:ijms20092248. [PMID: 31067723 PMCID: PMC6539524 DOI: 10.3390/ijms20092248] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/02/2022] Open
Abstract
Plants employ an intricate and dynamic defense system that includes physiological, biochemical, and molecular mechanisms to counteract the effects of herbivorous attacks. In addition to their tolerance to phytotoxins, beet armyworm has quickly developed resistance to deltamethrin; a widely used pyrethroid insecticide in cotton fields. The lethal concentration (LC50) required to kill 50% of the population of deltamethrin to gossypol-fed Spodoptera exigua larvae was 2.34-fold higher than the control group, suggesting a reduced sensitivity as a consequence of the gossypol diet. Piperonyl butoxide (PBO) treatment was found to synergize with deltamethrin in gossypol-fed S. exigua larvae. To counteract these defensive plant secondary metabolites, beet armyworm elevates their production of detoxification enzymes, including cytochrome P450 monooxygenases (P450s). Gossypol-fed beet armyworm larvae showed higher 7-ethoxycoumarin-O-deethylase (ECOD) activities and exhibited enhanced tolerance to deltamethrin after 48 and 72 h when compared to the control. Moreover, gossypol pretreated S. exigua larvae showed faster weight gain than the control group after transferring to a deltamethrin-supplemented diet. Meanwhile, gossypol-induced P450s exhibited high divergence in the expression level of two P450 genes: CYP6AB14 and CYP9A98 in the midgut and fat bodies contributed to beet armyworm tolerance to deltamethrin. Knocking down of CYP6AB14 and CYP9A98, via double-stranded RNAs (dsRNA) in a controlled diet, rendered the larvae more sensitive to the insecticide. These data demonstrate that generalist insects can exploit secondary metabolites from host plants to enhance their defense systems against other toxic chemicals. Impairing this defense pathway by RNA interference (RNAi) holds a potential to eliminate the pest’s tolerance to insecticides and, therefore, reduce the required dosages of agrochemicals in pest control.
Collapse
|
50
|
Parker KM, Barragán Borrero V, van Leeuwen DM, Lever MA, Mateescu B, Sander M. Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3027-3036. [PMID: 30681839 DOI: 10.1021/acs.est.8b05576] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Double-stranded RNA (dsRNA) pesticides are a new generation of crop protectants that interfere with protein expression in targeted pest insects by a cellular mechanism called RNA interference (RNAi). The ecological risk assessment of these emerging pesticides necessitates an understanding of the fate of dsRNA molecules in receiving environments, among which agricultural soils are most important. We herein present an experimental approach using phosphorus-32 (32P)-radiolabeled dsRNA that allows studying key fate processes of dsRNA in soils with unprecedented sensitivity. This approach resolves previous analytical challenges in quantifying unlabeled dsRNA and its degradation products in soils. We demonstrate that 32P-dsRNA and its degradation products are quantifiable at concentrations as low as a few nanograms of dsRNA per gram of soil by both Cerenkov counting (to quantify total 32P-activity) and by polyacrylamide gel electrophoresis followed by phosphorimaging (to detect intact 32P-dsRNA and its 32P-containing degradation products). We show that dsRNA molecules added to soil suspensions undergo adsorption to soil particle surfaces, degradation in solution, and potential uptake by soil microorganisms. The results of this work on dsRNA adsorption and degradation advance a process-based understanding of the fate of dsRNA in soils and will inform ecological risk assessments of emerging dsRNA pesticides.
Collapse
Affiliation(s)
- Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri 63130 , United States
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| | - Verónica Barragán Borrero
- Institute of Molecular Plant Biology, Department of Biology , ETH Zürich , 8092 Zürich , Switzerland
| | - Daniël M van Leeuwen
- Institute of Molecular Plant Biology, Department of Biology , ETH Zürich , 8092 Zürich , Switzerland
| | - Mark A Lever
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| | - Bogdan Mateescu
- Institute of Molecular Plant Biology, Department of Biology , ETH Zürich , 8092 Zürich , Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| |
Collapse
|