1
|
Pankovics P, Takáts K, Urbán P, Mátics R, Reuter G, Boros Á. Identification of a potential interspecies reassortant rotavirus G and avastrovirus 2 co-infection from black-headed gull (Chroicocephalus ridibundus) in Hungary. PLoS One 2025; 20:e0317400. [PMID: 40127066 PMCID: PMC11932466 DOI: 10.1371/journal.pone.0317400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/27/2024] [Indexed: 03/26/2025] Open
Abstract
The black-headed gull is the most common nesting gull species in Hungary. Based on the lifestyle and feeding habits of the black-headed gull, which is highly adapted to the human environment, they can be carriers and spreaders of potential human and other animal pathogens. Between 2014 and 2018 within the framework of the "Life Bird Ringing program" a total of 7 faecal samples were collected from gulls and one sample (MR04) was randomly selected for viral metagenomics and mass sequencing. 95.4% and 4% of the reads were classified into family Seadornaviridae and Astroviridae, respectively, and then were verified by RT-PCR method. In this study, the complete genome of a potential interspecies reassortant rotavirus (RV) strain gull/MR04_RV/HUN/2014 (PP239049-PP239059) and the partial ORF1ab, complete ORF2 of a novel avian nephritis virus strain gull/MR04_AAstV/HUN/2014 (PP239060) was discussed. The strain gull/MR04_RV/HUN/2014 was closely related to rotavirus G (RVG) viruses based on the proteins VP1-VP3, VP6, NSP2, NSP3, and NSP5, but it was more related to the human rotavirus B (RVB) strain Bang373 based on the NSP1, NSP4 and VP7, VP4 proteins, which is assumed to be the result of reassortment between different RVG-RVB rotavirus species. The strain gull/MR04_AAstV/HUN/2014 belonged to the genus Avastrovirus species avastrovirus 2 (AAstV-2) and is related to members of group 6 of avian nephritis viruses (ANVs), but based on the genetic distances it may be the first representative of a separate group. Additional gull samples were found to be negative by RT-PCR. Gulls, which are well adapted to the human environment, could potentially spread enterically transmitted viral pathogens like interspecies reassortant rotaviruses (RVG/RVB), but further molecular surveillance is needed to explore more deeply the viral communities of gulls or other related species adapted to human environments.
Collapse
Affiliation(s)
- Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Károly Takáts
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Róbert Mátics
- Hungarian Nature Research Society, Ajka, Hungary
- Department of Behavioural Science, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Loor-Giler A, Santander-Parra S, Castillo-Reyes S, Campos M, Mena-Perez R, Prado-Chiriboga S, Nunez L. Molecular characterization and lineage analysis of canine astrovirus strains from dogs with gastrointestinal disease in Ecuador based on ORF-2 gene analysis. Front Vet Sci 2025; 11:1505903. [PMID: 39963367 PMCID: PMC11831816 DOI: 10.3389/fvets.2024.1505903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/29/2024] [Indexed: 02/20/2025] Open
Abstract
Canine Astrovirus (CaAstV) part of the Astroviridae family and genus Mamastrovirus, is a linear RNA virus with a genome of approximately 6.6 kb with three open reading frames (ORF): ORF1a and ORF1b, which code for the most conserved non-structural proteins, and ORF2, which code for the capsid protein, the most variable region of the genome. This pathogen has been linked to gastrointestinal infections, primarily causing symptoms such as vomiting, diarrhea, lethargy and severe dehydration, mainly in co-infection with other enteric viruses. In the present study, the presence of CaAstV was identified in dogs with gastrointestinal disease in Ecuador using RT-qPCR with hydrolysis probes, these samples have also tested positive for canine parvovirus type 2 (CPV-2) and canine coronavirus (CCoV). Positive samples were used for end-point RT-PCR amplification and sequencing of ORF-2 using Sanger technology. The sequences were subjected to phylogenetic analysis to determine lineages and possible recombination events. Of the 502 samples tested, 336 were found to be positive for CaAstV, 49.4% in co-infection with CPV-2, 1% in co-infection with CCoV, and 4% in simultaneous infection with all three viruses. The presence of 4 of the 5 previously reported CaAstV lineages were identified, and three possible recombinant strains were identified. Given the high frequency of CaAstV infections in dogs with gastroenteritis and its high genetic variability, it emphasizes the need to implement routine diagnostic measures that include this pathogen as one of the main causes of the disease and a risk agent in case of multiple infections.
Collapse
Affiliation(s)
- Anthony Loor-Giler
- Laboratorios de Investigación, Dirección General de Investigación, Universidad de las Américas (UDLA), Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Silvana Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Americas (UDLA), Quito, Ecuador
| | - Sara Castillo-Reyes
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Americas (UDLA), Quito, Ecuador
| | - Martín Campos
- Facultad de Industrias Agropecuarias y Ciencias Ambientales, Carrera Agropecuaria, Universidad Politécnica Estatal del Carchi (UPEC), Tulcán, Ecuador
- Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina
| | - Renan Mena-Perez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Americas (UDLA), Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central Del Ecuador, Quito, Ecuador
| | - Santiago Prado-Chiriboga
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Americas (UDLA), Quito, Ecuador
- Clínica Veterinaria Docente, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Luis Nunez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Americas (UDLA), Quito, Ecuador
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| |
Collapse
|
3
|
Pelegrinová A, Petroušková P, Korytár Ľ, Ondrejková A, Drážovská M, Vojtek B, Mojžišová J, Prokeš M, Kostičák M, Zákutná Ľ, Dolník M, Mandelík R. The first evidence of Asian-like CPV-2b in Slovakia in a vaccinated dog with an acute fatal course of parvovirus infection: a case report. Vet Res Commun 2024; 48:3253-3262. [PMID: 39120673 PMCID: PMC11442606 DOI: 10.1007/s11259-024-10492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
This study provides a comprehensive description of the clinical course of a fatal parvovirus infection in a vaccinated dachshund puppy, along with the first identification of a new CPV-2 variant in Slovakia, elucidated through molecular amino acid analysis of the VP2 gene. The dog exhibited clinical signs such as apathy, vomiting, and bloody diarrhea. After confirming CPV-2 infection with a commercial snap test, intensive therapy was initiated. The dog succumbed within 48 h of admission. A rectal swab sample was collected, CPV-2 was examined using the PCR method, and sequenced. The virus detected in the patient was related to strains of CPV-2c of Asian origin and unrelated to European CPV-2b strains. The sequence had genetic signatures typical of Asian strains (VP2: 5Gly, 267Tyr, 324Ile, 370Arg, and 440Thr). Phylogenetic analysis classified this strain as similar to Asian strains of CPV-2c. It is believed to be derived from an Asian strain similar to CPV-2c that acquired the 426Asp mutation. With this finding, we present the first evidence of an Asian-like CPV-2b strain in the territory of Slovakia.
Collapse
Affiliation(s)
- Andrea Pelegrinová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Patrícia Petroušková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia.
| | - Ľuboš Korytár
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Anna Ondrejková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Monika Drážovská
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Boris Vojtek
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Jana Mojžišová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Marián Prokeš
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Maroš Kostičák
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Ľubica Zákutná
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - Michal Dolník
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia
| | - René Mandelík
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 041 81, Slovakia.
| |
Collapse
|
4
|
Loor-Giler A, Castillo-Reyes S, Santander-Parra S, Campos M, Mena-Pérez R, Prado-Chiriboga S, Nuñez L. First Report on the Molecular Detection of Canine Astrovirus (CaAstV) in Dogs with Gastrointestinal Disease in Ecuador Using a Fast and Sensitive RT-qPCR Assay Based on SYBR Green ®. Vet Sci 2024; 11:303. [PMID: 39057987 PMCID: PMC11281617 DOI: 10.3390/vetsci11070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Enteric viruses are responsible for a significant number of gastrointestinal illnesses in dogs globally. One of the main enteric viruses is the canine astrovirus (CaAstV), which causes diarrhea in dogs of various ages. It is linked to symptoms such as diarrhea, vomiting, depression and a significant mortality rate due to gastrointestinal disorders. It is a single-stranded positive RNA virus, with three open reading frames, ORF1a, ORF1b and ORF2, where the last one codes for the virus capsid protein and is the most variable and antigenic region of the virus. The aim of this work is to develop and standardize a quick detection method to enable the diagnosis of this etiological agent in dogs with gastroenteritis in Ecuador in order to provide prompt and suitable treatment. The assay was specific for amplification of the genome of CaAstV, as no amplification was shown for other canine enteric viruses (CPV-2, CCoV and CDV), sensitive by being able to detect up to one copy of viral genetic material, and repeatable with inter- and intra-assay coefficients of variation of less than 10% between assays. The standard curve showed an efficiency of 103.9%. For the validation of this method, 221 fecal samples from dogs affected with gastroenteritis of various ages from different provinces of Ecuador were used. From the RT-qPCR protocol, 119 samples were found positive for CaAstV, equivalent to 53.8% of the samples processed. CaAstV was detected in dogs where both the highest virus prevalence in the tested strains and the highest viral loads were seen in the younger canine groups up to 48 weeks; in addition, different strains of the virus were identified based on a sequenced fragment of ORF1b, demonstrating the first report of the presence of CaAstV circulating in the domestic canine population affected by gastroenteritis in Ecuador, which could be associated with the etiology and severity of enteric disease.
Collapse
Affiliation(s)
- Anthony Loor-Giler
- Laboratorios de Investigación, Dirección General de Investigación, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador
| | - Sara Castillo-Reyes
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.C.-R.); or (S.S.-P.); (R.M.-P.); or (S.P.-C.)
| | - Silvana Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.C.-R.); or (S.S.-P.); (R.M.-P.); or (S.P.-C.)
| | - Martín Campos
- Facultad de Industrias Agropecuarias y Ciencias Ambientales, Carrera Agropecuaria, Universidad Politécnica Estatal del Carchi (UPEC), Antisana S/N y Av. Universitaria, Tulcán EC 040102, Ecuador;
- Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario (UNR), Boulevard Ovidio Lagos y Ruta 33 Casilda, Santa Fe 2170, Argentina
| | - Renán Mena-Pérez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.C.-R.); or (S.S.-P.); (R.M.-P.); or (S.P.-C.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Gatto Sobral y Jerónimo Leiton, Quito EC 170521, Ecuador
| | - Santiago Prado-Chiriboga
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.C.-R.); or (S.S.-P.); (R.M.-P.); or (S.P.-C.)
- Clínica Veterinaria Docente, Universidad de Las Américas (UDLA), Calle Shuara N40-55y Av. de Los Granados, Quito EC 170503, Ecuador
| | - Luis Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.C.-R.); or (S.S.-P.); (R.M.-P.); or (S.P.-C.)
- One Health Research Group, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador
| |
Collapse
|
5
|
Tóth F, Gáspár G, Pankovics P, Urbán P, Herczeg R, Albert M, Reuter G, Boros Á. Co-infecting viruses of species Bovine rhinitis B virus (Picornaviridae) and Bovine nidovirus 1 (Tobaniviridae) identified for the first time from a post-mortem respiratory sample of a sheep (Ovis aries) in Hungary. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105585. [PMID: 38508364 DOI: 10.1016/j.meegid.2024.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
In this study, a picornavirus and a nidovirus were identified from a single available nasopharyngeal swab (NPS) sample of a freshly deceased sheep, as the only vertebrate viruses found with viral metagenomics and next-generation sequencing methods. The sample was originated from a mixed feedlot farm in Hungary where sheep and cattle were held together but in separate stalls. Most of the sheep had respiratory signs (coughing and increased respiratory effort) at the time of sampling. Other NPS were not, but additional enteric samples were collected from sheep (n = 27) and cattle (n = 11) of the same farm at that time. The complete/nearly complete genomes of the identified viruses were determined using RT-PCR and Nanopore (MinION-Flonge) / Dye-terminator sequencing techniques. The results of detailed genomic and phylogenetic analyses indicate that the identified picornavirus most likely belongs to a type 4 genotype of species Bovine rhinitis B virus (BRBV-4, OR885914) of genus Aphthovirus, family Picornaviridae while the ovine nidovirus (OvNV, OR885915) - as a novel variant - could belong to the recently created Bovine nidovirus 1 (BoNV) species of genus Bostovirus, family Tobaniviridae. None of the identified viruses were detectable in the enteric samples using RT-PCR and generic screening primer pairs. Both viruses are well-known respiratory pathogens of cattle, but their presence was not demonstrated before in other animals, like sheep. Furthermore, neither BRBV-4 nor BoNVs were investigated in European cattle and/or sheep flocks, therefore it cannot be determined whether the presence of these viruses in sheep was a result of a single host species switch/spillover event or these viruses are circulating in not just cattle but sheep populations as well. Further studies required to investigate the spread of these viruses in Hungarian and European sheep and cattle populations and to identify their pathogenic potential in sheep.
Collapse
Affiliation(s)
- Fruzsina Tóth
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Gáspár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Róbert Herczeg
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | | | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
6
|
Domrazek K, Jurka P. Application of Next-Generation Sequencing (NGS) Techniques for Selected Companion Animals. Animals (Basel) 2024; 14:1578. [PMID: 38891625 PMCID: PMC11171117 DOI: 10.3390/ani14111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Next-Generation Sequencing (NGS) techniques have revolutionized veterinary medicine for cats and dogs, offering insights across various domains. In veterinary parasitology, NGS enables comprehensive profiling of parasite populations, aiding in understanding transmission dynamics and drug resistance mechanisms. In infectious diseases, NGS facilitates rapid pathogen identification, characterization of virulence factors, and tracking of outbreaks. Moreover, NGS sheds light on metabolic processes by elucidating gene expression patterns and metabolic pathways, essential for diagnosing metabolic disorders and designing tailored treatments. In autoimmune diseases, NGS helps identify genetic predispositions and molecular mechanisms underlying immune dysregulation. Veterinary oncology benefits from NGS through personalized tumor profiling, mutation analysis, and identification of therapeutic targets, fostering precision medicine approaches. Additionally, NGS plays a pivotal role in veterinary genetics, unraveling the genetic basis of inherited diseases and facilitating breeding programs for healthier animals. Physiological investigations leverage NGS to explore complex biological systems, unraveling gene-environment interactions and molecular pathways governing health and disease. Application of NGS in treatment planning enhances precision and efficacy by enabling personalized therapeutic strategies tailored to individual animals and their diseases, ultimately advancing veterinary care for companion animals.
Collapse
Affiliation(s)
- Kinga Domrazek
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
7
|
Balázs B, Boros Á, Pankovics P, Nagy G, Szekeres S, Urbán P, Reuter G. Detection and complete genome characterization of a genogroup X (GX) sapovirus (family Caliciviridae) from a golden jackal (Canis aureus) in Hungary. Arch Virol 2024; 169:100. [PMID: 38630394 PMCID: PMC11024015 DOI: 10.1007/s00705-024-06034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
In this study, a novel genotype of genogroup X (GX) sapovirus (family Caliciviridae) was detected in the small intestinal contents of a golden jackal (Canis aureus) in Hungary and characterised by viral metagenomics and next-generation sequencing techniques. The complete genome of the detected strain, GX/Dömsöd/DOCA-11/2020/HUN (PP105600), is 7,128 nt in length. The ORF1- and ORF2-encoded viral proteins (NSP, VP1, and VP2) have 98%, 95%, and 88% amino acid sequence identity to the corresponding proteins of genogroup GX sapoviruses from domestic pigs, but the nucleic acid sequence identity values for their genes are significantly lower (83%, 77%, and 68%). During an RT-PCR-based epidemiological investigation of additional jackal and swine samples, no other GX strains were detected, but a GXI sapovirus strain, GXI/Tótfalu/WBTF-10/2012/HUN (PP105601), was identified in a faecal sample from a wild boar (Sus scrofa). We report the detection of members of two likely underdiagnosed groups of sapoviruses (GX and GXI) in a golden jackal and, serendipitously, in a wild boar in Europe.
Collapse
Affiliation(s)
- Benigna Balázs
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs, H-7624, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs, H-7624, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs, H-7624, Hungary
| | - Gábor Nagy
- Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Science, Kaposvár, Hungary
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12., Pécs, H-7624, Hungary.
| |
Collapse
|
8
|
Mira F, Schirò G, Franzo G, Canuti M, Purpari G, Giudice E, Decaro N, Vicari D, Antoci F, Castronovo C, Guercio A. Molecular epidemiology of canine parvovirus type 2 in Sicily, southern Italy: A geographical island, an epidemiological continuum. Heliyon 2024; 10:e26561. [PMID: 38420403 PMCID: PMC10900816 DOI: 10.1016/j.heliyon.2024.e26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Since it emerged as a major dog pathogen, canine parvovirus type 2 (CPV-2) has featured a remarkable genetic and phenotypic heterogeneity, whose biological, epidemiological, and clinical impact is still debated. The continuous monitoring of this pathogen is thus of pivotal importance. In the present study, the molecular epidemiology of CPV-2 in Sicily, southern Italy, has been updated by analysing 215 nearly complete sequences of the capsid protein VP2, obtained from rectal swabs/faeces or tissue samples collected between 2019 and 2022 from 346 dogs with suspected infectious gastrointestinal disease. The presence of the original CPV-2 type (4%) and CPV-2a (9%), CPV-2b (18%), or CPV-2c (69%) variants was documented. Over the years, we observed a decrease in the frequency of CPV-2a/-2b and a rapid increase of CPV-2c frequency, with a progressive replacement of the European lineage of CPV-2c by the Asian lineage. The observed scenario, besides confirming epidemiological relevance of CPV-2, highlights the occurrence of antigenic variant shifts over time, with a trend toward the replacement of CPV-2a, CPV-2b, and the European lineage of CPV-2c by the emerging Asian CPV-2c lineage. The comparison with other Italian and international sequences suggests the occurrence of viral exchange with other Italian regions and different countries, although the directionality of such viral flows could not be often established with confidence. In several instances, potential CPV-2 introductions led to epidemiological dead ends. However, major, long-lasting clades were also identified, supporting successful infection establishment, local spreading, and evolution. These results, besides demonstrating the need for implementing more effective control measures to prevent viral introductions and minimize circulation, stress the relevance of routine monitoring activities as the only tool to effectively understand CPV-2 epidemiology and evolution, and develop adequate countermeasures.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Marta Canuti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, 70010, Valenzano, (BA), Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| |
Collapse
|
9
|
Zhao Y, Wang P, Qu X, Yuan K, Zhu S, Wang S, Luan Q, Zhou H, Yin Y, Zhao Z, Gao Y, Chen S, Lu Y, Wang J, Yin Y. Investigation of circulating infectious agents in experimental Beagle dogs of a production colony and three research facilities in China from June 2021 to May 2022. Lab Anim 2024; 58:52-64. [PMID: 37702462 DOI: 10.1177/00236772231188172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
To understand the epizootiologic characteristics of pathogens and opportunistic infections in one Beagle dog production colony and three research facilities, viruses and mycoplasma were detected in 1777 samples collected from Beagle dogs in China by polymerase chain reaction/reverse transcription polymerase chain reaction, and bacteria were isolated and identified by 16S rRNA sequence analysis. In addition, genotyping of the major circulating viruses was carried out by amplification of gene fragments and homology analysis. Canine coronavirus (CCoV), Escherichia coli, canine parvovirus (CPV), Bordetella bronchiseptica, Clostridium perfringens, Mycoplasma cynos, Klebsiella pneumoniae, Streptococcus canis, canine astrovirus (CaAstV), canine kobuvirus (CaKV), Pseudomonas aeruginosa, Proteus mirabilis, Macrococcus canis, Pasteurella canis, canine bocavirus (CBoV) and canine adenovirus (CAdV) were detected in the samples. Single, double, triple and quadruple infections accounted for 6.6%, 1.4%, 1.2% and 0.96% of samples, respectively. CCoV strains in 81 samples included three genotypes, CCoV-I, CCoV-IIa and CCoV-IIb, by analysis of S gene. The rate of single infection of CCoV-I, CCoV-IIa or CCoV-IIb was 19%, 38% or 7.4% respectively. The double and triple infection rates of CCoV were 32.8% and 2.5% respectively. All CPV strains in 36 samples belonged to CPV-2c. There were three amino acid differences in the Fiber protein of CAdV-positive sample QD2022, compared with the reference strain Toronto A26/61 and the vaccine strain YCA-18. These results suggest that CCoV and CPV are primary infectious agents, and that these two viruses were often identified in mixed infections, or coinfections alongside mycoplasma or other bacteria. These results will provide the basis for improvements in prevention and control of naturally occurring infectious diseases in Beagle dog production colonies and research facilities.
Collapse
Affiliation(s)
- Yue Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, China
| | - Panlong Wang
- College of Veterinary Medicine, Qingdao Agricultural University, China
| | - Xueting Qu
- Qingdao Bolong Experimental Animal Co., Ltd., China
| | - Kunpeng Yuan
- Qingdao Bolong Experimental Animal Co., Ltd., China
| | - Suzhen Zhu
- Technology Center of Qingdao Customs District, China
| | - Sen Wang
- Qingdao Orange Pet Hospital, China
| | | | - Hao Zhou
- Qingdao Bolong Experimental Animal Co., Ltd., China
| | - Yue Yin
- Qingdao Bolong Experimental Animal Co., Ltd., China
| | - Zijing Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, China
| | - Yongjuan Gao
- College of Veterinary Medicine, Qingdao Agricultural University, China
| | - Shuzhen Chen
- College of Veterinary Medicine, Qingdao Agricultural University, China
| | - Yanjing Lu
- College of Veterinary Medicine, Qingdao Agricultural University, China
| | - Jianlin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, China
| | - Yanbo Yin
- College of Veterinary Medicine, Qingdao Agricultural University, China
- Qingdao Bolong Experimental Animal Co., Ltd., China
| |
Collapse
|
10
|
Boros Á, Pankovics P, László Z, Urbán P, Herczeg R, Gáspár G, Tóth F, Reuter G. The genomic and epidemiological investigations of enteric viruses of domestic caprine ( Capra hircus) revealed the presence of multiple novel viruses related to known strains of humans and ruminant livestock species. Microbiol Spectr 2023; 11:e0253323. [PMID: 37823638 PMCID: PMC10714811 DOI: 10.1128/spectrum.02533-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Compared with other domestic animals, the virome and viral diversity of small ruminants especially in caprine are less studied even of its zoonotic potential. In this study, the enteric virome of caprine was investigated in detail using next-generation sequencing and reverse transcription PCR techniques. The complete or nearly complete genomes of seven novel viruses were determined which show a close phylogenetic relationship to known human and ruminant viruses. The high similarity between the identified caprine tusavirus (family Parvoviridae) and an unassigned CRESS DNA virus with closely related human strains could indicate the (reverse) zoonotic potential of these viruses. Others, like astroviruses (family Astroviridae), enteroviruses, or novel caripiviruses (named after the term caprine picornavirus) of family Picornaviridae found mostly in multiple co-infections in caprine and ovine, could indicate the cross-species transmission capabilities of these viruses between small ruminants.
Collapse
Affiliation(s)
- Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Róbert Herczeg
- János Szentágothai Research Centre of the University of Pécs, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Pécs, Hungary
| | - Gábor Gáspár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Fruzsina Tóth
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
11
|
Franzo G, Mira F, Schirò G, Canuti M. Not Asian Anymore: Reconstruction of the History, Evolution, and Dispersal of the "Asian" Lineage of CPV-2c. Viruses 2023; 15:1962. [PMID: 37766368 PMCID: PMC10535194 DOI: 10.3390/v15091962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Variability has been one of the hallmarks of canine parvovirus type 2 (CPV-2) since its discovery, and several lineages and antigenic variants have emerged. Among these, a group of viruses commonly called Asian CPV-2c has recently been reported with increasing frequency in different regions. Currently, its global epidemiology and evolution are essentially unknown. The present work deals with this information gap by evaluating, via sequence, phylodynamic, and phylogeographic analyses, all the complete coding sequences of strains classified as Asian CPV-2c based on a combination of amino acid markers and phylogenetic analysis. After its estimated origin around 2008, this lineage circulated undetected in Asia until approximately 2012, when an expansion in viral population size and geographical distribution occurred, involving Africa, Europe, and North America. Asia was predicted to be the main nucleus of viral dispersal, leading to multiple introduction events in other continents/countries, where infection establishment, persistence, and rapid evolution occurred. Although the dog is the main host, other non-canine species were also involved, demonstrating the host plasticity of this lineage. Finally, although most of the strains showed an amino acid motif considered characteristic of this lineage, several exceptions were observed, potentially due to convergent evolution or reversion phenomena.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Padua University, 35020 Legnaro, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (F.M.); (G.S.)
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (F.M.); (G.S.)
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Marta Canuti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, 20122 Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
12
|
Sarabandi S, Pourtaghi H. Whole genome sequence analysis of CPV-2 isolates from 1998 to 2020. Virol J 2023; 20:138. [PMID: 37400901 DOI: 10.1186/s12985-023-02102-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Canine parvovirus-2 (CPV-2) is a virus with worldwide spread causing canine gastroenteritis. New strains of this virus have unique characteristics and are resistant to some vaccine strains. Therefore, understanding the root causes of resistance has proven to be of increasing concern to many scientists. This study collected 126 whole genome sequences of CPV-2 subtypes with specific collection dates from the NCBI data bank. The whole genome sequences of CPV-2 collected from different countries were analyzed to detect the new substitutions and update these mutations. The result indicated 12, 7, and 10 mutations in NS1, VP1, and VP2, in that respective order. Moreover, the A5G and Q370R mutations of VP2 are the most common changes in the recent isolates of the CPV-2C subtype, and the new N93K residue of VP2 is speculated to be the cause of vaccine failure. To summarize, the observed mutations, which are increasing over time, causes several changes in viral characteristic. A comprehensive understanding of these mutations can lead us to control potential future epidemics associated with this virus more efficiently.
Collapse
Affiliation(s)
- Sajed Sarabandi
- Department of Pathobiology, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Hadi Pourtaghi
- Department of Microbiology, Islamic Azad University, Karaj Branch, Karaj, Iran.
| |
Collapse
|
13
|
Temizkan MC, Sevinc Temizkan S. Canine Parvovirus in Turkey: First Whole-Genome Sequences, Strain Distribution, and Prevalence. Viruses 2023; 15:v15040957. [PMID: 37112937 PMCID: PMC10145800 DOI: 10.3390/v15040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Canine parvovirus (CPV) is a significant pathogenic virus with up to 100% morbidity and 91% mortality rates, especially in unvaccinated puppies. The emergence of new strains, interspecies transmission, and vaccine effectiveness can be enabled by just a few base changes in the CPV genome. Therefore, to cope with CPV disease, it is important to identify the viral agent and regularly monitor vaccine effectiveness against new strains. The present study has investigated CPV's genetic profile in Turkey by collecting 80 samples from dogs in Turkey between 2020 and 2022. These samples and all sequences previously studied for CPV in Turkey were analyzed for whole-genome sequences, nationwide strain distribution over the two years, and the central Turkey prevalence rate. Next-generation sequencing was used for the genome study, Sanger sequencing for strain detection, and PCR for the prevalence analyses. The CPV-2 variants circulating in Turkey form their own cluster while being closely related to Egypt variants. Substantial amino acid changes were detected in antigenically important regions of the VP2 gene. Moreover, CPV-2b has become the most frequent genotype in this region, while the incidence of CPV-2c is predicted to increase gradually over the coming years. The prevalence of CPV in central Turkey was 86.27%. This study thus provides powerful insights to further our understanding of CPV's genetic profile in Turkey and suggests that up-to-date vaccination efficacy studies are urgently needed.
Collapse
Affiliation(s)
- Mehmet Cevat Temizkan
- Department of Genetics, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat 66700, Turkey
| | - Secil Sevinc Temizkan
- Department of Virology, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat 66700, Turkey
| |
Collapse
|
14
|
Viral Metagenomic Analysis of the Fecal Samples in Domestic Dogs (Canis lupus familiaris). Viruses 2023; 15:v15030685. [PMID: 36992396 PMCID: PMC10058366 DOI: 10.3390/v15030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Canine diarrhea is a common intestinal illness that is usually caused by viruses, bacteria, and parasites, and canine diarrhea may induce morbidity and mortality of domestic dogs if treated improperly. Recently, viral metagenomics was applied to investigate the signatures of the enteric virome in mammals. In this research, the characteristics of the gut virome in healthy dogs and dogs with diarrhea were analyzed and compared using viral metagenomics. The alpha diversity analysis indicated that the richness and diversity of the gut virome in the dogs with diarrhea were much higher than the healthy dogs, while the beta diversity analysis revealed that the gut virome of the two groups was quite different. At the family level, the predominant viruses in the canine gut virome were certified to be Microviridae, Parvoviridae, Siphoviridae, Inoviridae, Podoviridae, Myoviridae, and others. At the genus level, the predominant viruses in the canine gut virome were certified to be Protoparvovirus, Inovirus, Chlamydiamicrovirus, Lambdavirus, Dependoparvovirus, Lightbulbvirus, Kostyavirus, Punavirus, Lederbergvirus, Fibrovirus, Peduovirus, and others. However, the viral communities between the two groups differed significantly. The unique viral taxa identified in the healthy dogs group were Chlamydiamicrovirus and Lightbulbvirus, while the unique viral taxa identified in the dogs with diarrhea group were Inovirus, Protoparvovirus, Lambdavirus, Dependoparvovirus, Kostyavirus, Punavirus, and other viruses. Phylogenetic analysis based on the near-complete genome sequences showed that the CPV strains collected in this study together with other CPV Chinese isolates clustered into a separate branch, while the identified CAV-2 strain D5-8081 and AAV-5 strain AAV-D5 were both the first near-complete genome sequences in China. Moreover, the predicted bacterial hosts of phages were certified to be Campylobacter, Escherichia, Salmonella, Pseudomonas, Acinetobacter, Moraxella, Mediterraneibacter, and other commensal microbiota. In conclusion, the enteric virome of the healthy dogs group and the dogs with diarrhea group was investigated and compared using viral metagenomics, and the viral communities might influence canine health and disease by interacting with the commensal gut microbiome.
Collapse
|