1
|
Abomosallam M, Hendam BM, Shouman Z, Refaat R, Hashem NMA, Sakr SA, Wahed NM. Rutin Nanoparticles Alleviate Cadmium-Induced Oxidative and Immune Damage in Broilers' Bursa of Fabricius via Modulating Hsp70/TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2025; 203:1016-1034. [PMID: 38703309 PMCID: PMC11750906 DOI: 10.1007/s12011-024-04199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a serious environmental pollutant affecting various tissues/organs in broilers and compromising their immunological function and productivity. Therefore, the current study aimed to investigate Cd-induced immunotoxicity and potential immunoprotective effect of rutin nanoparticles (RNPs) in the bursal tissue of broilers. A total number of 150 chicks from the Hubbard breed were randomly divided into 5 groups. Group I was fed on standard basal diet (SD) with normal drinking water (DW), Group II received SD containing RNPs (50 mg/kg feed) with DW, Group III fed on SD and DW containing Cd (150 mg/L), Group IV co-treated with rutin-enforced SD (50 mg/kg diet) and DW containing Cd (150 mg/L), and finally, Group V co-supplemented with RNP-enhanced SD (50 mg/kg diet) DW containing Cd (150 mg/L). Productive performance, economic efficiency, oxidative biomarkers, histopathological changes, and the expression level of TLR-4, HSP-70, caspase 3, NF-κB, Bcl-2, and Bax were assessed in the BF tissue. Cd led to severe production and economic losses in exposed birds with a marked surge of oxidative biomarkers, pro-inflammatory cytokines, and histopathological changes in the bursal tissue which could be explained through upregulation of the Hsp70/TLR4/NF-κB molecular pathway in the BF tissue. Meanwhile, RNPs could alleviate most of these changes and prevail optimistic immunomodulatory properties which subsequently could enhance broilers' productivity when incorporated in their diets.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Ren Y, Sun Y, Javad HU, Wang R, Zhou Z, Huang Y, Shu X, Li C. Growth Performance of and Liver Function in Heat-Stressed Magang Geese Fed the Antioxidant Zinc Ascorbate and Its Potential Mechanism of Action. Biol Trace Elem Res 2025; 203:1035-1047. [PMID: 38914726 DOI: 10.1007/s12011-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/26/2024]
Abstract
The aim of this study was to investigate the in vitro antioxidant activity of zinc ascorbate (AsA-Zn), its effects on the growth performance of and liver function in Magang geese under heat stress, and its potential mechanism. At AsA-Zn concentrations of 7.5, 15, 30, and 60 µmol/L, the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) radical scavenging rate increased significantly by 120.85%, 53.43%, 36.12%, and 0.99%, respectively, compared with that of ascorbic acid (AsA), indicating that AsA-Zn had better antioxidant performance in vitro. In this study, Magang geese were divided into a control group (basal diet, CON) and experimental groups, who received the basal diet supplemented with 400 mg/kg AsA or 30 (AsA-Zn30), 60 (AsA-Zn60), or 90 (AsA-Zn90) mg/kg AsA-Zn. AsA-Zn supplementation considerably reduced the feed-to-gain ratio, whereas both AsA and AsA-Zn significantly increased the thymus index. Moreover, AsA-Zn supplementation improved serum protein levels, lipid metabolism, liver function, and antioxidant capacity while reducing hepatocyte vacuolar degeneration. Furthermore, supplementation with AsA-Zn60 significantly increased the total antioxidant capacity, glutathione peroxidase activity, and superoxide dismutase activity and decreased the malondialdehyde content in the serum, liver, and hepatic mitochondria (P < 0.05), with more pronounced effects in the AsA-Zn60 group. Moreover, supplementation with ASA-Zn regulated the Nrf 2 signaling pathway and significantly increased the expression of genes encoding antioxidant-related factors in the liver. In conclusion, AsA-Zn has good antioxidant activity, and AsA-Zn supplementation may improve the antioxidant capacity of heat-stressed geese and promote their growth. Supplementation with 30 mg/kg AsA-Zn is recommended.
Collapse
Affiliation(s)
- Yanli Ren
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, China
| | - Yunan Sun
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Hafiz Umer Javad
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Renkai Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhiqing Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xugang Shu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, China.
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China.
| | - Cuijin Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China.
| |
Collapse
|
3
|
Colominas-Ciuró R, Kowalczewska A, Jefimow M, Wojciechowski MS. Temperature and water availability induce chronic stress responses in zebra finches (Taeniopygia guttata). J Exp Biol 2024; 227:jeb247743. [PMID: 39445475 DOI: 10.1242/jeb.247743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Animals initiate physiological mechanisms to re-establish homeostasis following environmental stress. To understand how bird physiology responds to abiotic stress, we quantified changes in haematological markers of chronic stress response and body condition of male zebra finches (Taeniopygia guttata) acclimated for 18 weeks to hot and cool temperatures (daytime temperature: 40°C and 23°C) with water available ad libitum or restricted during half of the active phase. Ambient temperature induced greater chronic stress than restricted water availability. While cool compared with hot temperatures induced higher numbers of heterophils and heterophil to lymphocyte (H:L) ratios and reduced total leucocyte count, water restriction decreased the number of lymphocytes compared with water ad libitum. Body condition correlated with haematological parameters showing that birds with better condition had greater capacity to face environmental stress. Therefore, prolonged exposure to cool periods may result in chronic stress in zebra finches, especially if body condition is weakened.
Collapse
Affiliation(s)
- Roger Colominas-Ciuró
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Anna Kowalczewska
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Małgorzata Jefimow
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Hemanth M, Venugopal S, Devaraj C, Shashank CG, Ponnuvel P, Mandal PK, Sejian V. Comparative assessment of growth performance, heat resistance and carcass traits in four poultry genotypes reared in hot-humid tropical environment. J Anim Physiol Anim Nutr (Berl) 2024; 108:1510-1523. [PMID: 38825837 DOI: 10.1111/jpn.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
This study investigated the impact of heat stress on growth and carcass traits in four poultry genotypes-Giriraja, Country chicken, Naked Neck and Kadaknath reared in a hot and humid tropical environment. Birds from all genotypes had ad libitum access to feed and water while being challenged with consistently high environmental temperatures in the experimental shed. Daily diurnal meteorological data were recorded inside and outside the shed. The study specifically examined growth variables and carcass characteristics. Significant differences (p < 0.01) were observed in body weight and average daily gain at various intervals. Notably, feed intake showed significant differences (p < 0.01) across weeks, indicating interactions between genotypes and time intervals. The feed conversion ratio (FCR) varied significantly (p < 0.01), with the highest FCR recorded in the Kadaknath breed. Livability percentages were similar across groups, except for Giriraja, which had significantly lower livability (p < 0.01). Carcass traits, including dressing, wings, feathers and giblet percentages, showed significant differences among genotypes (p < 0.01). Hepatic mRNA expression of growth-related genes revealed numerical variations, with Naked Neck displaying the highest (p < 0.05) fold change in IGF-1 expression compared to other genotypes. The study recognized in the Naked Neck genotype to possess higher resilience in maintaining homoeostasis and uncompromised growth under heat stress, providing valuable insights for sustainable poultry farming in challenging environmental conditions.
Collapse
Affiliation(s)
- M Hemanth
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - S Venugopal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - C Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| | - C G Shashank
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| | - P Ponnuvel
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - P K Mandal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - V Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Liu S, Liu Y, Bao E, Tang S. The Protective Role of Heat Shock Proteins against Stresses in Animal Breeding. Int J Mol Sci 2024; 25:8208. [PMID: 39125776 PMCID: PMC11311290 DOI: 10.3390/ijms25158208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Heat shock proteins (HSPs) play an important role in all living organisms under stress conditions by acting as molecular chaperones. The expression of different HSPs during stress varies depending on their protective functions and anti-apoptotic activities. The application of HSPs improves the efficiency and decreases the economic cost of animal breeding. By upregulating the expression of HSPs, feed supplements can improve stress tolerance in farm animals. In addition, high expression of HSPs is often a feature of tumor cells, and inhibiting the expression of HSPs is a promising novel method for killing these cells and treating cancers. In the present review, the findings of previous research on the application of HSPs in animal breeding and veterinary medicine are summarized, and the knowledge of the actions of HSPs in animals is briefly discussed.
Collapse
Affiliation(s)
| | | | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1 Road, Nanjing 210095, China; (S.L.); (Y.L.)
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1 Road, Nanjing 210095, China; (S.L.); (Y.L.)
| |
Collapse
|
6
|
Citrullus colocynthis Seed Ameliorates Layer Performance and Immune Response under Acute Oxidative Stress Induced by Paraquat Injection. Animals (Basel) 2022; 12:ani12080945. [PMID: 35454193 PMCID: PMC9032143 DOI: 10.3390/ani12080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In recent years, natural, plant-based antioxidants have been increasingly popular among poultry producers to boost production and welfare. Colocynth, i.e., Citrullus colocynthis, is an herbaceous plant known to have antioxidant properties. Employing laying hens, this study investigated the potency of dietary colocynth seed supplementation to reduce the deleterious effects of acute oxidative stress induced by paraquat injection. The results demonstrated that supplementing layers’ diets with colocynth seed at 0.1% alleviated oxidative stress responses and significantly improved egg production performance. Furthermore, the immunological responses of the acute-oxidative-stressed layers were enhanced with colocynth seed supplementation. Thus, the inclusion of colocynth seed in layer chickens’ diets can improve egg production performance, restore the redox balance, and enhance immunological responses when they are reared under acute oxidative stress conditions. Abstract Oxidative stress is a detrimental physiological state that threatens birds’ productivity and general health. Colocynth is an herbal plant known for its bioactive properties, and it is mainly known for its antioxidant effects. This study’s purpose was to investigate how effective colocynth seed is at lowering the detrimental impact of acute oxidative stress caused by paraquat (PQ) injection in laying hens. A total of 360 Hy-Line Brown chickens, aged 39 weeks, were gathered and divided into four equal groups (10 hens × 9 replicates) in a 2 × 2 factorial design. The experimental groups were given either a basal diet or the basal diet supplemented with colocynth seed (1% of diet). Starting from week 40 of age and for 7 successive days, the experimental groups were either injected daily with paraquat (5 mg/kg body weight) or with saline (0.5 mL, 0.9% NaCl). Egg production performance with selected stress biomarkers and immunological response parameters were investigated at the end of week 40 of age. Our data revealed a significant reduction in egg production with an increase in blood stress biomarkers (i.e., HSP-70, corticosterone, and H/L ratio) in PQ-injected groups compared with non-stressed groups. Furthermore, an unbalanced redox state was detected in acute oxidative stress groups, with a significant rise in lipid peroxidation level, a reduction in total antioxidant capacity (TAC), and a drop in superoxide dismutase (SOD) and catalase enzyme activity. Supplementing PQ-injected hens with colocynth seed reduced the deleterious effects of acute oxidative stress. There was a significant drop in stress biomarkers with a significant rise in antioxidant enzyme activity and TAC observed in the PQ-injected group provided with colocynth seed supplementation. Remarkably, supplementation of colocynth in the non-stressed group resulted in a significant 27% increase in TAC concentration and 17% higher SOD activity when compared with the non-stressed control group. Colocynth supplementation in the PQ-injected group elevated the total white blood cell count by 25% and improved the B-lymphocyte proliferation index (a 1.3-fold increase) compared with the PQ-injected group that did not receive supplementation. Moreover, the non-stressed colocynth-supplemented group had significantly higher cell-mediated and humoral immune responses than the non-stressed control group. This study demonstrated that colocynth seed supplementation in birds exposed to acute oxidative stress may effectively alleviate its negative impacts on production performance, immunological responses, and redox status. We also inferred that, under normal conditions, colocynth seed can be added to laying hens’ diets to stimulate production and ameliorate immune responses.
Collapse
|
7
|
Genome-wide scan for selection signatures and genes related to heat tolerance in domestic chickens in the tropical and temperate regions in Asia. Poult Sci 2022; 101:101821. [PMID: 35537342 PMCID: PMC9118144 DOI: 10.1016/j.psj.2022.101821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Heat stress is one of the major environmental stressors challenging the global poultry industry. Identifying the genes responsible for heat tolerance is fundamentally important for direct breeding programs. To uncover the genetic basis underlying the ambient temperature adaptation of chickens, we analyzed a total of 59 whole genomes from indigenous chickens that inhabit South Asian tropical regions and temperate regions from Northern China. We applied FST and π-ratio to scan selective sweeps and identified 34 genes with a signature of positive selection in chickens from tropical regions. Several of these genes are functionally implicated in metabolism (FABP2, RAMP3, SUGCT, and TSHR) and vascular smooth muscle contractility (CAMK2), and they may be associated with adaptation to tropical regions. In particular, we found a missense mutation in thyroid-stimulating hormone receptor (41020238:G>A) that shows significant differences in allele frequency between the chicken populations of the two regions. To evaluate whether the missense mutation in TSHR could enhance the heat tolerance of chickens, we constructed segregated chicken populations and conducted heat stress experiments using homozygous mutations (AA) and wild-type (GG) chickens. We found that GG chickens exhibited significantly higher concentrations of alanine aminotransferase, lactate dehydrogenase, and creatine kinase than AA chickens under heat stress (35 ± 1°C) conditions (P < 0.05). These results suggest that TSHR (41020238:G>A) can facilitate heat tolerance and adaptation to higher ambient temperature conditions in tropical climates. Overall, our results provide potential candidate genes for molecular breeding of heat-tolerant chickens.
Collapse
|
8
|
Yang C, Luo P, Chen SJ, Deng ZC, Fu XL, Xu DN, Tian YB, Huang YM, Liu WJ. Resveratrol sustains intestinal barrier integrity, improves antioxidant capacity, and alleviates inflammation in the jejunum of ducks exposed to acute heat stress. Poult Sci 2021; 100:101459. [PMID: 34614430 PMCID: PMC8498463 DOI: 10.1016/j.psj.2021.101459] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Resveratrol, a natural antioxidant, anti-inflammatory plant extract, was found to have a protective effect in poultry subjected to heat stress. In this study, we strove to characterize resveratrol on intestinal of duck exposed to acute heat stress and investigate the underlying mechanism. A total of 120 Shan-ma ducks (60 days old) were randomly divided into 2 groups. The control group was fed a basal diet, and the resveratrol group was fed a basal diet supplemented with 400 mg/kg resveratrol. Animals in 2 groups were kept at a temperature of 24°C ± 2°C for 15 d. Then, animals of both groups were placed in an artificial climate room at 39°C. Twelve ducks of each group were sacrificed for sampling at 0, 30, and 60 min, respectively. Results indicated that resveratrol increased the ratio of villus height to crypt depth, increased the number of goblet cells, and reduced the histopathological damage of jejunum caused by acute heat stress. Furthermore, the gene expression of heat shock proteins (HSP60, HSP70, and HSP90) and tight junction proteins (CLDN1 and OCLN) was significantly increased in the resveratrol group compared to that in the control groups. Simultaneously, resveratrol significantly activated the SIRT1-NRF1/NRF2 signaling pathways, improved ATP level of jejunum, and increased SOD and CAT antioxidant enzymes activities. In addition, we found that the NF-κB/NLRP3 inflammasome signaling pathways were repressed under acute heat stress. Meanwhile, supplement resveratrol further inhibited the NLRP3 inflammasome pathway, decreased protein level of NLRP3 and caspase1 p20, reduced the secretion of IL-1β. Taken together, our results indicate that resveratrol against the oxidative damage and inflammation injury in duck jejunum induced by heat stress via active SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Chen Yang
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Pei Luo
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Shi-Jian Chen
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Zhi-Chao Deng
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Xin-Liang Fu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Wen-Jun Liu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China.
| |
Collapse
|
9
|
Orhan C, Sahin N, Sahin K, Kucuk O. Influence of dietary genistein and polyunsaturated fatty acids on lipid peroxidation and fatty acid composition of meat in quail exposed to heat stress. Trop Anim Health Prod 2021; 53:494. [PMID: 34599391 DOI: 10.1007/s11250-021-02933-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 01/12/2023]
Abstract
This experiment was conducted to investigate the effects of polyunsaturated fatty acids (PUFA) and genistein on performance and meat fatty acid profiles in quail exposed to heat stress. A total of 360 Japanese quail were divided into 12 groups in a 2 × 2 × 3 factorial design; each group comprised 30 quail with five replicates and were kept either at 22 ± 2 °C for 24 h/day (Thermoneutral, TN) or 34 ± 2 °C for 8 h/day (08:00 to 17:00 h) followed by 22 °C for 16 h (heat stress, HS) conditions. The diet contained either two levels of PUFA at 15 or 45% of total fat or three levels of genistein at 0, 400, or 800 mg/kg. Bodyweight gain, feed intake, and feed efficiency were lower (p ≥ 0.01) for quail reared under heat stress and fed low PUFA. Increasing dietary genistein in a linear manner improved the productive performance (p < 0.001). Heat stress caused increases in serum and thigh meat malondialdehyde (MDA) concentrations and decreases in genistein and vitamin E and A concentrations in serum and thigh meat (p < 0.001). High PUFA (PUFA45) in the diet of quail caused greater 18:2, 18:3 ALA, EPA, DHA, n-6, and n-3 PUFA as well as total PUFA and total USFA percentages (p < 0.001) in the thigh muscle, some of which decreased with heat stress (p ≥ 0.006) with no regard to genistein supplementation. This study revealed that genistein with greater doses along with greater PUFA inclusion to the diet of quail reared under heat stress is recommended for alleviating adverse effects of heat stress and for yielding healthier meat for human consumption.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Osman Kucuk
- Department of Animal Nutrition Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
10
|
Abo-Al-Ela HG, El-Kassas S, El-Naggar K, Abdo SE, Jahejo AR, Al Wakeel RA. Stress and immunity in poultry: light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress Chaperones 2021; 26:457-472. [PMID: 33847921 PMCID: PMC8065079 DOI: 10.1007/s12192-021-01204-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
The poultry industry plays a significant role in boosting the economy of several countries, particularly developing countries, and acts as a good, cheap, and affordable source of animal protein. A stress-free environment is the main target in poultry production. There are several stressors, such as cold stress, heat stress, high stocking density, and diseases that can affect birds and cause several deleterious changes. Stress reduces feed intake and growth, as well as impairs immune response and function, resulting in high disease susceptibility. These effects are correlated with higher corticosteroid levels that modulate several immune pathways such as cytokine-cytokine receptor interaction and Toll-like receptor signaling along with induction of excessive production of reactive oxygen species (ROS) and thus oxidative stress. Several approaches have been considered to boost bird immunity to overcome stress-associated effects. Of these, dietary supplementation of certain nutrients and management modifications, such as light management, are commonly considered. Dietary supplementations improve bird immunity by improving the development of lymphoid tissues and triggering beneficial immune modulators and responses. Since nano-minerals have higher bioavailability compared to inorganic or organic forms, they are highly recommended to be included in the bird's diet during stress. Additionally, light management is considered a cheap and safe approach to control stress. Changing light from continuous to intermittent and using monochromatic light instead of the normal light improve bird performance and health. Such changes in light management are associated with a reduction of ROS production and increased antioxidant production. In this review, we discuss the impact of stress on the immune system of birds and the transcriptome of oxidative stress and immune-related genes, in addition, how nano-minerals supplementations and light system modulate or mitigate stress-associated effects.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt.
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|