1
|
Devos Y, Mumford JD, Bonsall MB, Glandorf DCM, Quemada HD. Risk management recommendations for environmental releases of gene drive modified insects. Biotechnol Adv 2021; 54:107807. [PMID: 34314837 DOI: 10.1016/j.biotechadv.2021.107807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
The ability to engineer gene drives (genetic elements that bias their own inheritance) has sparked enthusiasm and concerns. Engineered gene drives could potentially be used to address long-standing challenges in the control of insect disease vectors, agricultural pests and invasive species, or help to rescue endangered species. However, risk concerns and uncertainty associated with potential environmental release of gene drive modified insects (GDMIs) have led some stakeholders to call for a global moratorium on such releases or the application of other strict precautionary measures to mitigate perceived risk assessment and risk management challenges. Instead, we provide recommendations that may help to improve the relevance of risk assessment and risk management frameworks for environmental releases of GDMIs. These recommendations include: (1) developing additional and more practical risk assessment guidance to ensure appropriate levels of safety; (2) making policy goals and regulatory decision-making criteria operational for use in risk assessment so that what constitutes harm is clearly defined; (3) ensuring a more dynamic interplay between risk assessment and risk management to manage uncertainty through closely interlinked pre-release modelling and post-release monitoring; (4) considering potential risks against potential benefits, and comparing them with those of alternative actions to account for a wider (management) context; and (5) implementing a modular, phased approach to authorisations for incremental acceptance and management of risks and uncertainty. Along with providing stakeholder engagement opportunities in the risk analysis process, the recommendations proposed may enable risk managers to make choices that are more proportionate and adaptive to potential risks, uncertainty and benefits of GDMI applications, and socially robust.
Collapse
Affiliation(s)
- Yann Devos
- Scientific Committee and Emerging Risk (SCER) Unit, European Food Safety Authority (EFSA), Parma, Italy.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, United Kingdom
| | | | - Debora C M Glandorf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hector D Quemada
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
2
|
Raybould A. New Frontiers in Biosafety and Biosecurity. Front Bioeng Biotechnol 2021; 9:727386. [PMID: 34368110 PMCID: PMC8334000 DOI: 10.3389/fbioe.2021.727386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Alan Raybould
- Global Academy of Agriculture and Food Security and the Innogen Institute, Old Surgeons’ Hall, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
4
|
Raybould A. Problem formulation and phenotypic characterisation for the development of novel crops. Transgenic Res 2020; 28:135-145. [PMID: 31321696 DOI: 10.1007/s11248-019-00147-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenotypic characterisation provides important information about novel crops that helps their developers to make technical and commercial decisions. Phenotypic characterisation comprises two activities. Product characterisation checks that the novel crop has the qualities of a viable product-the intended traits have been introduced and work as expected, and no unintended changes have been made that will adversely affect the performance of the final product. Risk assessment evaluates whether the intended and unintended changes are likely to harm human health or the environment. Product characterisation follows the principles of problem formulation, namely that the characteristics required in the final product are defined and criteria to decide whether the novel crop will have these properties are set. The hypothesis that the novel crop meets the criteria are tested during product development. If the hypothesis is corroborated, development continues, and if the hypothesis is falsified, the product is redesigned or its development is halted. Risk assessment should follow the same principles. Criteria that indicate the crop poses unacceptable risk should be set, and the hypothesis that the crop does not possess those properties should be tested. However, risk assessment, particularly when considering unintended changes introduced by new plant breeding methods such as gene editing, often ignores these principles. Instead, phenotypic characterisation seeks to catalogue all unintended changes by profiling methods and then proceeds to work out whether any of the changes are important. This paper argues that profiling is an inefficient and ineffective method of phenotypic characterisation for risk assessment. It discusses reasons why profiling is favoured and corrects some misconceptions about problem formulation.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta Crop Protection AG, Rosentalstrasse 67, 4002, Basel, Switzerland.
| |
Collapse
|
5
|
Devos Y, Elliott KC, Macdonald P, McComas K, Parrino L, Vrbos D, Robinson T, Spiegelhalter D, Gallani B. Conducting fit-for-purpose food safety risk assessments. EFSA J 2019; 17:e170707. [PMID: 32626444 PMCID: PMC7015513 DOI: 10.2903/j.efsa.2019.e170707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interplay between science, risk assessment and risk management has always been complex, and even more so in a world increasingly characterised by rapid technical innovation, new modes of communication, suspicion about authorities and experts, and demands for people to have a say in decisions that are made on their behalf. In this challenging era where scientific advice on food safety has never been in greater demand, risk managers should effectively navigate the interplay between facts and values and be able to rely on robust and fit‐for‐purpose risk assessments to aid them. The fact that societal resistance is often encountered when scientific advice on food safety operates at a distance from social values and fails to actively engage with citizens, has led to increasing emphasis on the need to advance forms of risk assessment that are more contextual, and socially sound and accountable. EFSA's third Scientific Conference explored how risk assessments could be constructed to most usefully meet society's needs and thus connect science with society, while remaining scientifically robust. Contributors to the conference highlighted the need to: (1) frame risk assessments by clear policy goals and decision‐making criteria; (2) begin risk assessments with an explicit problem formulation to identify relevant information; (3) make use of reliable risk assessment studies; (4) be explicit about value judgements; (5) address and communicate scientific uncertainty; (6) follow trustworthy processes; (7) publish the evidence and data, and report the way in which they are used in a transparent manner; (8) ensure effective communication throughout the risk analysis process; (9) involve society, as appropriate; and (10) weigh risks and benefits on request. Implementation of these recommendations would contribute to increased credibility and trustworthiness of food safety risk assessments.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit European Food Safety Authority (EFSA) Italy
| | - Kevin C Elliott
- Lyman Briggs College Department of Fisheries and Wildlife, and Department of Philosophy Michigan State University United States of America
| | | | - Katherine McComas
- Department of Communication Cornell University United States of America
| | - Lucia Parrino
- Corporate Services (CORSER) Unit, European Food Safety Authority (EFSA) Italy
| | - Domagoj Vrbos
- Communication Engagement and Cooperation (COMCO) Department European Food Safety Authority (EFSA) Italy
| | - Tobin Robinson
- Scientific Committee and Emerging Risks (SCER) Unit European Food Safety Authority (EFSA) Italy
| | | | - Barbara Gallani
- Communication Engagement and Cooperation (COMCO) Department European Food Safety Authority (EFSA) Italy
| |
Collapse
|
6
|
Devos Y, Munns WR, Forbes VE, Maltby L, Stenseke M, Brussaard L, Streissl F, Hardy A. Applying ecosystem services for pre-market environmental risk assessments of regulated stressors. EFSA J 2019; 17:e170705. [PMID: 32626442 PMCID: PMC7015505 DOI: 10.2903/j.efsa.2019.e170705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ecosystem services (ES) are the benefits that people obtain from ecosystems. Investigating the environment through an ES framework has gained wide acceptance in the international scientific community and is applied by policymakers to protect biodiversity and safeguard the sustainability of ecosystems. This approach can enhance the ecological and societal relevance of pre‐market/prospective environmental risk assessments (ERAs) of regulated stressors by: (1) informing the derivation of operational protection goals; (2) enabling the integration of environmental and human health risk assessments; (3) facilitating horizontal integration of policies and regulations; (4) leading to more comprehensive and consistent environmental protection; (5) articulating the utility of, and trade‐offs involved in, environmental decisions; and (6) enhancing the transparency of risk assessment results and the decisions based upon them. Realisation of these advantages will require challenges that impede acceptance of an ES approach to be overcome. Particularly, there is concern that, if biodiversity only matters to the extent that it benefits humans, the intrinsic value of nature is ignored. Moreover, our understanding of linkages among ecological components and the processes that ultimately deliver ES is incomplete, valuing ES is complex, and there is no standard ES lexicon and limited familiarity with the approach. To help overcome these challenges, we encourage: (1) further research to establish biodiversity–ES relationships; (2) the development of approaches that (i) quantitatively translate responses to chemical stressors by organisms and groups of organisms to ES delivery across different spatial and temporal scales, (ii) measure cultural ES and ease their integration into ES valuations, and (iii) appropriately value changes in ES delivery so that trade‐offs among different management options can be assessed; (3) the establishment of a standard ES lexicon; and (4) building capacity in ES science and how to apply ES to ERAs. These development needs should not prevent movement towards implementation of an ES approach in ERAs, as the advantages we perceive of using this approach render it more than worthwhile to tackle those challenges. Society and the environment stand to benefit from this shift in how we conduct the ERA of regulated stressors.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit European Food Safety Authority (EFSA) Italy
| | - Wayne R Munns
- National Health and Environmental Effects Research Laboratory US Environmental Protection Agency (EPA) United States of America
| | - Valery E Forbes
- College of Biological Sciences University of Minnesota United States of America
| | - Lorraine Maltby
- Department of Animal and Plant Science University of Sheffield United Kingdom
| | - Marie Stenseke
- Unit for Human Geography Department of Economy and Society School of Economics Business and Law University of Gothenburg Sweden
| | | | - Franz Streissl
- Pesticides Unit European Food Safety Authority (EFSA) Italy
| | | |
Collapse
|
7
|
Schiemann J, Dietz-Pfeilstetter A, Hartung F, Kohl C, Romeis J, Sprink T. Risk Assessment and Regulation of Plants Modified by Modern Biotechniques: Current Status and Future Challenges. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:699-726. [PMID: 30822113 DOI: 10.1146/annurev-arplant-050718-100025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review describes the current status and future challenges of risk assessment and regulation of plants modified by modern biotechniques, namely genetic engineering and genome editing. It provides a general overview of the biosafety and regulation of genetically modified plants and details different regulatory frameworks with a focus on the European situation. The environmental risk and safety assessment of genetically modified plants is explained, and aspects of toxicological assessments are discussed, especially the controversial debate in Europe on the added scientific value of untargeted animal feeding studies. Because RNA interference (RNAi) is increasingly explored for commercial applications, the risk and safety assessment of RNAi-based genetically modified plants is also elucidated. The production, detection, and identification of genome-edited plants are described. Recent applications of modern biotechniques, namely synthetic biology and gene drives, are discussed, and a short outlook on the future follows.
Collapse
Affiliation(s)
- Joachim Schiemann
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Antje Dietz-Pfeilstetter
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Frank Hartung
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Christian Kohl
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Thorben Sprink
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany;
| |
Collapse
|
8
|
Mastroeni M, Mittra J, Tait J. Political influences on biotechnology-based innovation for European agriculture: risk-assessment and risk management. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2019. [DOI: 10.1080/09537325.2019.1573983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Michele Mastroeni
- Strategic Foresight and Innovation, OCAD University, Toronto, Canada
| | - James Mittra
- Innogen Institute, The University of Edinburgh, Edinburgh, UK
| | - Joyce Tait
- Innogen Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Nuccio ML, Paul M, Bate NJ, Cohn J, Cutler SR. Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:110-119. [PMID: 29907303 DOI: 10.1016/j.plantsci.2018.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/22/2023]
Abstract
Since the dawn of modern biotechnology public and private enterprise have pursued the development of a new breed of drought tolerant crop products. After more than 20 years of research and investment only a few such products have reached the market. This is due to several technical and market constraints. The technical challenges include the difficulty in defining tractable single-gene trait development strategies, the logistics of moving traits from initial to commercial genetic backgrounds, and the disconnect between conditions in farmer's fields and controlled environments. Market constraints include the significant difficulty, and associated costs, in obtaining access to markets around the world. Advances in the biology of plant water management, including response to water deficit reveal new opportunities to improve crop response to water deficit and new genome-based tools promise to usher in the next era of crop improvement. As biotechnology looks to improve crop productivity under drought conditions, the environmental and food security advantages will influence public perception and shift the debate toward benefits rather than risks.
Collapse
Affiliation(s)
- Michael L Nuccio
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Matthew Paul
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Nicholas J Bate
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Jonathan Cohn
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Sean R Cutler
- Plant Cell Biology and Chemistry, Botany and Plant Sciences Chemistry Genomics Building, University of California Riverside, CA, 92521, USA.
| |
Collapse
|
10
|
Kettenburg AJ, Hanspach J, Abson DJ, Fischer J. From disagreements to dialogue: unpacking the Golden Rice debate. SUSTAINABILITY SCIENCE 2018; 13:1469-1482. [PMID: 30220919 PMCID: PMC6132390 DOI: 10.1007/s11625-018-0577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Transgenic Golden Rice has been hailed as a practical solution to vitamin A deficiency, but has also been heavily criticized. To facilitate a balanced view on this polarized debate, we investigated existing arguments for and against Golden Rice from a sustainability science perspective. In a structured literature review of peer-reviewed publications on Golden Rice, we assessed to what extent 64 articles addressed 70 questions covering different aspects of sustainability. Using cluster analysis, we grouped the literature into two major branches, containing two clusters each. These clusters differed in the range and nature of the sustainability aspects addressed, disciplinary affiliation and overall evaluation of Golden Rice. The 'biotechnological' branch (clusters: 'technical effectiveness' and 'advocacy') was dominated by the natural sciences, focused on biophysical plant-consumer interactions, and evaluated Golden Rice positively. In contrast, the 'socio-systemic' branch (clusters: 'economic efficiency' and 'equity and holism') was primarily comprised of social sciences, addressed a wider variety of sustainability aspects including participation, equity, ethics and biodiversity, and more often pointed to the shortcomings of Golden Rice. There were little to no integration efforts between the two branches, and highly polarized positions arose in the clusters on 'advocacy' and 'equity and holism'. To explore this divide, we investigated the influences of disciplinary affiliations and personal values on the respective problem framings. We conclude that to move beyond a polarized debate, it may be fruitful to ground the Golden Rice discourse in facets and methods of sustainability science, with an emphasis on participation and integration of diverging interests.
Collapse
Affiliation(s)
- Annika J. Kettenburg
- Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
- Lund University Centre for Sustainability Studies (LUCSUS), Lund University, Box 170, 22100 Lund, Sweden
| | - Jan Hanspach
- Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - David J. Abson
- Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Joern Fischer
- Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| |
Collapse
|
11
|
The ethical concerns about transgenic crops. Biochem J 2018; 475:803-811. [PMID: 29490910 DOI: 10.1042/bcj20170794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 11/17/2022]
Abstract
It is generally accepted that transgenesis can improve our knowledge of natural processes, but also leads to agricultural, industrial or socio-economical changes which could affect human society at large and which may, consequently, require regulation. It is often stated that developing countries are most likely to benefit from plant biotechnology and are at the same time most likely to be affected by the deployment of such new technologies. Therefore, ethical questions related to such biotechnology probably also need to be addressed. We first illustrate how consequentialist and nonconsequentialist theories of ethics can be applied to the genetically modified organism debate, namely consequentialism, autonomy/consent ethics (i.e. self-determination of people regarding matters that may have an effect on these people) and virtue ethics (i.e. whether an action is in adequacy with ideal traits). We show that these approaches lead to highly conflicting views. We have then refocused on moral 'imperatives', such as freedom, justice and truth. Doing so does not resolve all conflicting views, but allows a gain in clarity in the sense that the ethical concerns are shifted from a technology (and its use) to the morality or amorality of various stakeholders of this debate.
Collapse
|
12
|
Emerging crossover technologies: How to organize a biotechnology that becomes mainstream? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s10669-017-9666-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Abstract
Genome editing of livestock is poised to become commercial reality, yet questions remain as to appropriate regulation, potential impact on the industry sector and public acceptability of products. This paper looks at how genome editing of livestock has attempted to learn some of the lessons from commercialisation of GM crops, and takes a systemic approach to explore some of the complexity and ambiguity in incorporating genome edited animals in a food production system. Current applications of genome editing are considered, viewed from the perspective of past technological applications. The question of what is genome editing, and can it be considered natural is examined. The implications of regulation on development of different sectors of livestock production systems are studied, with a particular focus on the veterinary sector. From an EU perspective, regulation of genome edited animals, although not necessarily the same as for GM crops, is advocated from a number of different perspectives. This paper aims to open up new avenues of research on genome edited animals, extending from the current primary focus on science and regulation, to engage with a wider-range of food system actors.
Collapse
Affiliation(s)
- Ann Bruce
- Science, Technology and Innovation Studies, The University of Edinburgh, Old Surgeons' Hall, High School Yards, Edinburgh, UK.
| |
Collapse
|
14
|
Dolezel M, Miklau M, Heissenberger A, Reichenbecher W. Are Limits of Concern a useful concept to improve the environmental risk assessment of GM plants? ENVIRONMENTAL SCIENCES EUROPE 2017; 29:7. [PMID: 28261537 PMCID: PMC5313563 DOI: 10.1186/s12302-017-0104-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The European Food Safety Authority (EFSA) has introduced a concept for the environmental risk assessment of genetically modified (GM) plants which foresees the definition of ecological threshold values defining acceptable adverse effects of the GM plant on the environment (Limits of Concern, LoC). METHODS We analysed the LoC concept by scrutinising its feasibility with regard to important aspects of the environmental risk assessment. We then considered its relationship with protection goals, the comparative safety assessment and the stepwise testing approach. We finally discussed its usefulness for assessing long-term effects, effects on non-target organisms and species of conservation concern. RESULTS The LoC concept is a possible approach to introduce ecological thresholds into environmental risk assessment in order to evaluate environmental harm. However, the concept leaves many important aspects open. Thresholds for environmental harm for protection goals need spatial and temporal differentiation from LoCs used for ERA indicators. Regionalisation of LoCs must be provided for as biodiversity levels and protection goals vary across the EU. Further guidance is needed with respect to the consequences, in case LoCs are exceeded and a link needs to be established between environmentally relevant results from the comparative safety assessment and the LoC concept. LoCs for long-term effects have to be evaluated by long-term monitoring. LoCs for non-target organisms need to be discriminated according to the species and parameters assessed. CONCLUSIONS The overall LoC concept is considered useful if LoCs are further specified and differentiated. Although LoCs will finally be determined by political decisions, they should be based on scientific grounds in order to increase confidence in the conclusions on the safety of GM plants.
Collapse
Affiliation(s)
- Marion Dolezel
- Environment Agency Austria, Spittelauer Laende 5, 1090 Vienna, Austria
| | - Marianne Miklau
- Environment Agency Austria, Spittelauer Laende 5, 1090 Vienna, Austria
| | | | | |
Collapse
|
15
|
Devos Y, Gaugitsch H, Gray AJ, Maltby L, Martin J, Pettis JS, Romeis J, Rortais A, Schoonjans R, Smith J, Streissl F, Suter GW. Advancing environmental risk assessment of regulated products under EFSA's remit. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.s0508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Jörg Romeis
- Institute for Sustainability Sciences, Agroscope
| | | | | | - Joe Smith
- Advisor in Regulation, Science and Government (formerly Office of the Gene Technology Regulator)
| | | | | |
Collapse
|
16
|
Lamichhane JR, Devos Y, Beckie HJ, Owen MDK, Tillie P, Messéan A, Kudsk P. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Crit Rev Biotechnol 2016; 37:459-475. [PMID: 27173634 DOI: 10.1080/07388551.2016.1180588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.
Collapse
Affiliation(s)
| | - Yann Devos
- b GMO Unit, European Food Safety Authority (EFSA) , Parma , Italy
| | - Hugh J Beckie
- c Agriculture and Agri-Food Canada , Saskatoon , Saskatchewan , Canada
| | | | - Pascal Tillie
- e European Commission-Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS) , Seville , Spain
| | - Antoine Messéan
- a Eco-Innov Research Unit, INRA , Thiverval-Grignon , France
| | - Per Kudsk
- f Department of Agroecology , Aarhus University , Slagelse , Denmark
| |
Collapse
|
17
|
Inclusion and Implementation of Socio-Economic Considerations in GMO Regulations: Needs and Recommendations. SUSTAINABILITY 2016. [DOI: 10.3390/su8010062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Devos Y, Romeis J, Luttik R, Maggiore A, Perry JN, Schoonjans R, Streissl F, Tarazona JV, Brock TCM. Optimising environmental risk assessments: Accounting for ecosystem services helps to translate broad policy protection goals into specific operational ones for environmental risk assessments. EMBO Rep 2015; 16:1060-3. [PMID: 26265005 PMCID: PMC4576975 DOI: 10.15252/embr.201540874] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yann Devos
- European Food Safety Authority (EFSA), Genetically Modified Organisms UnitParma, Italy
| | - Jörg Romeis
- Agroscope, Institute for Sustainability Sciences (ISS)Zurich, Switzerland
| | | | - Angelo Maggiore
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks UnitParma, Italy
| | | | - Reinhilde Schoonjans
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks UnitParma, Italy
| | - Franz Streissl
- European Food Safety Authority (EFSA), Pesticides UnitParma, Italy
| | - José V Tarazona
- European Food Safety Authority (EFSA), Pesticides UnitParma, Italy
| | | |
Collapse
|
19
|
Seeing GMOs from a Systems Perspective: The Need for Comparative Cartographies of Agri/Cultures for Sustainability Assessment. SUSTAINABILITY 2015. [DOI: 10.3390/su70811321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Kohl C, Frampton G, Sweet J, Spök A, Haddaway NR, Wilhelm R, Unger S, Schiemann J. Can Systematic Reviews Inform GMO Risk Assessment and Risk Management? Front Bioeng Biotechnol 2015; 3:113. [PMID: 26322307 PMCID: PMC4533014 DOI: 10.3389/fbioe.2015.00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/23/2015] [Indexed: 01/26/2023] Open
Abstract
Systematic reviews represent powerful tools to identify, collect, synthesize, and evaluate primary research data on specific research questions in a highly standardized and reproducible manner. They enable the defensible synthesis of outcomes by increasing precision and minimizing bias whilst ensuring transparency of the methods used. This makes them especially valuable to inform evidence-based risk analysis and decision making in various topics and research disciplines. Although seen as a "gold standard" for synthesizing primary research data, systematic reviews are not without limitations as they are often cost, labor and time intensive and the utility of synthesis outcomes depends upon the availability of sufficient and robust primary research data. In this paper, we (1) consider the added value systematic reviews could provide when synthesizing primary research data on genetically modified organisms (GMO) and (2) critically assess the adequacy and feasibility of systematic review for collating and analyzing data on potential impacts of GMOs in order to better inform specific steps within GMO risk assessment and risk management. The regulatory framework of the EU is used as an example, although the issues we discuss are likely to be more widely applicable.
Collapse
Affiliation(s)
- Christian Kohl
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg, Germany
| | - Geoff Frampton
- Southampton Health Technology Assessments Centre (SHTAC), Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Armin Spök
- Alpen-Adria Universität Klagenfurt-Wien Graz and IFZ-Inter-University Research Centre for Technology, Work and Culture, Graz, Austria
| | - Neal Robert Haddaway
- Mistra Council for Evidence-Based Environmental Management (EviEM), Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Ralf Wilhelm
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg, Germany
| | - Stefan Unger
- Data Processing Group, Julius Kühn-Institut, Quedlinburg, Germany
| | - Joachim Schiemann
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg, Germany
| |
Collapse
|
21
|
Tepfer M, Jacquemond M, García-Arenal F. A critical evaluation of whether recombination in virus-resistant transgenic plants will lead to the emergence of novel viral diseases. THE NEW PHYTOLOGIST 2015; 207:536-41. [PMID: 25982848 DOI: 10.1111/nph.13358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 05/07/2023]
Abstract
In the evaluation of the potential impacts of first-generation genetically modified (GM) crops, one of the most complex issues has been whether the expression of viral sequences would lead to the emergence of novel viruses, which could occur through recombination between transgene mRNA and that of an infecting non-target virus. Here, we examine this issue, focusing on Cucumber mosaic virus (CMV), which is a particularly pertinent choice, as it is both a major plant pathogen and also the virus with which this question has been studied in the most detail. Using recent results on recombination in CMV, we employ a novel framework giving particular prominence to the formulation of the risk hypothesis and to hypothesis testing via examination of the potential pathway to harm. This allows us to conclude with greater certainty that the likelihood of this potential harm, the emergence of novel viruses, is low.
Collapse
Affiliation(s)
- Mark Tepfer
- INRA UMR1318 Institut Jean-Pierre Bourgin, 78026, Versailles Cedex, France
- INRA UR407 Pathologie Végétale, 84143, Montfavet Cedex, France
| | | | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
22
|
Lucht JM. Public Acceptance of Plant Biotechnology and GM Crops. Viruses 2015; 7:4254-81. [PMID: 26264020 PMCID: PMC4576180 DOI: 10.3390/v7082819] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/16/2023] Open
Abstract
A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.
Collapse
Affiliation(s)
- Jan M Lucht
- Scienceindustries, Swiss Business Association Chemistry Pharma Biotech, P.O. Box 1826, Zurich CH-8021, Switzerland.
| |
Collapse
|
23
|
Ayyadurai VAS, Deonikar P. Do GMOs Accumulate Formaldehyde and Disrupt Molecular Systems Equilibria? Systems Biology May Provide Answers. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/as.2015.67062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Introduction to ISBGMO12: biosafety research past, present and future. Transgenic Res 2014; 23:911-4. [PMID: 24823764 PMCID: PMC4204009 DOI: 10.1007/s11248-014-9794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 11/21/2022]
|