1
|
Prabutzki P, Schiller J, Engel KM. Phospholipid-derived lysophospholipids in (patho)physiology. Atherosclerosis 2024; 398:118569. [PMID: 39227208 DOI: 10.1016/j.atherosclerosis.2024.118569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Phospholipids (PL) are major components of cellular membranes and changes in PL metabolism have been associated with the pathogenesis of numerous diseases. Lysophosphatidylcholine (LPC) in particular, is a comparably abundant component of oxidatively damaged tissues. LPC originates from the cleavage of phosphatidylcholine (PC) by phospholipase A2 or the reaction of lipids with reactive oxygen species (ROS) such as HOCl. Another explanation of increased LPC concentration is the decreased re-acylation of LPC into PC. While there are also several other lysophospholipids, LPC is the most abundant lysophospholipid in mammals and will therefore be the focus of this review. LPC is involved in many physiological processes. It induces the migration of lymphocytes, fostering the production of pro-inflammatory compounds by inducing oxidative stress. LPC also "signals" via G protein-coupled and Toll-like receptors and has been implicated in the development of different diseases. However, LPCs are not purely "bad": this is reflected by the fact that the concentration and fatty acyl composition of LPC varies under different conditions, in plasma of healthy and diseased individuals, in tissues and different tumors. Targeting LPC and lipid metabolism and restoring homeostasis might be a potential therapeutic method for inflammation-related diseases.
Collapse
Affiliation(s)
- Patricia Prabutzki
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Kathrin M Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany.
| |
Collapse
|
2
|
Li J, Li Z, Zhu Y, Peng H, Du Z, Ru S, Wang W. Bisphenol S remodels red blood cell membrane lipids by altering plasma lipid levels, causing the risk of venous thrombosis in SD rats and zebrafish embryos. ENVIRONMENT INTERNATIONAL 2023; 182:108331. [PMID: 37995390 DOI: 10.1016/j.envint.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol S (BPS) is a raw material that is used extensively in various manufacturing processes but possesses a high detection rate in human red blood cells (RBCs). Accordingly, BPS is a potential toxicant in disturbing the function of RBCs and causing RBC-related diseases. To date, the effects and mechanisms of BPS-induced RBC-related diseases have not been elucidated. Here, using different models, including rats, zebrafish embryos and RBCs, the underlying mechanism of RBC-related diseases induced by BPS was explored. The accumulation of BPS in tissue was colon > kidney > liver > plasma > testicle > heart > brain in SD rats orally administered BPS (10 and 50 mg/kg bw/day) for 32 days, which was similar in both 10 mg/kg bw/day and 50 mg/kg bw/day group. Rats given BPS orally developed hyperlipidemia and increased RBC membrane cholesterol, as well as changes in RBC morphology and function. Moreover, BPS at the concentrations measured in rats plasma caused oxidative stress and phosphatidylserine exposure in vitro RBCs. These combined factors led to RBC aggregation in blood and an increasing in the number of RBCs in the blood vessels of the liver in rats. The dynamic visual observation of RBCs in vein vessels of zebrafish embryos exposed to BPS at 0, 1, 10 and 100 μg/L further found that the flow of RBCs in the tail vein is slow or even immobile, posing the risk of venous thrombosis. The present study provides new insight into the links between environmental pollutants and venous thrombosis.
Collapse
Affiliation(s)
- Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
De Baere S, Ochieng PE, Kemboi DC, Scippo ML, Okoth S, Lindahl JF, Gathumbi JK, Antonissen G, Croubels S. Development of High-Throughput Sample Preparation Procedures for the Quantitative Determination of Aflatoxins in Biological Matrices of Chickens and Cattle Using UHPLC-MS/MS. Toxins (Basel) 2023; 15:37. [PMID: 36668857 PMCID: PMC9866995 DOI: 10.3390/toxins15010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Aflatoxins (AFs) frequently contaminate food and animal feeds, especially in (sub) tropical countries. If animals consume contaminated feeds, AFs (mainly aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2) and their major metabolites aflatoxin M1 (AFM1) and M2 (AFM2)) can be transferred to edible tissues and products, such as eggs, liver and muscle tissue and milk, which ultimately can reach the human food chain. Currently, the European Union has established a maximum level for AFM1 in milk (0.05 µg kg-1). Dietary adsorbents, such as bentonite clay, have been used to reduce AFs exposure in animal husbandry and carry over to edible tissues and products. To investigate the efficacy of adding bentonite clay to animal diets in reducing the concentration of AFB1, AFB2, AFG1, AFG2, and the metabolites AFM1 and AFM2 in animal-derived foods (chicken muscle and liver, eggs, and cattle milk), chicken and cattle plasma and cattle ruminal fluid, a sensitive and selective ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed. High-throughput sample preparation procedures were optimized, allowing the analysis of 96 samples per analytical batch and consisted of a liquid extraction using 1% formic acid in acetonitrile, followed by a further clean-up using QuEChERS (muscle tissue), QuEChERS in combination with Oasis® Ostro (liver tissue), Oasis® Ostro (egg, plasma), and Oasis® PRiME HLB (milk, ruminal fluid). The different procedures were validated in accordance with European guidelines. As a proof-of-concept, the final methods were used to successfully determine AFs concentrations in chicken and cattle samples collected during feeding trials for efficacy and safety evaluation of mycotoxin detoxifiers to protect against AFs as well as their carry-over to animal products.
Collapse
Affiliation(s)
- Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Phillis E. Ochieng
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Food Analysis, FARAH—Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - David C. Kemboi
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya
- Department of Animal Sciences, Chuka University, P.O. Box 109-60400, Chuka 00625, Kenya
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH—Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Sheila Okoth
- Department of Biology, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya
| | - Johanna F. Lindahl
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 05 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - James K. Gathumbi
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya
| | - Gunther Antonissen
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
4
|
Yu S, Wu S, Zhang J, Zhao X, Liu X, Yi X, Li X. A single dual-targeting fluorescent probe enables exploration of the correlation between the plasma membrane and lysosomes. J Mater Chem B 2022; 10:582-588. [PMID: 34985475 DOI: 10.1039/d1tb02200h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions between organelles can maintain normal cell activity. Lysosomes, as waste disposal systems of cells, have many important interactions with the plasma membrane, especially in the repair of cracked plasma membrane. Unfortunately, a way to study the relationship between them synchronously is still lacking. Therefore, in this work, we constructed a dual-targeting probe (Mem-Lyso) to simultaneously visualize the plasma membrane and lysosomes for the first time. Taking advantage of dual-targeting, the probe Mem-Lyso could successfully track and analyze the dynamic changes of the plasma membrane and lysosomes in different bioprocesses. The experimental results demonstrated that, compared to the normal status, there was obvious fusion between the plasma membrane and lysosomes in the apoptosis process. Furthermore, because of the sensitivity to polarity, Mem-Lyso could label the plasma membrane and lysosomes with red and yellow colors in cells, respectively. Moreover, the skeleton and gastrointestinal wall of zebrafish were visualized by dual-color imaging, respectively. More importantly, the dual-targeting property endowed Mem-Lyso with the ability to spatially distinguish the cholesterol (CL) content in the plasma membrane, which provided a potential detection tool for biological research and diagnosis of related diseases.
Collapse
Affiliation(s)
- Shimo Yu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shining Wu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xinfu Zhao
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xiaochan Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xuechen Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| |
Collapse
|
5
|
A promising 31P NMR-multivariate analysis approach for the identification of milk phosphorylated metabolites and for rapid authentication of milk samples. Biochem Biophys Rep 2021; 27:101087. [PMID: 34381881 PMCID: PMC8339344 DOI: 10.1016/j.bbrep.2021.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
A fast and reliable method for the identification of milk from different mammalians was developed by using 31P NMR metabolite profile of milk serum coupled to multivariate analysis (PCA and classification models UNEQ, SIMCA and K-NN). Ten milk samples from six different mammalians, relevant to human nutrition (human, cow, donkey, mare, goat, sheep), were analyzed and eight monophosphorylated components were identified and quantified: phosphocreatine (PCr), glycerophosphorylcholine (GPC), glycerophosphorylethanolamine (GPE), N-acetylglucosamine-1-phosphate (NAcGlu-1P), lactose-1-phosphate (Lac-1P), galactose-1-phosphate (Gal-1P), phosphorylcholine (PC), glucose-6-phosphate (Glu-6P). PCA showed interesting clustering based on the animal genus. K-NN can be successfully used to discriminate between donkey and cow samples while UNEQ class-modeling resulted more suitable for compliance verification. Results confirm the natural variability of milk samples among different species. These data highlight the great potentials of NMR/multivariate analysis combined method in the rapid analysis of phosphorylated milk serum metabolites for milk origin assessment and milk adulteration detection.
Collapse
|
6
|
Kosinska MK, Eichner G, Schmitz G, Liebisch G, Steinmeyer J. A comparative study on the lipidome of normal knee synovial fluid from humans and horses. PLoS One 2021; 16:e0250146. [PMID: 33861772 PMCID: PMC8051782 DOI: 10.1371/journal.pone.0250146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/31/2021] [Indexed: 12/02/2022] Open
Abstract
The current limitations in evaluating synovial fluid (SF) components in health and disease and between species are due in part to the lack of data on normal SF, because of low availability of SF from healthy articular joints. Our study aimed to quantify species-dependent differences in phospholipid (PL) profiles of normal knee SF obtained from equine and human donors. Knee SF was obtained during autopsy by arthrocentesis from 15 and 13 joint-healthy human and equine donors, respectively. PL species extracted from SF were quantitated by mass spectrometry whereas ELISA determined apolipoprotein (Apo) B-100. Wilcoxon’s rank sum test with adjustment of scores for tied values was applied followed by Holm´s method to account for multiple testing. Six lipid classes with 89 PL species were quantified, namely phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, plasmalogen, and ceramide. Importantly, equine SF contains about half of the PL content determined in human SF with some characteristic changes in PL composition. Nutritional habits, decreased apolipoprotein levels and altered enzymatic activities may have caused the observed different PL profiles. Our study provides comprehensive quantitative data on PL species levels in normal human and equine knee SF so that research in joint diseases and articular lubrication can be facilitated.
Collapse
Affiliation(s)
- Marta K. Kosinska
- Department of Orthopaedics, Laboratory for Experimental Orthopaedics, Justus Liebig University Giessen, Giessen, Germany
| | - Gerrit Eichner
- Mathematical Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jürgen Steinmeyer
- Department of Orthopaedics, Laboratory for Experimental Orthopaedics, Justus Liebig University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
7
|
Lauwers M, De Baere S, Letor B, Rychlik M, Croubels S, Devreese M. Multi LC-MS/MS and LC-HRMS Methods for Determination of 24 Mycotoxins including Major Phase I and II Biomarker Metabolites in Biological Matrices from Pigs and Broiler Chickens. Toxins (Basel) 2019; 11:toxins11030171. [PMID: 30893895 PMCID: PMC6468661 DOI: 10.3390/toxins11030171] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
A reliable and practical multi-method was developed for the quantification of mycotoxins in plasma, urine, and feces of pigs, and plasma and excreta of broiler chickens using liquid chromatography–tandem mass spectrometry. The targeted mycotoxins belong to the regulated groups, i.e., aflatoxins, ochratoxin A and Fusarium mycotoxins, and to two groups of emerging mycotoxins, i.e., Alternaria mycotoxins and enniatins. In addition, the developed method was transferred to a LC-high resolution mass spectrometry instrument to qualitatively determine phase I and II metabolites, for which analytical standards are not always commercially available. Sample preparation of plasma was simple and generic and was accomplished by precipitation of proteins alone (pig) or in combination with removal of phospholipids (chicken). A more intensive sample clean-up of the other matrices was needed and consisted of a pH-dependent liquid–liquid extraction (LLE) using ethyl acetate (pig urine), methanol/ethyl acetate/formic acid (75/24/1, v/v/v) (pig feces) or acetonitrile (chicken excreta). For the extraction of pig feces, additionally a combination of LLE using acetone and filtration of the supernatant on a HybridSPE-phospholipid cartridge was applied. The LC-MS/MS method was in-house validated according to guidelines defined by the European and international community. Finally, the multi-methods were successfully applied in a specific toxicokinetic study and a screening study to monitor the exposure of individual animals.
Collapse
Affiliation(s)
- Marianne Lauwers
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
- Innovad, Postbaan 69, 2910 Essen, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Ben Letor
- Innovad, Postbaan 69, 2910 Essen, Belgium.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| |
Collapse
|
8
|
De Baere S, Croubels S, Novak B, Bichl G, Antonissen G. Development and Validation of a UPLC-MS/MS and UPLC-HR-MS Method for the Determination of Fumonisin B1 and Its Hydrolysed Metabolites and Fumonisin B2 in Broiler Chicken Plasma. Toxins (Basel) 2018; 10:E62. [PMID: 29385109 PMCID: PMC5848163 DOI: 10.3390/toxins10020062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/20/2023] Open
Abstract
A sensitive and specific method for the quantitative determination of Fumonisin B1 (FB1), its partially hydrolysed metabolites pHFB1a+b and hydrolysed metabolite HFB1, and Fumonisin B2 (FB2) in broiler chicken plasma using ultra-performance liquid chromatography combined with tandem mass spectrometry (UPLC-MS/MS) was developed. The sample preparation was rapid, straightforward and consisted of a deproteinization and phospholipid removal step using an Oasis® OstroTM 96-well plate. Chromatography was performed on an Acquity HSS-T3 column, using 0.3% formic acid and 10 mM ammonium formate in water, and acetonitrile as mobile phases. The MS/MS instrument was operated in the positive electrospray ionization mode and the two multiple reaction monitoring transitions were monitored for each component for quantification and identification, respectively. The method was validated in-house: matrix-matched calibration graphs were prepared and good linearity (r ≥ 0.99) was achieved over the concentration ranges tested (1-500 ng/mL for FB1 and FB2; 0.86-860 ng/mL for pHFB1a; 0.72-1430 ng/mL for pHFB1b and 2.5-2500 ng/mL for HFB1). Limits of quantification (LOQ) and detection (LOD) in plasma ranged between 0.72 to 2.5 ng/mL and 0.03 to 0.17 ng/mL, respectively. The results for the within-day and between-day precision and accuracy fell within the specified ranges. Moreover, the method was transferred to an UPLC high-resolution mass spectrometry (HR-MS) instrument in order to determine potential metabolites of HFB1, such as N-acyl-HFB1s and phase II metabolites. The method has been successfully applied to investigate the toxicokinetics and biotransformation of HFB1 in broiler chickens.
Collapse
Affiliation(s)
- Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | - Gerlinde Bichl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820 Merelbeke, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
9
|
Drvenica IT, Bukara KM, Ilić VL, Mišić DM, Vasić BZ, Gajić RB, Đorđević VB, Veljović ĐN, Belić A, Bugarski BM. Biomembranes from slaughterhouse blood erythrocytes as prolonged release systems for dexamethasone sodium phosphate. Biotechnol Prog 2016; 32:1046-55. [PMID: 27254304 DOI: 10.1002/btpr.2304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/02/2016] [Indexed: 01/04/2023]
Abstract
The present study investigated preparation of bovine and porcine erythrocyte membranes from slaughterhouse blood as bio-derived materials for delivery of dexamethasone-sodium phosphate (DexP). The obtained biomembranes, i.e., ghosts were characterized in vitro in terms of morphological properties, loading parameters, and release behavior. For the last two, an UHPLC/-HESI-MS/MS based analytical procedure for absolute drug identification and quantification was developed. The results revealed that loading of DexP into both type of ghosts was directly proportional to the increase of drug concentration in the incubation medium, while incubation at 37°C had statistically significant effect on loaded amount of DexP (P < 0.05). The encapsulation efficiency was about fivefold higher in porcine compared to bovine ghosts. Insight into ghosts' surface morphology by field emission-scanning electron microscopy and atomic force microscopy confirmed that besides inevitable effects of osmosis, DexP inclusion itself had no observable additional effect on the morphology of the ghosts carriers. DexP release profiles were dependent on erythrocyte ghost type and amount of residual hemoglobin. However, sustained DexP release was achieved and shown over 3 days from porcine ghosts and 5 days from bovine erythrocyte ghosts. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1046-1055, 2016.
Collapse
Affiliation(s)
- Ivana T Drvenica
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Katarina M Bukara
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Lj Ilić
- Inst. for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela M Mišić
- Inst. for Biological Research "Siniša Stanković,", University of Belgrade, Belgrade, Serbia
| | | | - Radoš B Gajić
- Inst. of Physics, University of Belgrade, Belgrade, Serbia
| | - Verica B Đorđević
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Đorđe N Veljović
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Branko M Bugarski
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Fazio E, Medica P, Cravana C, Bruschetta G, Ferlazzo A. Seasonal thyroid and lipid profiles in Thoroughbred pregnant and nonpregnant mares ( Equus caballus ). Theriogenology 2016; 85:1582-1589. [DOI: 10.1016/j.theriogenology.2016.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
|
11
|
De Baere S, Devreese M, Watteyn A, Wyns H, Plessers E, De Backer P, Croubels S. Development and validation of a liquid chromatography–tandem mass spectrometry method for the quantitative determination of gamithromycin in animal plasma, lung tissue and pulmonary epithelial lining fluid. J Chromatogr A 2015; 1398:73-82. [DOI: 10.1016/j.chroma.2015.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/05/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
|
12
|
Donaldson J, Pillay K, Madziva MT, Erlwanger KH. The effect of different high-fat diets on erythrocyte osmotic fragility, growth performance and serum lipid concentrations in male, Japanese quail (Coturnix coturnix japonica
). J Anim Physiol Anim Nutr (Berl) 2014; 99:281-9. [DOI: 10.1111/jpn.12250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/17/2014] [Indexed: 01/07/2023]
Affiliation(s)
- J. Donaldson
- Faculty of Health Sciences; School of Physiology; University of the Witwatersrand; Johannesburg South Africa
| | - K. Pillay
- Faculty of Health Sciences; School of Physiology; University of the Witwatersrand; Johannesburg South Africa
| | - M. T. Madziva
- Faculty of Health Sciences; School of Physiology; University of the Witwatersrand; Johannesburg South Africa
| | - K. H. Erlwanger
- Faculty of Health Sciences; School of Physiology; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
13
|
Tian Y, Cai M, Xu H, Ding B, Hao X, Jiang J, Sun Y, Wang H. Atomic force microscopy of asymmetric membranes from turtle erythrocytes. Mol Cells 2014; 37:592-7. [PMID: 25134535 PMCID: PMC4145370 DOI: 10.14348/molcells.2014.0115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/13/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.
Collapse
Affiliation(s)
- Yongmei Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
- University of Chinese Academy of Sciences, Beijing 100049,
P.R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| | - Bohua Ding
- School of physics, Northeast Normal University, Changchun, Jilin 130024,
P.R. China
| | - Xian Hao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| | - Yingchun Sun
- School of physics, Northeast Normal University, Changchun, Jilin 130024,
P.R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,
P.R. China
| |
Collapse
|
14
|
Angelini R, Vortmeier G, Corcelli A, Fuchs B. A fast method for the determination of the PC/LPC ratio in intact serum by MALDI-TOF MS: an easy-to-follow lipid biomarker of inflammation. Chem Phys Lipids 2014; 183:169-75. [PMID: 25016154 DOI: 10.1016/j.chemphyslip.2014.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/14/2014] [Accepted: 07/06/2014] [Indexed: 11/16/2022]
Abstract
The PC/LPC ratio of blood serum is increasingly considered to represent an important clinical parameter that reflects various kinds of diseases. Here, a simple and fast method of lipid analyses of "intact" blood serum (i.e. without extraction) by MALDI-TOF mass spectrometry is described. The novel procedure allows the accurate determination of the PC/LPC ratio, utilizing only a tiny amount of blood. The serum is diluted with distilled water and directly applied onto the MALDI target and, after drying, covered by a thin layer of the matrix solution (either 9-aminoacridine or 2,5-dihydroxybenzoic acid). Positive ion mass spectra acquired by using this procedure give similar peak patterns as the spectra of the lipid extracts of horse blood serum. Blood serum from fourteen different horses was used to set up and validate the new method of lipid analysis. The PC/LPC ratios determined with the fast "intact" method were compared with those obtained with classical MALDI-TOF MS and (31)P NMR analyses of the corresponding lipid extracts. As comparable data were obtained, this is a clear indication that extraction is not an absolute necessity.
Collapse
Affiliation(s)
- Roberto Angelini
- Department of Basic Medical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gerrit Vortmeier
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Härtelstr 16/18, D-04107 Leipzig, Germany
| | - Angela Corcelli
- Department of Basic Medical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Beate Fuchs
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Härtelstr 16/18, D-04107 Leipzig, Germany.
| |
Collapse
|
15
|
Watteyn A, Plessers E, Wyns H, De Baere S, De Backer P, Croubels S. Pharmacokinetics of gamithromycin after intravenous and subcutaneous administration in broiler chickens. Poult Sci 2013; 92:1516-22. [PMID: 23687147 DOI: 10.3382/ps.2012-02932] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gamithromycin is a new macrolide antibiotic that is only registered for use in cattle to treat respiratory disorders such as bovine respiratory disease. The aim of this study was to determine the pharmacokinetics of gamithromycin in broiler chickens. Gamithromycin (6 mg/kg of BW) was injected intravenously (IV) or subcutaneously (SC) to six 4-wk-old chickens in a parallel study design, and blood was collected at different time points postadministration. Quantification of gamithromycin in plasma was performed using an in-house validated liquid chromatography-tandem mass spectrometry method and the pharmacokinetics analyzed according to a 2-compartmental model. Following IV administration, the mean area under the plasma concentration-time curve (AUC0→∞), and α and β half-life of elimination (t1/2el α and t1/2el β) were 3,998 h•ng/mL, 0.90 h, and 14.12 h, respectively. Similar values were obtained after a SC bolus injection, i.e., 4,095 h•ng/mL, 0.34 h, and 11.63 h, for AUC0→∞, t1/2el α, and t1/2el β, respectively. The mean maximum plasma concentration (889.46 ng/mL) appeared at 0.13 h. Gamithromycin showed a large volume of distribution after IV as well as SC administration, 27.08 and 20.89 L/kg, respectively, and a total body clearance of 1.61 and 1.77 L/h•kg, respectively. The absolute bioavailability was 102.4%, showing that there is a complete absorption of gamithromycin after a SC bolus injection of 6 mg/kg of BW.
Collapse
Affiliation(s)
- A Watteyn
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
16
|
Pharmacokinetics of dexamethasone after intravenous and intramuscular administration in broiler chickens. Vet J 2013; 195:216-20. [DOI: 10.1016/j.tvjl.2012.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022]
|
17
|
Osselaere A, Devreese M, Goossens J, Vandenbroucke V, De Baere S, De Backer P, Croubels S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem Toxicol 2013; 51:350-5. [DOI: 10.1016/j.fct.2012.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/06/2012] [Accepted: 10/08/2012] [Indexed: 01/05/2023]
|
18
|
Quantitative analysis of sphingomyelin by high-performance liquid chromatography after enzymatic hydrolysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:396218. [PMID: 22919412 PMCID: PMC3420334 DOI: 10.1155/2012/396218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 12/04/2022]
Abstract
Sphingomyelin is the most abundant sphingolipid in mammalian cells and is mostly present in the plasma membrane. A new analytical method using high-performance liquid chromatography (HPLC) was developed to quantify sphingomyelin in mouse plasma and tissues, 3T3-L1 cells, rat aortic smooth muscle cells, and HT-29 cells. Sphingomyelin and dihydrosphingomyelin, an internal standard, were separated by high-performance thin-layer chromatography and simultaneously hydrolyzed with sphingolipid ceramide N-deacylase and sphingomyelinase to release sphingosine and dihydrosphingosine, respectively. Sphingomyelin content was measured by HPLC following o-phthalaldehyde derivatization. Sphingomyelin concentrations in 3T3-L1 cells, rat aortic smooth muscle cells, and HT-29 cells were 60.10 ± 0.24, 62.69 ± 0.08, and 58.38 ± 0.37 pmol/μg protein, respectively, whereas those in brain, kidney, and liver of ICR mice were 55.60 ± 0.43, 43.75 ± 0.21, and 22.26 ± 0.14 pmol/μg protein. The sphingomyelin concentration in mouse plasma was 407.40 ± 0.31 μM. The limits of detection and quantification for sphingomyelin were 5 and 20 pmol, respectively, in the HPLC analysis with fluorescence detection. This sensitivity was sufficient for analyzing sphingomyelin in biological samples. In conclusion, this analytical method is a sensitive and specific technique for quantifying sphingomyelin and was successfully applied to diverse biological samples with excellent reproducibility.
Collapse
|