1
|
Castañeda-Montes FJ, Cerriteño-Sánchez JL, Castañeda-Montes MA, Cuevas-Romero JS, Mendoza-Elvira S. A Candidate Antigen of the Recombinant Membrane Protein Derived from the Porcine Deltacoronavirus Synthetic Gene to Detect Seropositive Pigs. Viruses 2023; 15:v15051049. [PMID: 37243136 DOI: 10.3390/v15051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emergent swine coronavirus which infects cells from the small intestine and induces watery diarrhea, vomiting and dehydration, causing mortality in piglets (>40%). The aim of this study was to evaluate the antigenicity and immunogenicity of the recombinant membrane protein (M) of PDCoV (rM-PDCoV), which was developed from a synthetic gene obtained after an in silico analysis with a group of 138 GenBank sequences. A 3D model and phylogenetic analysis confirmed the highly conserved M protein structure. Therefore, the synthetic gene was successfully cloned in a pETSUMO vector and transformed in E. coli BL21 (DE3). The rM-PDCoV was confirmed by SDS-PAGE and Western blot with ~37.7 kDa. The rM-PDCoV immunogenicity was evaluated in immunized (BLAB/c) mice and iELISA. The data showed increased antibodies from 7 days until 28 days (p < 0.001). The rM-PDCoV antigenicity was analyzed using pig sera samples from three states located in "El Bajío" Mexico and positive sera were determined. Our results show that PDCoV has continued circulating on pig farms in Mexico since the first report in 2019; therefore, the impact of PDCoV on the swine industry could be higher than reported in other studies.
Collapse
Affiliation(s)
- Francisco Jesus Castañeda-Montes
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Luis Cerriteño-Sánchez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
| | - María Azucena Castañeda-Montes
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Susana Mendoza-Elvira
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Wang D, Chen Y, Xiang S, Hu H, Zhan Y, Yu Y, Zhang J, Wu P, Liu FY, Kai T, Ding P. Recent advances in immunoassay technologies for the detection of human coronavirus infections. Front Cell Infect Microbiol 2023; 12:1040248. [PMID: 36683684 PMCID: PMC9845787 DOI: 10.3389/fcimb.2022.1040248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the seventh coronavirus (CoV) that has spread in humans and has become a global pandemic since late 2019. Efficient and accurate laboratory diagnostic methods are one of the crucial means to control the development of the current pandemic and to prevent potential future outbreaks. Although real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the preferred laboratory method recommended by the World Health Organization (WHO) for diagnosing and screening SARS-CoV-2 infection, the versatile immunoassays still play an important role for pandemic control. They can be used not only as supplemental tools to identify cases missed by rRT-PCR, but also for first-line screening tests in areas with limited medical resources. Moreover, they are also indispensable tools for retrospective epidemiological surveys and the evaluation of the effectiveness of vaccination. In this review, we summarize the mainstream immunoassay methods for human coronaviruses (HCoVs) and address their benefits, limitations, and applications. Then, technical strategies based on bioinformatics and advanced biosensors were proposed to improve the performance of these methods. Finally, future suggestions and possibilities that can lead to higher sensitivity and specificity are provided for further research.
Collapse
Affiliation(s)
- Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yuejun Chen
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Huiting Hu
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Fei Yue Liu
- Department of Economics and Management, ChangSha University, Changsha, Hunan, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Predicted 3D model of the M protein of Porcine Epidemic Diarrhea Virus and analysis of its immunogenic potential. PLoS One 2022; 17:e0263582. [PMID: 35139120 PMCID: PMC8827446 DOI: 10.1371/journal.pone.0263582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
The membrane protein M of the Porcine Epidemic Diarrhea Virus (PEDV) is the most abundant component of the viral envelope. The M protein plays a central role in the morphogenesis and assembly of the virus through protein interactions of the M-M, M-Spike (S) and M-nucleocapsid (N) type. The M protein is known to induce protective antibodies in pigs and to participate in the antagonistic response of the cellular antiviral system coordinated by the type I and type III interferon pathways. The 3D structure of the PEDV M protein is still unknown. The present work exposes a predicted 3D model of the M protein generated using the Robetta protocol. The M protein model is organized into a transmembrane and a globular region. The obtained 3D model of the PEDV M protein was compared with 3D models of the SARS-CoV-2 M protein created using neural networks and with initial machine learning-based models created using trRosetta. The 3D model of the present study predicted four linear B-cell epitopes (RSVNASSGTG and KHGDYSAVSNPSALT peptides are noteworthy), six discontinuous B-cell epitopes, forty weak binding and fourteen strong binding T-cell epitopes in the CV777 M protein. A high degree of conservation of the epitopes predicted in the PEDV M protein was observed among different PEDV strains isolated in different countries. The data suggest that the M protein could be a potential candidate for the development of new treatments or strategies that activate protective cellular mechanisms against viral diseases.
Collapse
|
4
|
Corral-Lugo A, López-Siles M, López D, McConnell MJ, Martin-Galiano AJ. Identification and Analysis of Unstructured, Linear B-Cell Epitopes in SARS-CoV-2 Virion Proteins for Vaccine Development. Vaccines (Basel) 2020; 8:397. [PMID: 32698423 PMCID: PMC7564417 DOI: 10.3390/vaccines8030397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
The efficacy of SARS-CoV-2 nucleic acid-based vaccines may be limited by proteolysis of the translated product due to anomalous protein folding. This may be the case for vaccines employing linear SARS-CoV-2 B-cell epitopes identified in previous studies since most of them participate in secondary structure formation. In contrast, we have employed a consensus of predictors for epitopic zones plus a structural filter for identifying 20 unstructured B-cell epitope-containing loops (uBCELs) in S, M, and N proteins. Phylogenetic comparison suggests epitope switching with respect to SARS-CoV in some of the identified uBCELs. Such events may be associated with the reported lack of serum cross-protection between the 2003 and 2019 pandemic strains. Incipient variability within a sample of 1639 SARS-CoV-2 isolates was also detected for 10 uBCELs which could cause vaccine failure. Intermediate stages of the putative epitope switch events were observed in bat coronaviruses in which additive mutational processes possibly facilitating evasion of the bat immune system appear to have taken place prior to transfer to humans. While there was some overlap between uBCELs and previously validated SARS-CoV B-cell epitopes, multiple uBCELs had not been identified in prior studies. Overall, these uBCELs may facilitate the development of biomedical products for SARS-CoV-2.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Mireia López-Siles
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Daniel López
- Immune Presentation and Regulation Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Michael J. McConnell
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Antonio J. Martin-Galiano
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| |
Collapse
|
5
|
Zhang Z, Chen J, Shi H, Chen X, Shi D, Feng L, Yang B. Identification of a conserved linear B-cell epitope in the M protein of porcine epidemic diarrhea virus. Virol J 2012; 9:225. [PMID: 23025700 PMCID: PMC3519612 DOI: 10.1186/1743-422x-9-225] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/26/2012] [Indexed: 11/10/2022] Open
Abstract
Background The major structural protein of coronaviruses, the membrane (M) protein, can elicit the formation of protective antibodies, but little information is available about the M protein of porcine epidemic diarrhea virus (PEDV). Identification of epitopes on the PEDV M protein will be helpful in the elucidation of the antigenic properties of this protein. Results One hybridoma cell line secreting anti-M protein monoclonal antibody (McAb) was generated and designated 4D4. To map the epitopes on the PEDV M protein, a total of 17 partially overlapping fragments covering the C-terminus of M protein were expressed as fusion proteins with a 6×His tag or a GST tag. A linear motif, 193TGWAFYVR200, was identified by enzyme-linked immunosorbent assay (ELISA) and western blot (WB) analysis using McAb 4D4. The motif 195WAFYVR200 was the minimal requirement for reactivity, as demonstrated by removing amino acids individually from both ends of the motif 193TGWAFYVR200. The result of WB analysis showed that the 4D4-defined epitope could be recognized by PEDV-positive serum, but not transmissible gastroenteritis virus (TGEV)-positive serum. Furthermore, this epitope was highly conserved among different PEDV strains, as shown by alignment and comparison of sequences. Conclusion A McAb, 4D4, directed against the M protein of PEDV, was obtained, and the 4D4-defined minimal epitope sequence was 195WAFYVR200. The McAb could serve as a candidate for development of a McAb-based antigen capture ELISA for detection of PEDV. The epitope identified provides a basis for the development of epitope-based differential diagnostic techniques and may be useful in the design of epitope-based vaccines.
Collapse
Affiliation(s)
- Zhibang Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, No,427 Maduan Street, Nangang District, Harbin, 150001, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Zeng Y, Zhang X, Huang Z, Cheng L, Yao S, Qin D, Chen X, Tang Q, Lv Z, Zhang L, Lu C. Intracellular Tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol 2006; 81:2401-17. [PMID: 17151125 PMCID: PMC1865948 DOI: 10.1128/jvi.02024-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection significantly increases the risk of Kaposi's sarcoma (KS) occurrence in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV infection appears to be necessary but not sufficient for KS development without other cofactors. However, factors that facilitate KSHV to cause KS have not been well defined. Previously, we determined that human herpesvirus 6 was one of the cofactors that activated lytic cycle replication of KSHV. Here, we demonstrate that the Tat protein of HIV-1 is a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts and viral proteins in BCBL-1 cells. Mechanistic studies showed ectopic expression of Tat induced the production of human interleukin-6 (huIL-6) and its receptor (huIL-6Ra) and activated STAT3 signaling. Neutralization of huIL-6 or huIL-6R or inhibition of STAT3 signaling enhanced the replication. In addition, IL-4/STAT6 signaling also partially contributed to Tat-induced KSHV replication. These findings suggest that Tat may participate in KS pathogenesis by inducing KSHV replication and increasing KSHV viral load. These data also suggest that JAK/STAT signaling may be of therapeutic value in AIDS-related KS patients.
Collapse
MESH Headings
- Animals
- Base Sequence
- Callithrix
- Cell Line
- DNA Primers/genetics
- Gene Expression
- Gene Products, tat/genetics
- Gene Products, tat/physiology
- Genes, tat
- HIV Infections/complications
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/physiology
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- Humans
- Interleukin-4/genetics
- Interleukin-6/genetics
- Janus Kinases/metabolism
- Mice
- NIH 3T3 Cells
- Receptors, Interleukin-6/genetics
- STAT Transcription Factors/metabolism
- STAT6 Transcription Factor/genetics
- Sarcoma, Kaposi/etiology
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Replication/genetics
- Virus Replication/physiology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Yi Zeng
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|