1
|
Nishizawa-Yokoi A, Toki S. Precise genetic engineering with piggyBac transposon in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:255-262. [PMID: 38434112 PMCID: PMC10905368 DOI: 10.5511/plantbiotechnology.23.0525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 03/05/2024]
Abstract
Transposons are mobile genetic elements that can move to a different position within a genome or between genomes. They have long been used as a tool for genetic engineering, including transgenesis, insertional mutagenesis, and marker excision, in a variety of organisms. The piggyBac transposon derived from the cabbage looper moth is one of the most promising transposon tools ever identified because piggyBac has the advantage that it can transpose without leaving a footprint at the excised site. Applying the piggyBac transposon to precise genome editing in plants, we have demonstrated efficient and precise piggyBac transposon excision from a transgene locus integrated into the rice genome. Furthermore, introduction of only desired point mutations into the target gene can be achieved by a combination of precise gene modification via homologous recombination-mediated gene targeting with subsequent marker excision from target loci using piggyBac transposition in rice. In addition, we have designed a piggyBac-mediated transgenesis system for the temporary expression of sequence-specific nucleases to eliminate the transgene from the host genome without leaving unnecessary sequences after the successful induction of targeted mutagenesis via sequence-specific nucleases for use in vegetatively propagated plants. In this review, we summarize our previous works and the future prospects of genetic engineering with piggyBac transposon.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Yokohama
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
2
|
Zhao D, Qin J, An J, Zhang H, Li J, Wang H, Du R, He Y. Optimization of piggyBac Transposon System Electrotransfection in Sheep Fibroblasts. Mol Biotechnol 2023; 65:1585-1597. [PMID: 36705779 DOI: 10.1007/s12033-023-00659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/08/2023] [Indexed: 01/28/2023]
Abstract
Electroporation is a non-viral mediated transfection technique, which has the advantages of being harmless, easy to operate, and less expensive. This transfection method can be used for almost all cell types and has gradually become the preferred transfection method for mammalian gene editing. However, further improvements are needed in electroporation efficiency. There is no universal standard electrotransfection step for different types of cells, and the inappropriate electroporation parameters will result in a low transfection efficiency and high cell mortality. Here, we systematically optimized the electrotransfection parameters of piggyBac transposon system into sheep fetal fibroblasts for the first time. We found that the cell transfection efficiency and cell viability could be improved by using traditional cell culture medium DMEM/F12 as an electroporation buffer, and simultaneously using the square-wave pulsing program of 200 V, 2 pulses, 20 ms length, and 20 μg DNA (3 μg/μL) in 4 mm cuvette, and the transfection efficiency and cell viability could eventually reach 78.0% and 40.9%, respectively. The purpose of this study is to provide a method reference and theoretical basis for the plasmid electrotransfection in mammal cells.
Collapse
Affiliation(s)
- Dipeng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- School of Life Science and Engineering, Foshan University, Foshan, 528000, Guangdong, China
| | - Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Center of Experiment Teaching, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hao Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Junling Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hejie Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Yongming He
- School of Life Science and Engineering, Foshan University, Foshan, 528000, Guangdong, China.
| |
Collapse
|
3
|
Gao M, Zhu X, Yang G, Bao J, Bu H. CRISPR/Cas9-Mediated Gene Editing in Porcine Models for Medical Research. DNA Cell Biol 2021; 40:1462-1475. [PMID: 34847741 DOI: 10.1089/dna.2020.6474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pigs have been extensively used as the research models for human disease pathogenesis and gene therapy. They are also the optimal source of cells, tissues, and organs for xenotransplantation due to anatomical and physiological similarities to humans. Several breakthroughs in gene-editing technologies, including the advent of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9), have greatly improved the efficiency of genetic manipulation and significantly broadened the application of gene-edited large animal models. In this review, we have not only outlined the important applications of the CRISPR/Cas9 system in pigs as a means to study human diseases but also discussed the potential challenges of the use of CRISPR/Cas9 in large animals.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chendu, P.R. China.,Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
4
|
Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells Int 2021; 2021:3829286. [PMID: 34567130 PMCID: PMC8460389 DOI: 10.1155/2021/3829286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Transposons are mobile genetic elements in the genome. The piggyBac (PB) transposon system is increasingly being used for stem cell research due to its high transposition efficiency and seamless excision capacity. Over the past few decades, forward genetic screens based on PB transposons have been successfully established to identify genes associated with drug resistance and stem cell-related characteristics. Moreover, PB transposon is regarded as a promising gene therapy vector and has been used in some clinically relevant stem cells. Here, we review the recent progress on the basic biology of PB, highlight its applications in current stem cell research, and discuss its advantages and challenges.
Collapse
|
5
|
Tang T, Lin Q, Qin Y, Liang X, Guo Y, Cong P, Liu X, Chen Y, He Z. Effects of bone morphogenetic protein 15 (BMP15) knockdown on porcine testis morphology and spermatogenesis. Reprod Fertil Dev 2021; 32:999-1011. [PMID: 32693912 DOI: 10.1071/rd20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor-β (TGFB) superfamily that plays an essential role in mammalian ovary development, oocyte maturation and litter size. However, little is known regarding the expression pattern and biological function of BMP15 in male gonads. In this study we established, for the first time, a transgenic pig model with BMP15 constitutively knocked down by short hairpin (sh) RNA. The transgenic boars were fertile, but sperm viability was decreased. Further analysis of the TGFB/SMAD pathway and markers of reproductive capacity, namely androgen receptor and protamine 2, failed to identify any differentially expressed genes. These results indicate that, in the pig, the biological function of BMP15 in the development of male gonads is not as crucial as in ovary development. However, the role of BMP15 in sperm viability requires further investigation. This study provides new insights into the role of BMP15 in male pig reproduction.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qiyuan Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yang Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; and Corresponding authors. ;
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; and Corresponding authors. ;
| |
Collapse
|
6
|
Hirata M, Wittayarat M, Tanihara F, Sato Y, Namula Z, Le QA, Lin Q, Takebayashi K, Otoi T. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs. In Vitro Cell Dev Biol Anim 2020; 56:614-621. [PMID: 32978715 DOI: 10.1007/s11626-020-00507-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated whether electroporation could be used for one-step multiplex CRISPR/Cas9-based genome editing, targeting IL2RG and GHR in porcine embryos. First, we evaluated and selected guide RNAs (gRNAs) by analyzing blastocyst formation rates and genome editing efficiency. This was performed in embryos electroporated with one of three different gRNAs targeting IL2RG or one of two gRNAs targeting GHR. No significant differences in embryo development rates were found between control embryos and those subjected to electroporation, irrespective of the target gene. Two gRNAs targeting IL2RG (nos. 2 and 3) contributed to an increased biallelic mutation rate in porcine blastocysts compared with gRNA no. 1. There were no significant differences in the mutation rates between the two gRNAs targeting GHR. In our next experiment, the mutation efficiency and the development of embryos simultaneously electroporated with gRNAs targeting IL2RG and GHR were investigated. Similar embryo development rates were observed between embryos electroporated with two gRNAs and control embryos. When IL2RG-targeting gRNA no. 2 was used with GHR-targeting gRNAs no. 1 or no. 2, a significantly higher double biallelic mutation rate was observed than with IL2RG-targeting gRNA no. 3. In conclusion, we demonstrate the feasibility of using electroporation to transfer multiple gRNAs and Cas9 into porcine zygotes, enabling the double biallelic mutation of multiple genes with favorable embryo survival.
Collapse
Affiliation(s)
- Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Yoko Sato
- School of Biological Science, Tokai University, Sapporo, Japan
| | - Zhao Namula
- College of Agricultural Science, Guangdong Ocean University, Guangdong, China
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Qingyi Lin
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Koki Takebayashi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
7
|
Huang X, Zou X, Xu Z, Tang F, Shi J, Zheng E, Liu D, Moisyadi S, Urschitz J, Wu Z, Li Z. Efficient deletion of LoxP-flanked selectable marker genes from the genome of transgenic pigs by an engineered Cre recombinase. Transgenic Res 2020; 29:307-319. [PMID: 32410183 DOI: 10.1007/s11248-020-00200-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
Genetically modified (GM) pigs hold great promises for pig genetic improvement, human health and life science. When GM pigs are produced, selectable marker genes (SMGs) are usually introduced into their genomes for host cell or animal recognition. However, the SMGs that remain in GM pigs might have multiple side effects. To avoid the possible side effects caused by the SMGs, they should be removed from the genome of GM pigs before their commercialization. The Cre recombinase is commonly used to delete the LoxP sites-flanked SMGs from the genome of GM animals. Although SMG-free GM pigs have been generated by Cre-mediated recombination, more efficient and cost-effective approaches are essential for the commercialization of SMG-free GM pigs. In this article we describe the production of a recombinant Cre protein containing a cell-penetrating and a nuclear localization signal peptide in one construct. This engineered Cre enzyme can efficiently excise the LoxP-flanked SMGs in cultured fibroblasts isolated from a transgenic pig, which then can be used as nuclear donor cells to generate live SMG-free GM pigs harboring a desired transgene by somatic cell nuclear transfer. This study describes an efficient and far-less costly method for production of SMG-free GM pigs.
Collapse
Affiliation(s)
- Xiaoling Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Guangken Animal Husbandry Engineering Research Institute Co., Ltd., Guangzhou, 510610, Guangdong, China
| | - Xian Zou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fei Tang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu, 527400, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Stefan Moisyadi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
- Manoa BioSciences, 1717 Mott-Smith Dr. #3213, Honolulu, HI, 96822, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
8
|
piggyBac-Based Non-Viral In Vivo Gene Delivery Useful for Production of Genetically Modified Animals and Organs. Pharmaceutics 2020; 12:pharmaceutics12030277. [PMID: 32204422 PMCID: PMC7151002 DOI: 10.3390/pharmaceutics12030277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
In vivo gene delivery involves direct injection of nucleic acids (NAs) into tissues, organs, or tail-veins. It has been recognized as a useful tool for evaluating the function of a gene of interest (GOI), creating models for human disease and basic research targeting gene therapy. Cargo frequently used for gene delivery are largely divided into viral and non-viral vectors. Viral vectors have strong infectious activity and do not require the use of instruments or reagents helpful for gene delivery but bear immunological and tumorigenic problems. In contrast, non-viral vectors strictly require instruments (i.e., electroporator) or reagents (i.e., liposomes) for enhanced uptake of NAs by cells and are often accompanied by weak transfection activity, with less immunological and tumorigenic problems. Chromosomal integration of GOI-bearing transgenes would be ideal for achieving long-term expression of GOI. piggyBac (PB), one of three transposons (PB, Sleeping Beauty (SB), and Tol2) found thus far, has been used for efficient transfection of GOI in various mammalian cells in vitro and in vivo. In this review, we outline recent achievements of PB-based production of genetically modified animals and organs and will provide some experimental concepts using this system.
Collapse
|
9
|
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 2020; 16:457-475. [PMID: 30894679 DOI: 10.1038/s41569-019-0179-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.
Collapse
Affiliation(s)
- Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| | - Christina Bleyer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Simone Renner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Universitätsklinikum Essen, Westdeutsches Herz- und Gefäßzentrum Essen, Essen, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Eckhard Wolf
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
10
|
In Vivo Piggybac-Based Gene Delivery towards Murine Pancreatic Parenchyma Confers Sustained Expression of Gene of Interest. Int J Mol Sci 2019; 20:ijms20133116. [PMID: 31247905 PMCID: PMC6651600 DOI: 10.3390/ijms20133116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
The pancreas is a glandular organ that functions in the digestive system and endocrine system of vertebrates. The most common disorders involving the pancreas are diabetes, pancreatitis, and pancreatic cancer. In vivo gene delivery targeting the pancreas is important for preventing or curing such diseases and for exploring the biological function of genes involved in the pathogenesis of these diseases. Our previous experiments demonstrated that adult murine pancreatic cells can be efficiently transfected by exogenous plasmid DNA following intraparenchymal injection and subsequent in vivo electroporation using tweezer-type electrodes. Unfortunately, the induced gene expression was transient. Transposon-based gene delivery, such as that facilitated by piggyBac (PB), is known to confer stable integration of a gene of interest (GOI) into host chromosomes, resulting in sustained expression of the GOI. In this study, we investigated the use of the PB transposon system to achieve stable gene expression when transferred into murine pancreatic cells using the above-mentioned technique. Expression of the GOI (coding for fluorescent protein) continued for at least 1.5 months post-gene delivery. Splinkerette-PCR-based analysis revealed the presence of the consensus sequence TTAA at the junctional portion between host chromosomes and the transgenes; however, this was not observed in all samples. This plasmid-based PB transposon system enables constitutive expression of the GOI in pancreas for potential therapeutic and biological applications.
Collapse
|
11
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
12
|
Tang F, Yang X, Liu D, Zhang X, Huang X, He X, Shi J, Li Z, Wu Z. Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids. Transgenic Res 2019; 28:369-379. [PMID: 31037571 DOI: 10.1007/s11248-019-00127-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are essential for the development and health of mammals, such as humans and livestock. n-3 PUFAs must be supplied by diet due to the absence of a key gene, namely, delta-15 desaturase (fat1), which is responsible for synthesizing n-3 PUFAs from a major type of n-6 PUFAs, linoleic acid (LA). To increase the dietary intake of n-3 PUFAs for humans, fat1-expressing transgenic (TG) livestock have been produced to provide n-3 PUFA-rich meats for humans. However, these TG livestock synthesized n-3 PUFAs from diet-derived, instead of endogenously produced, n-6 PUFAs because they still lack the delta-12 desaturase (fat2) gene for catalyzing conversion of internal oleic acid (OA) to LA. To fill the gap in the de novo n-3 PUFA biosynthesis pathway and to increase n-3 PUFA content in livestock, TG pigs co-expressing fat1-fat2 were generated in the present work. The OA content decreased in fat1-fat2 TG pigs, suggesting that OA was converted to LA by fat2 transgene-encoded delta-12 desaturase. The n-3 PUFA level was elevated, and the n-6/n-3 PUFA ratio dropped in fat1-fat2 TG pigs, revealing that fat1 transgene promoted the synthesis of n-3 PUFAs from n-6 analogs. The expression levels of fatty acid elongase-5 (ELOVL5) and fatty acid elongase-2 (ELOVL2), which are two key enzyme genes for PUFA synthesis, as well as their transcription factor peroxisome proliferator-activated receptor α, increased in fat1-fat2 TG pigs. Thus, the fat1 transgene enhanced n-3 PUFA synthesis by upregulating the expression of enzyme genes involved in the PUFA synthesis pathways. Overall, this study provided a new strategy to produce n-3 PUFA-rich meat for human consumption. The generated fat1-fat2 TG pigs can also serve as a large animal model for studying the roles of n-3 PUFAs in human development and health.
Collapse
Affiliation(s)
- Fei Tang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofeng Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xianwei Zhang
- Guangdong Wen's Breeding Swine Company, Yunfu, 527400, Guangdong, China
| | - Xiaoling Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyan He
- Guangdong Wen's Breeding Swine Company, Yunfu, 527400, Guangdong, China
| | - Junsong Shi
- Guangdong Wen's Breeding Swine Company, Yunfu, 527400, Guangdong, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Zhang X, Li Z, Yang H, Liu D, Cai G, Li G, Mo J, Wang D, Zhong C, Wang H, Sun Y, Shi J, Zheng E, Meng F, Zhang M, He X, Zhou R, Zhang J, Huang M, Zhang R, Li N, Fan M, Yang J, Wu Z. Novel transgenic pigs with enhanced growth and reduced environmental impact. eLife 2018; 7:34286. [PMID: 29784082 PMCID: PMC5963925 DOI: 10.7554/elife.34286] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
In pig production, inefficient feed digestion causes excessive nutrients such as phosphorus and nitrogen to be released to the environment. To address the issue of environmental emissions, we established transgenic pigs harboring a single-copy quad-cistronic transgene and simultaneously expressing three microbial enzymes, β-glucanase, xylanase, and phytase in the salivary glands. All the transgenic enzymes were successfully expressed, and the digestion of non-starch polysaccharides (NSPs) and phytate in the feedstuff was enhanced. Fecal nitrogen and phosphorus outputs in the transgenic pigs were reduced by 23.2–45.8%, and growth rate improved by 23.0% (gilts) and 24.4% (boars) compared with that of age-matched wild-type littermates under the same dietary treatment. The transgenic pigs showed an 11.5–14.5% improvement in feed conversion rate compared with the wild-type pigs. These findings indicate that the transgenic pigs are promising resources for improving feed efficiency and reducing environmental impact. The bodily waste that pigs produce contains high levels of chemicals that can damage the environment, such as nitrogen and phosphorus. For example, when excessive amounts of these two compounds make their way into the water, they can cause blue-green algae to grow too much, which asphyxiates other life in the water. Pigs produce a lot of nitrogen and phosphorus because they cannot efficiently digest their food. In particular, the animals lack the enzymes required to break down two types of molecules present in their feedstuff: phytates and non-starch polysaccharides (NSPs). Zhang, Li et al. take four microbial genes which code for the enzymes needed to digest NSPs and phytates, and they add these DNA sequences into the genomes of pigs. The animals then produce enzymes in their saliva that transform NSPs and phytates into molecules which can be used by their digestive system. The pigs thus get more energy from their food, and they grow faster and bigger. They also produce less nitrogen and phosphorus in their waste. Over 1.2 billion pigs are farmed each year, and they are the most economically important meat source in the world. Raising animals that can digest their food better would reduce the need for pig feed, increase productivity and reduce environmental pollution. However, discussions with policy makers and with the public will be necessary before these results can be adopted by the farming industry.
Collapse
Affiliation(s)
- Xianwei Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Group Co., Ltd, Yunfu, China
| | - Zicong Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Huaqiang Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Group Co., Ltd, Yunfu, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Group Co., Ltd, Yunfu, China
| | - Guoling Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianxin Mo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dehua Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cuili Zhong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Haoqiang Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yue Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Group Co., Ltd, Yunfu, China
| | - Enqin Zheng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fanming Meng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mao Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan He
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Group Co., Ltd, Yunfu, China
| | - Rong Zhou
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Group Co., Ltd, Yunfu, China
| | - Jian Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Group Co., Ltd, Yunfu, China
| | - Miaorong Huang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ran Zhang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Ning Li
- College of Biological Science, China Agricultural University, Beijing, China
| | - Mingzhe Fan
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, United States
| | - Zhenfang Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuff Group Co., Ltd, Yunfu, China
| |
Collapse
|
14
|
Lu F, Luo C, Li N, Liu Q, Wei Y, Deng H, Wang X, Li X, Jiang J, Deng Y, Shi D. Efficient Generation of Transgenic Buffalos (Bubalus bubalis) by Nuclear Transfer of Fetal Fibroblasts Expressing Enhanced Green Fluorescent Protein. Sci Rep 2018; 8:6967. [PMID: 29725050 PMCID: PMC5934360 DOI: 10.1038/s41598-018-25120-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
The possibility of producing transgenic cloned buffalos by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein (EGFP) was explored in this study. When buffalo fetal fibroblasts (BFFs) isolated from a male buffalo fetus were transfected with pEGFP-N1 (EGFP is driven by CMV and Neo is driven by SV-40) by means of electroporation, Lipofectamine-LTX and X-tremeGENE, the transfection efficiency of electroporation (35.5%) was higher than Lipofectamine-LTX (11.7%) and X-tremeGENE (25.4%, P < 0.05). When BFFs were transfected by means of electroporation, more embryos from BFFs transfected with pEGFP-IRES-Neo (EGFP and Neo are driven by promoter of human elongation factor) cleaved and developed to blastocysts (21.6%) compared to BFFs transfected with pEGFP-N1 (16.4%, P < 0.05). A total of 72 blastocysts were transferred into 36 recipients and six recipients became pregnant. In the end of gestation, the pregnant recipients delivered six healthy calves and one stillborn calf. These calves were confirmed to be derived from the transgenic cells by Southern blot and microsatellite analysis. These results indicate that electroporation is more efficient than lipofection in transfecting exogenous DNA into BFFs and transgenic buffalos can be produced effectively by nuclear transfer of BFFs transfected with pEGFP-IRES-Neo.
Collapse
Affiliation(s)
- Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Chan Luo
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Nan Li
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.,Reproductive Center of Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, 545001, China
| | - Qingyou Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yingming Wei
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Haiying Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiaoli Wang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jianrong Jiang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yanfei Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
15
|
Kasai Y, Matsuzaki K, Ikeda F, Yoshimitsu Y, Harayama S. Precise excision of a selectable marker gene in transgenic Coccomyxa strains by the piggyBac transposase. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Bai DP, Yang MM, Qu L, Chen YL. Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology 2017; 93:1-6. [DOI: 10.1016/j.theriogenology.2017.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 01/04/2023]
|
17
|
Zeng F, Li Z, Cai G, Gao W, Jiang G, Liu D, Urschitz J, Moisyadi S, Wu Z. Characterization of Growth and Reproduction Performance, Transgene Integration, Expression, and Transmission Patterns in Transgenic Pigs Produced by piggyBac Transposition-Mediated Gene Transfer. Anim Biotechnol 2017; 27:245-55. [PMID: 27565868 DOI: 10.1080/10495398.2016.1178140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition.
Collapse
Affiliation(s)
- Fang Zeng
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Zicong Li
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Gengyuan Cai
- c Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou , China
| | - Wenchao Gao
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Gelong Jiang
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Dewu Liu
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Johann Urschitz
- d Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine , University of Hawaii at Manoa , Honolulu , Hawaii , USA
| | - Stefan Moisyadi
- d Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine , University of Hawaii at Manoa , Honolulu , Hawaii , USA.,e Manoa BioSciences , Honolulu , Hawaii , USA
| | - Zhenfang Wu
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| |
Collapse
|
18
|
Improvement of anti-nutritional effect resulting from β-glucanase specific expression in the parotid gland of transgenic pigs. Transgenic Res 2016; 26:1-11. [DOI: 10.1007/s11248-016-9984-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/29/2016] [Indexed: 01/12/2023]
|
19
|
Jin L, Zhu HY, Guo Q, Li XC, Zhang YC, Cui CD, Li WX, Cui ZY, Yin XJ, Kang JD. Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos. Theriogenology 2016; 87:298-305. [PMID: 27742403 DOI: 10.1016/j.theriogenology.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
Cloning remains as an important technique to enhance the reconstitution and distribution of animal population with high-genetic merit. One of the major detrimental factors of this technique is the abnormal epigenetic modifications. MGCD0103 is known as a histone deacetylase inhibitor. In this study, we investigated the effect of MGCD0103 on the in vitro blastocyst formation rate in porcine somatic cell nuclear transferred (SCNT) embryos and expression in acetylation of the histone H3 lysine 9 and histone H4 lysine 12. We compared the in vitro embryonic development of SCNT embryos treated with different concentrations of MGCD0103 for 24 hours. Our results reported that treating with 0.2-μM MGCD0103 for 24 hours effectively improved the development of SCNT embryos, in comparison to the control group (blastocyst formation rate, 25.5 vs. 10.7%, P < 0.05). Then we tested the in vitro development of SCNT embryos treated with 0.2-μM MGCD0103 for various intervals after activation. Treatment for 6 hours significantly improved the development of pig SCNT embryos, compared with the control group (blastocyst formation rate, 21.2 vs. 10.5%, P < 0.05). Furthermore, MGCD0103 supplementation significantly (P < 0.05) increases the average fluorescence intensity of AcH3K9 and AcH4K12 in embryos at the pseudo-pronuclear stage. To examine the in vivo development, MGCD0103-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and three fetuses developed. These results suggest that MGCD0103 can enhance the nuclear reprogramming and improve in vitro developmental potential of porcine SCNT embryos.
Collapse
Affiliation(s)
- Long Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Hai-Ying Zhu
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xiao-Chen Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Yu-Chen Zhang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Cheng-Du Cui
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Wen-Xue Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zheng-Yun Cui
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China.
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China.
| |
Collapse
|
20
|
Sato M, Maeda K, Koriyama M, Inada E, Saitoh I, Miura H, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S, Miyoshi K. The piggyBac-Based Gene Delivery System Can Confer Successful Production of Cloned Porcine Blastocysts with Multigene Constructs. Int J Mol Sci 2016; 17:E1424. [PMID: 27589724 PMCID: PMC5037703 DOI: 10.3390/ijms17091424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023] Open
Abstract
The introduction of multigene constructs into single cells is important for improving the performance of domestic animals, as well as understanding basic biological processes. In particular, multigene constructs allow the engineering and integration of multiple genes related to xenotransplantation into the porcine genome. The piggyBac (PB) transposon system allows multiple genes to be stably integrated into target genomes through a single transfection event. However, to our knowledge, no attempt to introduce multiple genes into a porcine genome has been made using this system. In this study, we simultaneously introduced seven transposons into a single porcine embryonic fibroblast (PEF). PEFs were transfected with seven transposons containing genes for five drug resistance proteins and two (red and green) fluorescent proteins, together with a PB transposase expression vector, pTrans (experimental group). The above seven transposons (without pTrans) were transfected concomitantly (control group). Selection of these transfected cells in the presence of multiple selection drugs resulted in the survival of several clones derived from the experimental group, but not from the control. PCR analysis demonstrated that approximately 90% (12/13 tested) of the surviving clones possessed all of the introduced transposons. Splinkerette PCR demonstrated that the transposons were inserted through the TTAA target sites of PB. Somatic cell nuclear transfer (SCNT) using a PEF clone with multigene constructs demonstrated successful production of cloned blastocysts expressing both red and green fluorescence. These results indicate the feasibility of this PB-mediated method for simultaneous transfer of multigene constructs into the porcine cell genome, which is useful for production of cloned transgenic pigs expressing multiple transgenes.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Kosuke Maeda
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Miyu Koriyama
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Issei Saitoh
- Division of Pediatric Dentistry, Department of Oral Health Sciences, Course for Oral Life Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| | - Hiromi Miura
- Department of Regenerative Medicine, Basic Medical Science, School of Medicine, Tokai University, Kanagawa 259-1193, Japan.
| | - Masato Ohtsuka
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa 259-1193, Japan.
- The Institute of Medical Sciences, Tokai University, Kanagawa 259-1193, Japan.
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan.
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Graduate school of Medicine, Shinshu University, Nagano 390-8621, Japan.
| | - Satoshi Watanabe
- Animal Genome Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan.
| | - Kazuchika Miyoshi
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
21
|
Liu G, Liu K, Wei H, Li L, Zhang S. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer. Mol Med Rep 2016; 14:2527-33. [PMID: 27430306 PMCID: PMC4991725 DOI: 10.3892/mmr.2016.5530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/25/2016] [Indexed: 12/20/2022] Open
Abstract
Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double-stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome-scale lentiviral single-guide RNA library, could be applied to a loss-of-function genetic screen, although the loss-of-function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription-PCR and western blot analysis indicated that the PFFs were Cas9-positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models.
Collapse
Affiliation(s)
- Guoqian Liu
- Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Kai Liu
- Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Hengxi Wei
- Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Li Li
- Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Shouquan Zhang
- Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
22
|
Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet 2016; 135:1093-105. [DOI: 10.1007/s00439-016-1710-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023]
|
23
|
Abstract
The piggyBac transposon was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and dissimilarity to the other DNA transposon families, the piggyBac transposon was not recognized as a member of a large transposon superfamily for a long time. Initially, the piggyBac transposon was thought to be a rare transposon. This view, however, has now been completely revised as a number of fully sequenced genomes have revealed the presence of piggyBac-like repetitive elements. The isolation of active copies of the piggyBac-like elements from several distinct species further supported this revision. This includes the first isolation of an active mammalian DNA transposon identified in the bat genome. To date, the piggyBac transposon has been deeply characterized and it represents a number of unique characteristics. In general, all members of the piggyBac superfamily use TTAA as their integration target sites. In addition, the piggyBac transposon shows precise excision, i.e., restoring the sequence to its preintegration state, and can transpose in a variety of organisms such as yeasts, malaria parasites, insects, mammals, and even in plants. Biochemical analysis of the chemical steps of transposition revealed that piggyBac does not require DNA synthesis during the actual transposition event. The broad host range has attracted researchers from many different fields, and the piggyBac transposon is currently the most widely used transposon system for genetic manipulations.
Collapse
|
24
|
Albl B, Haesner S, Braun-Reichhart C, Streckel E, Renner S, Seeliger F, Wolf E, Wanke R, Blutke A. Tissue Sampling Guides for Porcine Biomedical Models. Toxicol Pathol 2016; 44:414-20. [PMID: 26883152 DOI: 10.1177/0192623316631023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results.
Collapse
Affiliation(s)
- Barbara Albl
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany Minitüb GmbH, Tiefenbach, Germany
| | - Serena Haesner
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christina Braun-Reichhart
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Streckel
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simone Renner
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
25
|
Alessio AP, Fili AE, Garrels W, Forcato DO, Olmos Nicotra MF, Liaudat AC, Bevacqua RJ, Savy V, Hiriart MI, Talluri TR, Owens JB, Ivics Z, Salamone DF, Moisyadi S, Kues WA, Bosch P. Establishment of cell-based transposon-mediated transgenesis in cattle. Theriogenology 2015; 85:1297-311.e2. [PMID: 26838464 DOI: 10.1016/j.theriogenology.2015.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Transposon-mediated transgenesis is a well-established tool for genome modification in small animal models. However, translation of this active transgenic method to large animals warrants further investigations. Here, the piggyBac (PB) and sleeping beauty (SB) transposon systems were assessed for stable gene transfer into the cattle genome. Bovine fibroblasts were transfected either with a helper-independent PB system or a binary SB system. Both transposons were highly active in bovine cells increasing the efficiency of DNA integration up to 88 times over basal nonfacilitated integrations in a colony formation assay. SB transposase catalyzed multiplex transgene integrations in fibroblast cells transfected with the helper vector and two donor vectors carrying different transgenes (fluorophore and neomycin resistance). Stably transfected fibroblasts were used for SCNT and on in vitro embryo culture, morphologically normal blastocysts that expressed the fluorophore were obtained with both transposon systems. The data indicate that transposition is a feasible approach for genetic engineering in the cattle genome.
Collapse
Affiliation(s)
- Ana P Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Alejandro E Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Wiebke Garrels
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Diego O Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - María F Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Ana C Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Romina J Bevacqua
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Virginia Savy
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - María I Hiriart
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Thirumala R Talluri
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Jesse B Owens
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Daniel F Salamone
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Stefan Moisyadi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina.
| |
Collapse
|
26
|
Abstract
DNA transposons offer an efficient nonviral method of permanently modifying the genomes of mammalian cells. The piggyBac transposon system has proven effective in genomic engineering of mammalian cells for preclinical applications, including gene discovery, simultaneous multiplexed genome modification, animal transgenesis, gene transfer in vivo achieving long-term gene expression in animals, and the genetic modification of clinically relevant cell types, such as induced pluripotent stem cells and human T lymphocytes. piggyBac has many desirable features, including seamless excision of transposons from the genomic DNA and the potential to target integration events to desired DNA sequences. In this review, we explore these recent applications and also highlight the unique advantages of using piggyBac for developing new molecular therapeutic strategies.
Collapse
Affiliation(s)
- Lauren E Woodard
- Department of Veterans Affairs, Tennessee Valley Health System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Veterans Affairs, Tennessee Valley Health System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Bosch P, Forcato DO, Alustiza FE, Alessio AP, Fili AE, Olmos Nicotra MF, Liaudat AC, Rodríguez N, Talluri TR, Kues WA. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals. Cell Mol Life Sci 2015; 72:1907-29. [PMID: 25636347 PMCID: PMC11114025 DOI: 10.1007/s00018-015-1842-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/14/2023]
Abstract
Transgenic farm animals are attractive alternative mammalian models to rodents for the study of developmental, genetic, reproductive and disease-related biological questions, as well for the production of recombinant proteins, or the assessment of xenotransplants for human patients. Until recently, the ability to generate transgenic farm animals relied on methods of passive transgenesis. In recent years, significant improvements have been made to introduce and apply active techniques of transgenesis and genetic engineering in these species. These new approaches dramatically enhance the ease and speed with which livestock species can be genetically modified, and allow to performing precise genetic modifications. This paper provides a synopsis of enzyme-mediated genetic engineering in livestock species covering the early attempts employing naturally occurring DNA-modifying proteins to recent approaches working with tailored enzymatic systems.
Collapse
Affiliation(s)
- Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Diego O. Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Fabrisio E. Alustiza
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Ana P. Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Alejandro E. Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - María F. Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Ana C. Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Nancy Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Thirumala R. Talluri
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Biotechnology, 31535 Neustadt, Germany
| | - Wilfried A. Kues
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Biotechnology, 31535 Neustadt, Germany
| |
Collapse
|
28
|
piggyBac transposon-based insertional mutagenesis in mouse haploid embryonic stem cells. Methods Mol Biol 2015; 1239:15-28. [PMID: 25408399 DOI: 10.1007/978-1-4939-1862-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forward genetic screening is a powerful non-hypothesis-driven approach to unveil the molecular mechanisms and pathways underlying phenotypes of interest. In this approach, a genome-wide mutant library is first generated and then screened for a phenotype of interest. Subsequently, genes responsible for the phenotype are identified. There have been a number of successful screens in yeasts, Caenorhabditis elegans and Drosophila. These model organisms all allow loss-of-function mutants to be generated easily on a genome-wide scale: yeasts have a haploid stage in their reproductive cycles and the latter two organisms have short generation times, allowing mutations to be systematically bred to homozygosity. However, in mammals, the diploid genome and long generation time have always hampered rapid and efficient production of homozygous mutant cells and animals. The recent discovery of several haploid mammalian cell lines promises to revolutionize recessive genetic screens in mammalian cells. In this protocol, we describe an overview of insertional mutagenesis, focusing on DNA transposons, and provide a method for an efficient generation of genome-wide mutant libraries using mouse haploid embryonic stem cells.
Collapse
|
29
|
Laible G, Wei J, Wagner S. Improving livestock for agriculture - technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol J 2014; 10:109-20. [DOI: 10.1002/biot.201400193] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/04/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022]
|
30
|
Zhao L, Ng ET, Koopman P. ApiggyBactransposon- and gateway-enhanced system for efficient BAC transgenesis. Dev Dyn 2014; 243:1086-94. [DOI: 10.1002/dvdy.24153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 11/07/2022] Open
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Ee Ting Ng
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| | - Peter Koopman
- Institute for Molecular Bioscience; The University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
31
|
Li Z, Zeng F, Meng F, Xu Z, Zhang X, Huang X, Tang F, Gao W, Shi J, He X, Liu D, Wang C, Urschitz J, Moisyadi S, Wu Z. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol Reprod 2014; 90:93. [PMID: 24671876 DOI: 10.1095/biolreprod.113.116905] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The process of transgenesis involves the introduction of a foreign gene, the transgene, into the genome of an animal. Gene transfer by pronuclear microinjection (PNI) is the predominant method used to produce transgenic animals. However, this technique does not always result in germline transgenic offspring and has a low success rate for livestock. Alternate approaches, such as somatic cell nuclear transfer using transgenic fibroblasts, do not show an increase in efficiency compared to PNI, while viral-based transgenesis is hampered by issues regarding transgene size and biosafety considerations. We have recently described highly successful transgenesis experiments with mice using a piggyBac transposase-based vector, pmhyGENIE-3. This construct, a single and self-inactivating plasmid, contains all the transpositional elements necessary for successful gene transfer. In this series of experiments, our laboratories have implemented cytoplasmic injection (CTI) of pmGENIE-3 for transgene delivery into in vivo-fertilized pig zygotes. More than 8.00% of the injected embryos developed into transgenic animals containing monogenic and often single transgenes in their genome. However, the CTI technique was unsuccessful during the injection of in vitro-fertilized pig zygotes. In summary, here we have described a method that is not only easy to implement, but also demonstrated the highest efficiency rate for nonviral livestock transgenesis.
Collapse
Affiliation(s)
- Zicong Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc 2014; 9:810-27. [DOI: 10.1038/nprot.2014.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|