1
|
Ferreira-Duarte M, Oliveira LCG, Quintas C, Dias-Pereira P, Sousa T, Magro F, Casarini DE, Duarte-Araújo M, Morato M. Angiotensin-converting enzymes 1 and 2 in the feces: presence and catalytic activity in the rat 2,4,6-trinitrobenzene sulfonic acid-induced model of colitis. J Gastroenterol Hepatol 2024; 39:1885-1894. [PMID: 38967213 DOI: 10.1111/jgh.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIM Inflammatory bowel disease is challenging to diagnose. Fecal biomarkers offer noninvasive solutions. The renin-angiotensin-aldosterone system is implicated in intestinal inflammation. Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) regulate its activity, but conflicting findings on these enzymes in colitis require further investigation. We aimed to assess ACE and ACE2 presence and activities in the feces, serum, and colon of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rats. METHODS Colitis was induced in male rats by rectal instillation of a 21% ethanolic TNBS solution. After rats' sacrifice, colonic portions, serum, and feces were collected. ACE and ACE2 presence in the feces was analyzed by western Blot, and colonic and serum enzymes' concentrations were quantified using ELISA kits. ACE activity was assessed using Hippuryl-His-Leu and Z-Phe-His-Leu as substrates. ACE2 activity was assessed using Mca-APK (Dnp) as a substrate in the presence and absence of DX600 (ACE2 inhibitor). RESULTS An ACE isoform of ~70 kDa was found only in the feces of TNBS-induced rats. ACE concentration was higher than that of ACE2 in the serum and the inflamed colon. ACE N-domain activity was higher than that of the C-domain in all matrices. ACE2 activity was higher in the feces of TNBS-induced animals compared to controls. CONCLUSION A 70 kDa ACE isoform only detected in the feces of TNBS-induced rats may have translational relevance. ACE N-domain seems to play a significant role in regulating colonic lesions. Further research using human samples is necessary to validate these findings.
Collapse
Affiliation(s)
- Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| | - Lilian Caroline Gonçalves Oliveira
- Department of Medicine, Discipline of Nephrology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- UCIBIO@REQUIMTE, University of Porto, Porto, Portugal
| | - Patricia Dias-Pereira
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Teresa Sousa
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, University of Porto (MedInUP), Porto, Portugal
| | - Fernando Magro
- CINTESIS@RISE, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Margarida Duarte-Araújo
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Interaction between the Renin-Angiotensin System and Enteric Neurotransmission Contributes to Colonic Dysmotility in the TNBS-Induced Model of Colitis. Int J Mol Sci 2021; 22:ijms22094836. [PMID: 34063607 PMCID: PMC8125095 DOI: 10.3390/ijms22094836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin II (Ang II) regulates colon contraction, acting not only directly on smooth muscle but also indirectly, interfering with myenteric neuromodulation mediated by the activation of AT1 /AT2 receptors. In this article, we aimed to explore which mediators and cells were involved in Ang II-mediated colonic contraction in the TNBS-induced rat model of colitis. The contractile responses to Ang II were evaluated in distinct regions of the colon of control animals or animals with colitis in the absence and presence of different antagonists/inhibitors. Endogenous levels of Ang II in the colon were assessed by ELISA and the number of AT1/AT2 receptors by qPCR. Ang II caused AT1 receptor-mediated colonic contraction that was markedly decreased along the colons of TNBS-induced rats, consistent with reduced AT1 mRNA expression. However, the effect mediated by Ang II is much more intricate, involving (in addition to smooth muscle cells and nerve terminals) ICC and EGC, which communicate by releasing ACh and NO in a complex mechanism that changes colitis, unveiling new therapeutic targets.
Collapse
|
3
|
Brooks EF, Bhatt AS. The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19? Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006031. [PMID: 33593727 PMCID: PMC8040733 DOI: 10.1101/mcs.a006031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by infection with SARS-CoV-2, presents with a broad constellation of both respiratory and nonrespiratory symptoms, although it is primarily considered a respiratory disease. Gastrointestinal symptoms-including nausea, abdominal pain, vomiting, and diarrhea-rank chief among these. When coupled with the presence of viral RNA in fecal samples, the presence of gastrointestinal symptoms raises relevant questions regarding whether SARS-CoV-2 can productively infect the upper or lower gastrointestinal tract. Despite the well-documented prevalence of gastrointestinal symptoms and the high rate of SARS-CoV-2 fecal RNA shedding, the biological, clinical, and epidemiological relevance of these findings is unclear. Furthermore, the isolation of replication-competent virus from fecal samples has not been reproducibly and rigorously demonstrated. Although SARS-CoV-2 shedding likely occurs in a high proportion of patients, gastrointestinal symptoms affect only a subset of individuals. Herein, we summarize what is known about gastrointestinal symptoms and fecal viral shedding in COVID-19, explore the role of the gut microbiome in other respiratory diseases, speculate on the role of the gut microbiota in COVID-19, and discuss potential future directions. Taking these concepts together, we propose that studying gut microbiota perturbations in COVID-19 will enhance our understanding of the symptomology and pathophysiology of this novel devastating disease.
Collapse
Affiliation(s)
- Erin F Brooks
- Department of Medicine (Division of Hematology; Division of Blood and Marrow Transplantation), Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Ami S Bhatt
- Department of Medicine (Division of Hematology; Division of Blood and Marrow Transplantation), Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
4
|
Ferreira-Duarte M, Estevinho MM, Duarte-Araújo M, Magro F, Morato M. Unraveling the Role of ACE2, the Binding Receptor for SARS-CoV-2, in Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:1787-1795. [PMID: 33064147 PMCID: PMC7665510 DOI: 10.1093/ibd/izaa249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been highlighted for its role as a receptor for SARS-CoV-2, responsible for the current COVID-19 pandemic. This review summarizes current knowledge about ACE2 as a multifunctional protein, focusing on its relevance in inflammatory bowel disease (IBD). As an enzyme, ACE2 may be protective in IBD because it favors the counter-regulatory arm of the renin-angiotensin system or deleterious because it metabolizes other anti-inflammatory/repairing elements. Meanwhile, as a receptor for SARS-CoV-2, the impact of ACE2 expression/activity on infection is still under debate because no direct evidence has been reported and, again, both protective and deleterious pathways are possible. Research has shown that ACE2 regulates the expression of the neutral amino acid transporter B0AT1, controlling tryptophan-associated intestinal inflammation and nutritional status. Finally, intact membrane-bound or shed soluble ACE2 can also trigger integrin signaling, modulating the response to anti-integrin biologic drugs used to treat IBD (such as vedolizumab) and fibrosis, a long-term complication of IBD. As such, future studies on ACE2 expression/activity in IBD can improve monitoring of the disease and explore an alternative pharmacological target.
Collapse
Affiliation(s)
- Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy of University of Porto, Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Margarida Duarte-Araújo
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, ICBAS-UP, Porto, Portugal
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
- MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy of University of Porto, Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Jia H, Yue X, Lazartigues E. ACE2 mouse models: a toolbox for cardiovascular and pulmonary research. Nat Commun 2020; 11:5165. [PMID: 33057007 PMCID: PMC7560817 DOI: 10.1038/s41467-020-18880-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been identified as the host entry receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the COVID-19 pandemic. ACE2 is a regulatory enzyme of the renin-angiotensin system and has protective functions in many cardiovascular, pulmonary and metabolic diseases. This review summarizes available murine models with systemic or organ-specific deletion of ACE2, or with overexpression of murine or human ACE2. The purpose of this review is to provide researchers with the genetic tools available for further understanding of ACE2 biology and for the investigation of ACE2 in the pathogenesis and treatment of COVID-19.
Collapse
Affiliation(s)
- Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Southeast Louisiana Veterans Health Care Systems, New Orleans, LA, 70119, USA.
| |
Collapse
|
6
|
Li Q, Qin Z, Wang Q, Xu T, Yang Y, He Z. Applications of Genome Editing Technology in Animal Disease Modeling and Gene Therapy. Comput Struct Biotechnol J 2019; 17:689-698. [PMID: 31303973 PMCID: PMC6603303 DOI: 10.1016/j.csbj.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 02/05/2023] Open
Abstract
Genome editing technology is a technique for targeted genetic modifications, enabling the knockout and addition of specific DNA fragments. This technology has been widely used in various types of biomedical research, clinics and agriculture. In terms of disease research, constructing appropriate animal models is necessary. Combining reproductive technology with genome editing, many animal disease models have been generated for basic and clinical research. In addition, precisely targeted modifications allow genome editing to flourish in the field of gene therapy. Many mutations refractory to traditional gene therapy could be permanently corrected at the DNA level. Thus, genome editing is undoubtedly a promising technology for gene therapy. In this review, we mainly introduce the applications of genome editing in constructing animal disease models and gene therapies, as well as its future prospects and challenges.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhou Qin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Ting Xu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhiyao He
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Santos RAS. Genetic Models. ANGIOTENSIN-(1-7) 2019. [PMCID: PMC7120897 DOI: 10.1007/978-3-030-22696-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically altered rat and mouse models have been instrumental in the functional analysis of genes in a physiological context. In particular, studies on the renin-angiotensin system (RAS) have profited from this technology in the past. In this review, we summarize the existing animal models for the protective axis of the RAS consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7)(Ang-(1-7), and its receptor Mas. With the help of models with altered expression of the components of this axis in the brain and cardiovascular organs, its physiological and pathophysiological functions have been elucidated. Thus, novel opportunities for therapeutic interventions in cardiovascular diseases were revealed targeting ACE2 or Mas.
Collapse
|
8
|
Alenina N, Bader M. ACE2 in Brain Physiology and Pathophysiology: Evidence from Transgenic Animal Models. Neurochem Res 2018; 44:1323-1329. [PMID: 30443713 PMCID: PMC7089194 DOI: 10.1007/s11064-018-2679-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/15/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a protein consisting of two domains, the N-terminus is a carboxypeptidase homologous to ACE and the C-terminus is homologous to collectrin and responsible for the trafficking of the neutral amino acid transporter B(0)AT1 to the plasma membrane of gut epithelial cells. The carboxypeptidase domain not only metabolizes angiotensin II to angiotensin-(1–7), but also other peptide substrates, such as apelin, kinins and morphins. In addition, the collectrin domain regulates the levels of some amino acids in the blood, in particular of tryptophan. Therefore it is of no surprise that animals with genetic alterations in the expression of ACE2 develop a diverse pattern of phenotypes ranging from hypertension, metabolic and behavioural dysfunctions, to impairments in serotonin synthesis and neurogenesis. This review summarizes the phenotypes of such animals with a particular focus on the central nervous system.
Collapse
Affiliation(s)
- Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
- Charité - University Medicine, Berlin, Germany.
- Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
9
|
Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P, Fortune N, Gerszten RE, Johnson JA, Kaplowitz M, Newman JH, Piana R, Pugh ME, Rice TW, Robbins IM, Wheeler L, Yu C, Loyd JE, West J. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J 2018; 51:13993003.02638-2017. [PMID: 29903860 DOI: 10.1183/13993003.02638-2017] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a deadly disease with no cure. Alternate conversion of angiotensin II (AngII) to angiotensin-(1-7) (Ang-(1-7)) by angiotensin-converting enzyme 2 (ACE2) resulting in Mas receptor (Mas1) activation improves rodent models of PAH. Effects of recombinant human (rh) ACE2 in human PAH are unknown. Our objective was to determine the effects of rhACE2 in PAH.We defined the molecular effects of Mas1 activation using porcine pulmonary arteries, measured AngII/Ang-(1-7) levels in human PAH and conducted a phase IIa, open-label pilot study of a single infusion of rhACE2 (GSK2586881, 0.2 or 0.4 mg·kg-1 intravenously).Superoxide dismutase 2 (SOD2) and inflammatory gene expression were identified as markers of Mas1 activation. After confirming reduced plasma ACE2 activity in human PAH, five patients were enrolled in the trial. GSK2586881 was well tolerated with significant improvement in cardiac output and pulmonary vascular resistance. GSK2586881 infusion was associated with reduced plasma markers of inflammation within 2-4 h and increased SOD2 plasma protein at 2 weeks.PAH is characterised by reduced ACE2 activity. Augmentation of ACE2 in a pilot study was well tolerated, associated with improved pulmonary haemodynamics and reduced markers of oxidant and inflammatory mediators. Targeting this pathway may be beneficial in human PAH.
Collapse
Affiliation(s)
- Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,These two authors are joint first authors
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,These two authors are joint first authors
| | - Eric A Austin
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erica J Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinping Chen
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua P Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Candice D Fike
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Fong
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niki Fortune
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jennifer A Johnson
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark Kaplowitz
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John H Newman
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert Piana
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith E Pugh
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd W Rice
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivan M Robbins
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa Wheeler
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chang Yu
- Dept of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James West
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Ji X, Hu X, Zou C, Ruan H, Fan X, Tang C, Shi W, Mei L, Zhu H, Hussain M, Zeng L, Zhang X, Wu X. Vitamin C deficiency exacerbates diabetic glomerular injury through activation of transforming growth factor-β signaling. Biochim Biophys Acta Gen Subj 2017; 1861:2186-2195. [PMID: 28652077 DOI: 10.1016/j.bbagen.2017.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND The hyperglycemia and hyperoxidation that characterize diabetes lead to reduced vitamin C (VC) in diabetic humans and experimentally diabetic animals. Herein, we access the effects of VC deficiency on the diabetic kidney injury and explore the underlying mechanism. METHODS l-gulonolactone oxidase conventional knockout (Gulo-/-) mice genetically unable to synthesize VC were subjected to streptozotocin-induced diabetic kidney injury and the role of VC deficiency was evaluated by biochemical and histological approaches. Rat mesangial cells were cultured to investigate the underlying mechanism. RESULTS Functionally, VC deficiency aggravates the streptozotocin-induced renal insufficiency, exhibiting the increased urine albumin, water intake, and urine volume in Gulo-/- mice. Morphologically, VC deficiency exacerbates the streptozotocin-induced kidney injury, exhibiting the increased glomerular expansion, deposition of Periodic Acid-Schiff- and Masson-positive materials, and expression of α-smooth muscle actin, fibronectin and type 4 collagen in glomeruli of Gulo-/- mice. Mechanistically, VC activates protein kinase B (Akt) to destabilize Ski and thereby induce the expression of Smad7, resulting in suppression of TGF-β/Smad signaling and extracellular matrix deposition in mesangial cells. CONCLUSIONS VC is essential for the renal function maintenance in diabetes. GENERAL SIGNIFICANCE Compensation for the loss of VC could be an effective remedy for diabetic kidney injury.
Collapse
Affiliation(s)
- Xing Ji
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Xinhua Hu
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Chaochun Zou
- Department of Endocrinology, the Affiliated Children Hospital, Zhejiang University Medical School, Hangzhou 310006, China
| | - Hongfeng Ruan
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Xueying Fan
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Chao Tang
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Wei Shi
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Liu Mei
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Haibin Zhu
- Department of Gynecology and Obstetrics, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou 310009, China
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Linghui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310023, China
| | - Xiaodong Zhang
- Department of Cell Biology, Wuhan University College of Life Science, Wuhan 430072, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University Medical School, Hangzhou 310058, China.
| |
Collapse
|
11
|
Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary Animal Models For Human Gene Therapy Applications. Curr Gene Ther 2016; 15:531-40. [PMID: 26415576 DOI: 10.2174/1566523215666150929110424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
Abstract
Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.
Collapse
|
12
|
Steegenga WT, Mischke M, Lute C, Boekschoten MV, Lendvai A, Pruis MGM, Verkade HJ, van de Heijning BJM, Boekhorst J, Timmerman HM, Plösch T, Müller M, Hooiveld GJEJ. Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups. Mol Nutr Food Res 2016; 61. [PMID: 27129739 PMCID: PMC5215441 DOI: 10.1002/mnfr.201600141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Scope The long‐lasting consequences of nutritional programming during the early phase of life have become increasingly evident. The effects of maternal nutrition on the developing intestine are still underexplored. Methods and results In this study, we observed (1) altered microbiota composition of the colonic luminal content, and (2) differential gene expression in the intestinal wall in 2‐week‐old mouse pups born from dams exposed to a Western‐style (WS) diet during the perinatal period. A sexually dimorphic effect was found for the differentially expressed genes in the offspring of WS diet‐exposed dams but no differences between male and female pups were found for the microbiota composition. Integrative analysis of the microbiota and gene expression data revealed that the maternal WS diet independently affected gene expression and microbiota composition. However, the abundance of bacterial families not affected by the WS diet (Bacteroidaceae, Porphyromonadaceae, and Lachnospiraceae) correlated with the expression of genes playing a key role in intestinal development and functioning (e.g. Pitx2 and Ace2). Conclusion Our data reveal that maternal consumption of a WS diet during the perinatal period alters both gene expression and microbiota composition in the intestinal tract of 2‐week‐old offspring.
Collapse
Affiliation(s)
- Wilma T Steegenga
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mona Mischke
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Carolien Lute
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Agnes Lendvai
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maurien G M Pruis
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Müller
- Nutrigenomics and Systems Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Guido J E J Hooiveld
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|