1
|
Yuan Z, Li Z, Lu Y, Cao M, Hong N, Wang G, Cai L. Molecular characterization of a novel amalgavirus infecting lilium spp. in China. Arch Virol 2023; 168:181. [PMID: 37314504 DOI: 10.1007/s00705-023-05806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023]
Abstract
A novel plant virus with a double-stranded (ds) RNA genome was detected in Lilium spp. in China by high-throughput sequencing and tentatively named "lily amalgavirus 2" (LAV2). The genomic RNA of LAV2 is 3432 nucleotides (nt) in length and contains two open reading frames (ORFs) that putatively encode a '1 + 2' fusion protein of 1053 amino acids (aa), generated by a '+1' programmed ribosomal frameshift (PRF). ORF1 encodes a putative 386-aa protein of unknown function, and ORF2 overlaps ORF1 by 350 nt and encodes a putative 783-aa protein with conserved RNA-dependent RNA polymerase (RdRp) motifs. The '+1' ribosomal frameshifting motif, UUU_CGN, which is highly conserved among amalgaviruses, is also found in LAV2. Sequence analysis showed that the complete genome shared 46.04%-51.59% nucleotide sequence identity with those of members of the genus Amalgavirus and had the most similarity (51.59% sequence identity) to lily amalgavirus 1 (accession no. OM782323). Phylogenetic analysis based on RdRp amino acid sequences showed that LAV2 clustered with members of the genus Amalgavirus. Overall, our data suggest that LAV2 is a new member of the genus Amalgavirus.
Collapse
Affiliation(s)
- Zhihao Yuan
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhenfeng Li
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yuexia Lu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Southwest University, 400712, Chongqing, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Li Cai
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
2
|
Hao X, Zheng Y, Cui B, Xiang B. Localization of southern tomato virus (STV) in tomato tissues. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2023; 130:1-5. [PMID: 37361930 PMCID: PMC10011777 DOI: 10.1007/s41348-023-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/01/2023] [Indexed: 06/28/2023]
Abstract
Southern tomato virus (STV) is a dsRNA virus, which belongs to the newly formed Amalgavirus genus of the Amalgaviridae family. Currently there is no report regarding the presence of STV in tomato tissues. In this study, we performed in situ hybridization to examine the distribution of STV in host tissues. STV was found in the leaves, stems, seeds, shoot apexes and root tips of tomato and localized in the cortex tissue, vascular tissues, pith, seed coat, endosperm, cotyledon (including inner cotyledons and outer cotyledons), hypocotyls and radicles of infected tomato tissues. In addition, STV was detected in the apical part of the stems and roots for the first time. This indicates that STV is a systemic infectious virus.
Collapse
Affiliation(s)
- Xiaojun Hao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Xinjiang Production and Construction Corps Key Laboratory of Special Fruitsand Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi, 832003 China
| | - Yinying Zheng
- Key Laboratory of Agriculture Biotechnology of Shihezi University, College of Life Sciences, Shihezi University, Shihezi, 832003 China
| | - Baiming Cui
- Key Laboratory of Agriculture Biotechnology of Shihezi University, College of Life Sciences, Shihezi University, Shihezi, 832003 China
| | - Benchun Xiang
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Xinjiang Production and Construction Corps Key Laboratory of Special Fruitsand Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi, 832003 China
| |
Collapse
|
3
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
4
|
Sidharthan VK, Rajeswari V, Vanamala G, Baranwal VK. Revisiting the amalgaviral landscapes in plant transcriptomes expands the host range of plant amalgaviruses. Virology 2022; 577:65-73. [PMID: 36308887 DOI: 10.1016/j.virol.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Plant amalgaviruses are monopartite, double-stranded RNA viruses, capable of vertical transmission through seeds. An attempt to revisit plant transcriptome-assembled contigs for amalgaviral sequences identified 40 putative novel amalgaviruses in 35 plant species, nearly doubling the number of plant amalgaviruses. Of the 35 plant species, 33 are reported to host amalgaviruses for the first time, including a pteridophytic and two gymnospermic species. Coding-complete genomes of all identified viruses were recovered and the putative +1 programmed ribosomal frameshift (PRF) sites were determined. Genomes of 35 identified amalgaviruses contained the conserved +1 PRF motif 'UUU_CGN', while variant versions were predicted in five genomes. Phylogenetic analysis grouped pteridophyte- and gymnosperm-infecting amalgaviruses together in divergent sub-clades while few of the related angiosperm-infecting amalgaviruses infect members of the same plant family, reiterating the co-evolution of plant amalgaviruses and their hosts. The current study paves way for further studies on understanding biological properties of identified viruses.
Collapse
Affiliation(s)
- V Kavi Sidharthan
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad, India.
| | - V Rajeswari
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gayatri Vanamala
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad, India
| | - V K Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
5
|
The full-length genome sequence of a novel amalgavirus in Lilium spp. in China. Arch Virol 2022; 167:2103-2107. [PMID: 35834002 DOI: 10.1007/s00705-022-05523-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
Abstract
We report for the first time the complete genome sequence of a novel amalgavirus, tentatively designated as 'lily amalgavirus 1' (LAV-1), isolated from Lilium spp. in China. LAV-1 is a 3448-nt double-stranded RNA virus that encodes two putative proteins. Open reading frame 1 (ORF1) encodes a 394-aa protein with unknown function. ORF2 encodes a putative RNA-dependent RNA polymerase (RdRp) of 895 aa. The two ORFs putatively encode a '1 + 2' fusion protein generated by a '+1' programmed ribosomal frameshift (PRF). BLASTp analysis revealed that the complete genome sequence of LAV-1 shares 48.23-59.80% sequence identity (query sequence coverage > 77%) with those of members of the genus Amalgavirus, with the highest nucleotide sequence identity of 59.80% with that of Allium cepa amalgavirus 1 (query sequence coverage, 87%). The genome structure, phylogenetic relationships, and sequence similarities to other plant amalgaviruses suggest that LAV-1 is a new member of the genus Amalgavirus.
Collapse
|
6
|
Zhang K, Zhuang X, Xu H, Gan H, He Z, Chen J. Development of polyclonal antibodies-based serological methods and a DIG-labelled DNA probe-based molecular method for detection of the Vicia cryptic virus-M in field plants. J Virol Methods 2021; 299:114331. [PMID: 34648821 DOI: 10.1016/j.jviromet.2021.114331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Vicia cryptic virus M (VCV-M), a member of the genus Amalgavirus of the family Amalgaviridae, was first identified in 2009 in a Vicia faba Linn. planting in Hangzhou, Zhejiang Province, China. However, there has been no further research on the biological features of VCV-M to date and the viral particles and coat protein (CP) have not been identified. The putative CP of VCV-M was predicted from the viral genomic RNA. In this study, a recombinant version of the putative CP of VCV-M (His-CPVCV-M) was produced and used to prepare a polyclonal antiserum against the His-CPVCV-M. Using this antiserum, a Western blot, an immuno-dot-blot and an enzyme-linked immunosorbent assay were developed for testing field samples of V. faba for the presence of VCV-M. Additionally, a digoxigenin (DIG)-labelled DNA probe-based Northern blot assay was established for VCV-M genome detection in field samples. The results showed that both the serological and nucleic acid assays could accurately and sensitively detect VCV-M in V. faba. This research represented the first confirmed expression of the putative CP of VCV-M in infected V. faba tissues. The serological and nucleic acid assays provided two complementary methods for VCV-M detection which could contribute to seed quality control and production increases of V. faba crops.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xinjian Zhuang
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Hongmei Xu
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Haifeng Gan
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Zhen He
- Department of Plant Pathology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Jiahuan Chen
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Nerva L, Vigani G, Di Silvestre D, Ciuffo M, Forgia M, Chitarra W, Turina M. Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. J Virol 2019; 93:e01998-18. [PMID: 30651361 PMCID: PMC6430534 DOI: 10.1128/jvi.01998-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Indirect evidence of mitochondrial viruses in plants comes from discovery of genomic fragments integrated into the nuclear and mitochondrial DNA of a number of plant species. Here, we report the existence of replicating mitochondrial virus in plants: from transcriptome sequencing (RNA-seq) data of infected Chenopodium quinoa, a plant species commonly used as a test plant in virus host range experiments, among other virus contigs, we could assemble a 2.7-kb contig that had highest similarity to mitoviruses found in plant genomes. Northern blot analyses confirmed the existence of plus- and minus-strand RNA corresponding to the mitovirus genome. No DNA corresponding to the genomic RNA was detected, excluding the endogenization of such virus. We have tested a number of C. quinoa accessions, and the virus was present in a number of commercial varieties but absent from a large collection of Bolivian and Peruvian accessions. The virus could not be transmitted mechanically or by grafting, but it is transmitted vertically through seeds at a 100% rate. Small RNA analysis of a C. quinoa line carrying the mitovirus and infected by alfalfa mosaic virus showed that the typical antiviral silencing response active against cytoplasmic viruses (21- to 22-nucleotide [nt] vsRNA peaks) is not active against CqMV1, since in this specific case the longest accumulating vsRNA length is 16 nt, which is the same as that corresponding to RNA from mitochondrial genes. This is evidence of a distinct viral RNA degradation mechanism active inside mitochondria that also may have an antiviral effect.IMPORTANCE This paper reports the first biological characterization of a bona fide plant mitovirus in an important crop, Chenopodium quinoa, providing data supporting that mitoviruses have the typical features of cryptic (persistent) plant viruses. We, for the first time, demonstrate that plant mitoviruses are associated with mitochondria in plants. In contrast to fungal mitoviruses, plant mitoviruses are not substantially affected by the antiviral silencing pathway, and the most abundant mitovirus small RNA length is 16 nt.
Collapse
Affiliation(s)
- L Nerva
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - G Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Di Silvestre
- Institute for Biomedical Technology, CNR, Segrate, Milan, Italy
| | - M Ciuffo
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| | - M Forgia
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - W Chitarra
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - M Turina
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| |
Collapse
|
8
|
Lee JS, Goh CJ, Park D, Hahn Y. Identification of a novel plant RNA virus species of the genus Amalgavirus in the family Amalgaviridae from chia (Salvia hispanica). Genes Genomics 2019; 41:10.1007/s13258-019-00782-1. [PMID: 30649686 DOI: 10.1007/s13258-019-00782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chia (Salvia hispanica) is a flowering plant in the family Lamiaceae, which produces seeds that are a rich source of various nutritional compounds. OBJECTIVE To identify a novel RNA virus potentially associated with chia. METHODS Transcriptome data obtained from developing chia seeds were assembled into contigs. Sequence contigs containing an open reading frame (ORF) that showed amino acid identities with a viral RNA-dependent RNA polymerase (RdRp) were identified and analyzed. RESULTS A genomic sequence of a novel plant RNA virus named Salvia hispanica RNA virus 1 (ShRV1) was identified in a chia seed transcriptome dataset. The ShRV1 genome sequence has two ORFs that showed high sequence identities with ORFs of known members of the genus Amalgavirus in the family Amalgaviridae. Amalgaviridae is a family of positive-sense double-stranded non-segmented RNA viruses that infect plants, fungi, and animals. The ShRV1 genome encodes two proteins: a putative replication factory matrix-like protein from ORF1 and an RdRp from the fused ORF of ORF1 and ORF2 by a + 1 programmed ribosomal frameshifting (PRF) mechanism. A conserved + 1 PRF motif sequence UUU_CGU was found at the ORF1/ORF2 boundary. A comparison of 31 amalgavirus ORF1 + 2 fusion proteins revealed that only three positions were repeatedly used as a + 1 PRF site during amalgavirus evolution. CONCLUSION ShRV1 is a novel virus found to be associated with chia and may be useful for studying the molecular features of amalgaviruses.
Collapse
Affiliation(s)
- Ji Seok Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Chul Jun Goh
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|
9
|
Roossinck MJ. Evolutionary and ecological links between plant and fungal viruses. THE NEW PHYTOLOGIST 2019; 221:86-92. [PMID: 30084143 DOI: 10.1111/nph.15364] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 86 I. Introduction 86 II. Lineages shared by plant and fungal viruses 87 III. Virus transmission between plants and fungi 90 IV. Additional plant virus families identified in fungi by metagenomics 91 Acknowledgements 91 References 91 SUMMARY: Plants and microorganisms have been interacting in both positive and negative ways for millions of years. They are also frequently infected with viruses that can have positive or negative impacts. A majority of virus families with members that infect fungi have counterparts that infect plants, and in some cases the phylogenetic analyses of these virus families indicate transmission between the plant and fungal kingdoms. These similarities reflect the host relationships; fungi are evolutionarily more closely related to animals than to plants but share very few viral signatures with animal viruses. The details of several of these interactions are described, and the evolutionary implications of viral cross-kingdom interactions and horizontal gene transfer are proposed.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Park D, Goh CJ, Kim H, Hahn Y. Identification of Two Novel Amalgaviruses in the Common Eelgrass ( Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites. THE PLANT PATHOLOGY JOURNAL 2018; 34:150-156. [PMID: 29628822 PMCID: PMC5880360 DOI: 10.5423/ppj.nt.11.2017.0243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.
Collapse
Affiliation(s)
| | | | | | - Yoonsoo Hahn
- Corresponding author. Phone) +82-2-820-5812, FAX) +82-2-825-5206, E-mail)
| |
Collapse
|
11
|
Zaagueri T, Miozzi L, Mnari-Hattab M, Noris E, Accotto GP, Vaira AM. Deep Sequencing Data and Infectivity Assays Indicate that Chickpea Chlorotic Dwarf Virus is the Etiological Agent of the "Hard Fruit Syndrome" of Watermelon. Viruses 2017; 9:E311. [PMID: 29068372 PMCID: PMC5707518 DOI: 10.3390/v9110311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/21/2017] [Indexed: 11/25/2022] Open
Abstract
Chickpea chlorotic dwarf virus (CpCDV), a polyphagous mastrevirus, family Geminiviridae, has been recently linked to the onset of the "hard fruit syndrome" of watermelon, first described in Tunisia, that makes fruits unmarketable due to the presence of white hard portions in the flesh, chlorotic mottling on the rind, and an unpleasant taste. To investigate the etiological agent of this disease, total RNA extracted from symptomatic watermelon fruits was subjected to small RNA sequencing through next generation sequencing (NGS) techniques. Data obtained showed the presence of CpCDV and two other viral species. However, following validation through polymerase chain reaction (PCR), CpCDV was the only viral species consistently detected in all samples. Watermelon seedlings were then challenged by an agroinfectious CpCDV clone; several plants proved to be CpCDV-infected, and were able to produce fruits. CpCDV infected and replicated in watermelon fruits and leaves, leading to abnormality in fruits and in seed production, similar to those described in field. These results indicate that CpCDV is the etiological agent of the "hard fruit syndrome" of watermelon.
Collapse
Affiliation(s)
- Takoua Zaagueri
- Laboratoire de Biotechnologie Appliquée à l'Agriculture, Institut National de la Recherche Agronomique de Tunisie (INRAT), Université de Carthage, El Rue Hedi Karray Menzah, 1004 Tunis, Tunisia.
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| | - Laura Miozzi
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| | - Monia Mnari-Hattab
- Laboratoire de Biotechnologie Appliquée à l'Agriculture, Institut National de la Recherche Agronomique de Tunisie (INRAT), Université de Carthage, El Rue Hedi Karray Menzah, 1004 Tunis, Tunisia.
| | - Emanuela Noris
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection (IPSP), CNR, 10135 Turin, Italy.
| |
Collapse
|
12
|
Pyle JD, Keeling PJ, Nibert ML. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 2017; 233:95-104. [PMID: 28267607 DOI: 10.1016/j.virusres.2017.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
Abstract
A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Nibert ML, Pyle JD, Firth AE. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 2016; 498:201-208. [PMID: 27596539 PMCID: PMC5052127 DOI: 10.1016/j.virol.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
Abstract
Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for a region of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses. A number of new plant amalgavirus sequences have been found in the TSA database. They provide support for a prevalent +1 frameshifting motif in amalgaviruses. A variant motif is identified in a subset of these viruses from related plants. The ORF1 product of amalgaviruses has propensity to form α-helical coiled coil. The TSA database is a useful source of new viral sequences for comparative analyses.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Jesse D Pyle
- Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
14
|
Depierreux D, Vong M, Nibert ML. Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae. Virus Res 2016; 217:115-24. [PMID: 26951859 DOI: 10.1016/j.virusres.2016.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 12/19/2022]
Abstract
Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.
Collapse
Affiliation(s)
- Delphine Depierreux
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Program in Biochemistry and Molecular and Cellular Biology, University of Namur, Namur BE 5000, Belgium
| | - Minh Vong
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Molecules, Cells and Organisms, Harvard University, Cambridge, MA 02138, USA
| | - Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Martinez J, Lepetit D, Ravallec M, Fleury F, Varaldi J. Additional heritable virus in the parasitic wasp Leptopilina boulardi: prevalence, transmission and phenotypic effects. J Gen Virol 2016; 97:523-535. [DOI: 10.1099/jgv.0.000360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Julien Martinez
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - David Lepetit
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Marc Ravallec
- Unité BiVi (Biologie Intégrative et Virologie des Insectes), Université Montpellier II-INRA 1231, France
| | - Frédéric Fleury
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Julien Varaldi
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| |
Collapse
|
16
|
Koloniuk I, Hrabáková L, Petrzik K. Molecular characterization of a novel amalgavirus from the entomopathogenic fungus Beauveria bassiana. Arch Virol 2015; 160:1585-8. [DOI: 10.1007/s00705-015-2416-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022]
|
17
|
Krupovic M, Dolja VV, Koonin EV. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Biol Direct 2015; 10:12. [PMID: 25886840 PMCID: PMC4377212 DOI: 10.1186/s13062-015-0047-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
Plant viruses of the recently recognized family Amalgaviridae have monopartite double-stranded (ds) RNA genomes and encode two proteins: an RNA-dependent RNA polymerase (RdRp) and a putative capsid protein (CP). Whereas the RdRp of amalgaviruses has been found to be most closely related to the RdRps of dsRNA viruses of the family Partitiviridae, the provenance of their CP remained obscure. Here we show that the CP of amalgaviruses is homologous to the nucleocapsid proteins of negative-strand RNA viruses of the genera Phlebovirus (Bunyaviridae) and Tenuivirus. The chimeric genomes of amalgaviruses are a testament to the effectively limitless gene exchange between viruses that shaped the evolution of the virosphere.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, 75015, France.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
18
|
Chen H, Jin L, Jiang X, Yu Z, Duns GJ, Shao R, Xu W, Chen J. A novel mitovirus from Buergenerula spartinae infecting the invasive species Spartina alterniflora. Virol Sin 2014; 29:257-60. [PMID: 25160761 DOI: 10.1007/s12250-014-3470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huihui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211816, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen H, Jin L, Jiang X, Yu Z, Duns GJ, Shao R, Xu W, Chen J. A novel mitovirus from Buergenerula spartinae infecting the invasive species Spartina alterniflora. Virol Sin 2014. [PMID: 25116809 DOI: 10.1007/s12250-015-3470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huihui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211816, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 2014; 188:128-41. [DOI: 10.1016/j.virusres.2014.04.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
21
|
Li L, Liu J, Xu A, Wang T, Chen J, Zhu X. Molecular characterization of a trisegmented chrysovirus isolated from the radish Raphanus sativus. Virus Res 2013; 176:169-78. [PMID: 23850842 DOI: 10.1016/j.virusres.2013.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 12/24/2022]
Abstract
Radish (Raphanus sativus L.) is cultivated worldwide and is of agronomic importance. dsRNAs associated with partitiviruses were previously found in many R. sativus varieties. In this study, three large dsRNAs from radish were cloned using a modified single primer amplification technique. These three dsRNAs-of lengths 3638, 3517 and 3299 bp-shared conserved untranslated terminal regions, and each contained a major open reading frame putatively encoding the chrysoviral replicase, capsid protein and protease respectively. Isometric virus-like particles (VLP), approximately 45nm in diameter, were isolated from the infected radish plants. Northern blotting indicated that these dsRNAs were encapsidated in the VLP. The virus containing these dsRNA genome segments was named Raphanus sativus chrysovirus 1 (RasCV1). Phylogenetic analysis revealed that RasCV1 is a new species of the Chrysoviridae family and forms a plant taxon with another putative plant chrysovirus, Anthurium mosaic-associated virus (AmaCV). Furthermore, no fungal mycelia were observed in radish leaf tissues stained with trypan blue. These results indicated that RasCV1 is most likely a plant chrysovirus rather than a chrysovirus in symbiotic fungi. An exhaustive BLAST analysis of RasCV1 and AmaCV revealed that chrysovirus-like viruses might widely exist in eudicot and monocot plants and that endogenization of chrysovirus segments into plant genome might have ever happened.
Collapse
Affiliation(s)
- Liqiang Li
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
22
|
Blueberry latent virus: an amalgam of the Partitiviridae and Totiviridae. Virus Res 2010; 155:175-80. [PMID: 20888379 DOI: 10.1016/j.virusres.2010.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 11/24/2022]
Abstract
A new, symptomless virus was identified in blueberry. The dsRNA genome of the virus, provisionally named Blueberry latent virus (BBLV), codes for two putative proteins, one without any similarities to virus proteins and an RNA-dependent RNA polymerase. More than 35 isolates of the virus from different cultivars and geographic regions were partially or completely sequenced. BBLV, found in more than 50% of the material tested, has high degree of homogeneity as isolates show more than 99% nucleotide identity between them. Phylogenetic analysis clearly shows a close relationship between BBLV and members of the Partitiviridae, although its genome organization is related more closely to members of the Totiviridae. Transmission studies from three separate crosses showed that the virus is transmitted very efficiently by seed. These properties suggest that BBLV belongs to a new family of plant viruses with unique genome organization for a plant virus but signature properties of cryptic viruses including symptomless infection and very efficient vertical transmission.
Collapse
|