1
|
Łukaszuk E, Dziewulska D, Stenzel T. Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons. Viruses 2024; 16:917. [PMID: 38932208 PMCID: PMC11209253 DOI: 10.3390/v16060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.
Collapse
Affiliation(s)
| | | | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.Ł.); (D.D.)
| |
Collapse
|
2
|
Zhang J, Fu H, Chen C, Jiang J, Lin Y, Jiang B, Lin L, Hu Q, Wan C. Rapid detection of pigeon Megrivirus using TaqMan real-time PCR technology. Poult Sci 2023; 102:103027. [PMID: 37651775 PMCID: PMC10480624 DOI: 10.1016/j.psj.2023.103027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Megriviruses have been identified from fecal samples in wild pigeons in Hong Kong (China) and Hungary. In this study, the genomic sequences of pigeon Megriviruses (PiMeVs) were downloaded from GenBank and compared. Based on the genetic comparison results, a pair of primers and TaqMan probe were designed based on the conserved sequences of the 3C gene (located in the P3 gene coding region), and a TaqMan real-time PCR method (TaqMan-qPCR) was established. The standard curve of the TaqMan-qPCR had an axial intercept of 39.74 and a slope of -3.2475 with a linear correlation (R2) of 1.00 and an efficiency of 103.2%. No cross-amplification signal was found from other pigeon viruses (such as avian influenza virus, pigeon paramyxovirus type I, pigeon torque teno virus, pigeon adenovirus, and pigeon circovirus). The limit of detection concentration was 53.6 copies/μL. The intra- and interassay results were less than 1.0% based on the reproducibility test. Furthermore, field samples investigation by the established TaqMan-qPCR method showed that positive signals can be found from racing pigeon fecal samples and embryos. Thus, our data suggested that this visible TaqMan-qPCR method is sensitive, specific, and reproducible. Moreover, we first confirmed the presence of pigeon Megrivirus infection in racing pigeon embryos, indicating that the virus may be vertically transmitted. This study provides a reference basis for further understanding the epidemiology of PiMeVs.
Collapse
Affiliation(s)
- Jinpeng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Huanru Fu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinxiu Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yusheng Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Bin Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Lin Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qilin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Key Laboratory of Animal Genetics and Breeding/Fujian Animal Diseases Control Technology Development Centre, Fuzhou 350013, China.
| |
Collapse
|
3
|
Fomsgaard AS, Tahas SA, Spiess K, Polacek C, Fonager J, Belsham GJ. Unbiased Virus Detection in a Danish Zoo Using a Portable Metagenomic Sequencing System. Viruses 2023; 15:1399. [PMID: 37376698 DOI: 10.3390/v15061399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human-animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease management. In a previous study, we developed a straightforward mNGS procedure that greatly enhances the detection of RNA and DNA viruses in human clinical samples. In this study, we improved the mNGS protocol with transportable battery-driven equipment for the portable, non-targeted detection of RNA and DNA viruses in animals from a large zoological facility, to simulate a field setting for point-of-incidence virus detection. From the resulting metagenomic data, we detected 13 vertebrate viruses from four major virus groups: (+)ssRNA, (+)ssRNA-RT, dsDNA and (+)ssDNA, including avian leukosis virus in domestic chickens (Gallus gallus), enzootic nasal tumour virus in goats (Capra hircus) and several small, circular, Rep-encoding, ssDNA (CRESS DNA) viruses in several mammal species. More significantly, we demonstrate that the mNGS method is able to detect potentially lethal animal viruses, such as elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) and the newly described human-associated gemykibivirus 2, a human-to-animal cross-species virus, in a Linnaeus two-toed sloth (Choloepus didactylus) and its enclosure, for the first time.
Collapse
Affiliation(s)
- Anna S Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | | | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Charlotta Polacek
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| |
Collapse
|
4
|
Whole-genome characterization of avian picornaviruses from diarrheic broiler chickens co-infected with multiple picornaviruses in Iran. Virus Genes 2023; 59:79-90. [PMID: 36239871 DOI: 10.1007/s11262-022-01938-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/25/2022] [Indexed: 01/13/2023]
Abstract
Gastrointestinal symptoms in poultry are caused by several factors, such as infecting viruses. Several avian picornaviruses can cause diarrhea in these valuable animals. Poultry flocks in Iran suffer from gastrointestinal diseases, and information on picornaviruses is limited. In this study, two genera of avian picornaviruses were isolated from poultry and identified by the viral metagenomics. Fecal samples were collected from broiler chicken flocks affected with diarrhea from Gilan province Iran. The results showed that Eastern chicken flocks carried two genera of picornaviridae belonging to Sicinivirus A (SiV A) and Megrivirus C (MeV C). The Western chicken flocks carried SiV A based on whole-genome sequencing data. SiV A had type II IRES and MeV C contained a type IVB IRES 5'UTR. Phylogenetic results showed that all these three picornaviruses were similar to the Hungarian isolates. Interestingly, two different picornavirus genera were simultaneously co-infected with Eastern flocks. This phenomenon could increase and facilitate the recombination and evolution rate of picornaviruses and consequently cause this diversity of gastrointestinal diseases in poultry. This is the first report and complete genome sequencing of Sicinivirus and Megrivirus in Iran. Further studies are needed to evaluate the pathogenic potential of these picornaviruses.
Collapse
|
5
|
Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Davidson I, Polizopοulou ZS, Papa A, Kritas SK. Epidemiology of Astrovirus, Norovirus and Sapovirus in Greek pig farms indicates high prevalence of Mamastrovirus suggesting the potential need for systematic surveillance. Porcine Health Manag 2022; 8:5. [PMID: 35000615 PMCID: PMC8744241 DOI: 10.1186/s40813-021-00245-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Backround Astrovirus, Norovirus and Sapovirus exhibit a wide distribution in swine pig herds worldwide. However, the association of porcine Astrovirus (PAstV), porcine Norovirus (PoNoV) and porcine Sapovirus (PoSaV) with disease in pigs remains uncertain. In this study, we investigated the prevalence of PAstV, PoNoV and PoSaV in Greek pig farms using both conventional RT-PCR and SYBR-Green Real-time RT-PCR in an effort to compare the sensitivity of the two methods. We examined 1400 stool samples of asymptomatic pigs originating from 28 swine farms throughout Greece in pools of five. Results PAstV was detected in all 28 swine farms examined, with an overall prevalence of 267/280 positive pools (95.4%). Porcine Caliciviruses prevalence was found at 36 and 57 out of the 280 examined samples, by the conventional and SYBR-Green Real time RT-PCR, respectively. Sequencing and phylogenetic analysis of the positive samples revealed that the detected PAstV sequences are clustered within PAstV1, 3 and 4 lineages, with PAstV3 being the predominant haplotype (91.2%). Interestingly, sequencing of the Calicivirus positive samples demonstrated the presence of non-target viruses, i.e. Sapovirus, Kobuvirus and Sapelovirus sequences and one sequence highly similar to bat Astrovirus, while no Norovirus sequence was detected. Conclusions The high prevalence of PAstV in Greek pig farms poses a necessity for further investigation of the pathogenicity of this virus and its inclusion in surveillance programs in case that it proves to be important. To our knowledge, this is the first epidemiological study of these viruses in pig farms in Greece. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-021-00245-8.
Collapse
Affiliation(s)
- Efthymia Stamelou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece.
| | - Konstantinos V Papageorgiou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evanthia Petridou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Irit Davidson
- Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Zoe S Polizopοulou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Spyridon K Kritas
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
6
|
Occurrence and Role of Selected RNA-Viruses as Potential Causative Agents of Watery Droppings in Pigeons. Pathogens 2020; 9:pathogens9121025. [PMID: 33291258 PMCID: PMC7762127 DOI: 10.3390/pathogens9121025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
The diseases with watery droppings (diarrhea and/or polyuria) can be considered some of the most severe health problems in domestic pigeons of various ages. Although they do not always lead to bird death, they can contribute to poor weight gains and hindered development of young pigeons and, potentially, to poor racing results in sports birds. The gastrointestinal tract disorders of pigeons may be of various etiology, but some of the causative agents are viral infections. This review article provides information collected from scientific reports on RNA-viruses belonging to the Astroviridae, Picornaviridae, and Coronaviridae families; the Avulavirinae subfamily; and the Rotavirus genus that might be implicated in such health problems. It presents a brief characterization, and possible interspecies transmission of these viruses. We believe that this review article will help clinical signs of infection, isolation methods, occurrence in pigeons and poultry, systemize and summarize knowledge on pigeon enteropathogenic viruses and raise awareness of the importance of disease control in pigeons.
Collapse
|
7
|
Wang F, Liang T, Liu N, Ning K, Yu K, Zhang D. Genetic characterization of two novel megriviruses in geese. J Gen Virol 2017; 98:607-611. [DOI: 10.1099/jgv.0.000720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fumin Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Te Liang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Ning Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Kang Ning
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Kangzhen Yu
- The Ministry of Agriculture of the People’s Republic of China, Beijing 100026, PR China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
8
|
Devaney R, Trudgett J, Trudgett A, Meharg C, Smyth V. A metagenomic comparison of endemic viruses from broiler chickens with runting-stunting syndrome and from normal birds. Avian Pathol 2016; 45:616-629. [PMID: 27215546 PMCID: PMC7113909 DOI: 10.1080/03079457.2016.1193123] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease that causes significant economic losses to poultry producers worldwide due to elevated feed conversion ratios, decreased body weight during growth, and excessive culling. Of specific interest are the viral agents associated with RSS which have been difficult to fully characterize to date. Past research into the aetiology of RSS has implicated a wide variety of RNA and DNA viruses however, to date, no individual virus has been identified as the main agent of RSS and the current opinion is that it may be caused by a community of viruses, collectively known as the virome. This paper attempts to characterize the viral pathogens associated with 2–3-week-old RSS-affected and unaffected broiler chickens using next-generation sequencing and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA and RNA viral families, along with 2 unidentified categories, comprised of 31 distinct viral genera and 7 unclassified genera. The most abundant viral families identified in this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically significant viruses associated with the disease such as chicken astrovirus, avian nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel viruses such as chicken megrivirus and sicinivirus 1 and will help expand the knowledge related to enteric disease in broiler chickens, provide insights into the viral constituents of a healthy avian gut, and identify a variety of enteric viruses and viral communities appropriate for further study.
Collapse
Affiliation(s)
- Ryan Devaney
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | | | - Alan Trudgett
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | - Caroline Meharg
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | | |
Collapse
|
9
|
Day JM, Zsak L. Molecular Characterization of Enteric Picornaviruses in Archived Turkey and Chicken Samples from the United States. Avian Dis 2016; 60:500-5. [PMID: 27309295 DOI: 10.1637/11289-092415-resnote] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent metagenomic analyses of the enteric viromes in turkeys and chickens have revealed complex viral communities comprised of multiple viral families. Of particular significance are the novel avian picobirnaviruses (family Picobirnaviridae), multiple genera of tailed phages (family Siphoviridae), and undescribed avian enteric picornaviruses (family Picornaviridae). In addition to these largely undescribed-and therefore relatively poorly understood-poultry enteric viral families, these metagenomic analyses have also revealed the presence of well-known groups of enteric viruses such as the chicken and turkey astroviruses (family Astroviridae) and the avian rotaviruses and reoviruses (family Reoviridae). The order Picornavirales is a group of viruses in flux, particularly among the avian picornaviruses, since several new genera have been described recently based upon community analysis of enteric viromes from poultry and other avian species worldwide. Our previous investigation of the turkey enteric picornaviruses suggests the avian enteric picornaviruses may contribute to the enteric disease syndromes and performance problems often observed in turkeys in the Southeastern United States. This report describes our recent phylogenetic analysis of turkey and chicken enteric samples archived at the Southeast Poultry Research Laboratory from 2004 to present and is a first step in placing these novel avian picornaviruses within the larger Picornaviridae family.
Collapse
Affiliation(s)
- J Michael Day
- A USDA/ARS, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605
| | - Laszlo Zsak
- A USDA/ARS, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605
| |
Collapse
|
10
|
A diarrheic chicken simultaneously co-infected with multiple picornaviruses: Complete genome analysis of avian picornaviruses representing up to six genera. Virology 2016; 489:63-74. [DOI: 10.1016/j.virol.2015.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 12/23/2022]
|
11
|
Haryanto A, Ermawati R, Wati V, Irianingsih SH, Wijayanti N. Analysis of viral protein-2 encoding gene of avian encephalomyelitis virus from field specimens in Central Java region, Indonesia. Vet World 2016; 9:25-31. [PMID: 27051180 PMCID: PMC4819345 DOI: 10.14202/vetworld.2016.25-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022] Open
Abstract
Aim: Avian encephalomyelitis (AE) is a viral disease which can infect various types of poultry, especially chicken. In Indonesia, the incidence of AE infection in chicken has been reported since 2009, the AE incidence tends to increase from year to year. The objective of this study was to analyze viral protein 2 (VP-2) encoding gene of AE virus (AEV) from various species of birds in field specimen by reverse transcription polymerase chain reaction (RT-PCR) amplification using specific nucleotides primer for confirmation of AE diagnosis. Materials and Methods: A total of 13 AEV samples are isolated from various species of poultry which are serologically diagnosed infected by AEV from some areas in central Java, Indonesia. Research stage consists of virus samples collection from field specimens, extraction of AEV RNA, amplification of VP-2 protein encoding gene by RT-PCR, separation of RT-PCR product by agarose gel electrophoresis, DNA sequencing and data analysis. Results: Amplification products of the VP-2 encoding gene of AEV by RT-PCR methods of various types of poultry from field specimens showed a positive results on sample code 499/4/12 which generated DNA fragment in the size of 619 bp. Sensitivity test of RT-PCR amplification showed that the minimum concentration of RNA template is 127.75 ng/µl. The multiple alignments of DNA sequencing product indicated that positive sample with code 499/4/12 has 92% nucleotide homology compared with AEV with accession number AV1775/07 and 85% nucleotide homology with accession number ZCHP2/0912695 from Genbank database. Analysis of VP-2 gene sequence showed that it found 46 nucleotides difference between isolate 499/4/12 compared with accession number AV1775/07 and 93 nucleotides different with accession number ZCHP2/0912695. Conclusions: Analyses of the VP-2 encoding gene of AEV with RT-PCR method from 13 samples from field specimen generated the DNA fragment in the size of 619 bp from one sample with sample code 499/4/12. The sensitivity rate of RT-PCR is to amplify the VP-2 gene of AEV until 127.75 ng/µl of RNA template. Compared to Genbank databases, isolate 499/4/12 has 85% and 92% nucleotide homology.
Collapse
Affiliation(s)
- Aris Haryanto
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ratna Ermawati
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Vera Wati
- Division of Biotechnology, Animal Disease Investigation Center Wates, Daerah Istimewa Yogyakarta Province, Indonesia
| | - Sri Handayani Irianingsih
- Division of Virology, Animal Disease Investigation Center Wates, Daerah Istimewa Yogyakarta Province, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Day JM, Zsak L. Investigating Turkey Enteric Picornavirus and Its Association with Enteric Disease in Poults. Avian Dis 2015; 59:138-42. [PMID: 26292547 DOI: 10.1637/10940-092414-regr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous research into the viral community in the poultry gastrointestinal tract has revealed a number of novel and partially described enteric viruses. It is evident that the poultry gut viral community remains minimally characterized and incompletely understood. Investigations into the microbiome of the poultry gut have provided some insight into the geographical distribution and the rapidly evolving taxonomy of the avian enteric picornaviruses. The present investigation was undertaken to produce a comparative metagenomic analysis of the gut virome from a healthy turkey flock versus a flock placed in the field. This investigation revealed a number of enteric picornavirus sequences that were present in the commercial birds in the field that were completely absent in the healthy flock. A novel molecular diagnostic assay was used to track the shedding of field strains of turkey enteric picornavirus in commercial poults inoculated with picornavirus-positive intestinal homogenates prepared from turkeys that were experiencing moderate enteric disease. The propagation of this novel enteric picornavirus in commercial poults resulted in significant reduction in weight gain, and suggests that this common inhabitant of the turkey gut may result in performance problems or enteric disease in the field.
Collapse
|
13
|
Chan JFW, To KKW, Chen H, Yuen KY. Cross-species transmission and emergence of novel viruses from birds. Curr Opin Virol 2015; 10:63-9. [PMID: 25644327 PMCID: PMC7102742 DOI: 10.1016/j.coviro.2015.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022]
Abstract
The role of birds in cross-species transmission and emergence of novel viruses such as avian influenza A viruses are discussed. The novel avian viruses identified between 2012 and 2014 are summarized. The concept of ‘pathogen augmentation’ is introduced.
Birds, the only living member of the Dinosauria clade, are flying warm-blooded vertebrates displaying high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system. Birds provide the natural reservoir for numerous viral species and therefore gene source for evolution, emergence and dissemination of novel viruses. The intrusions of human into natural habitats of wild birds, the domestication of wild birds as pets or racing birds, and the increasing poultry consumption by human have facilitated avian viruses to cross species barriers to cause zoonosis. Recently, a novel adenovirus was exclusively found in birds causing an outbreak of Chlamydophila psittaci infection among birds and humans. Instead of being the primary cause of an outbreak by jumping directly from bird to human, a novel avian virus can be an augmenter of another zoonotic agent causing the outbreak. A comprehensive avian virome will improve our understanding of birds’ evolutionary dynamics.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
Day JM, Oakley BB, Seal BS, Zsak L. Comparative analysis of the intestinal bacterial and RNA viral communities from sentinel birds placed on selected broiler chicken farms. PLoS One 2015; 10:e0117210. [PMID: 25635690 PMCID: PMC4311960 DOI: 10.1371/journal.pone.0117210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds ("sentinels") placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and has identified enteric viruses and virus communities that warrant further study in order to understand their role(s) in avian gut health and disease.
Collapse
Affiliation(s)
- J. Michael Day
- United States Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA, United States of America
| | - Brian B. Oakley
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, United States of America
| | - Bruce S. Seal
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, United States of America
| | - Laszlo Zsak
- United States Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA, United States of America
| |
Collapse
|
15
|
Abstract
Today’s laboratory mouse, Mus musculus, has its origins as the ‘house mouse’ of North America and Europe. Beginning with mice bred by mouse fanciers, laboratory stocks (outbred) derived from M. musculus musculus from eastern Europe and M. m. domesticus from western Europe were developed into inbred strains. Since the mid-1980s, additional strains have been developed from Asian mice (M. m. castaneus from Thailand and M. m. molossinus from Japan) and from M. spretus which originated from the western Mediterranean region.
Collapse
|
16
|
Boros Á, Pankovics P, Reuter G. Avian picornaviruses: molecular evolution, genome diversity and unusual genome features of a rapidly expanding group of viruses in birds. INFECTION GENETICS AND EVOLUTION 2014; 28:151-66. [PMID: 25278047 DOI: 10.1016/j.meegid.2014.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 12/29/2022]
Abstract
Picornaviridae is one of the most diverse families of viruses infecting vertebrate species. In contrast to the relative small number of mammal species compared to other vertebrates, the abundance of mammal-infecting picornaviruses was significantly overrepresented among the presently known picornaviruses. Therefore most of the current knowledge about the genome diversity/organization patterns and common genome features were based on the analysis of mammal-infecting picornaviruses. Beside the well known reservoir role of birds in case of several emerging viral pathogens, little is known about the diversity of picornaviruses circulating among birds, although in the last decade the number of known avian picornavirus species with complete genome was increased from one to at least 15. However, little is known about the geographic distribution, host spectrum or pathogenic potential of the recently described picornaviruses of birds. Despite the low number of known avian picornaviruses, the phylogenetic and genome organization diversity of these viruses were remarkable. Beside the common L-4-3-4 and 4-3-4 genome layouts unusual genome patterns (3-4-4; 3-5-4, 3-6-4; 3-8-4) with variable, multicistronic 2A genome regions were found among avian picornaviruses. The phylogenetic and genomic analysis revealed the presence of several conserved structures at the untranslated regions among phylogenetically distant avian and non-avian picornaviruses as well as at least five different avian picornavirus phylogenetic clusters located in every main picornavirus lineage with characteristic genome layouts which suggests the complex evolution history of these viruses. Based on the remarkable genetic diversity of the few known avian picornaviruses, the emergence of further divergent picornaviruses causing challenges in the current taxonomy and also in the understanding of the evolution and genome organization of picornaviruses will be strongly expected. In this review we would like to summarize the current knowledge about the taxonomy, pathogenic potential, phylogenetic/genomic diversity and evolutional relationship of avian picornaviruses.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| |
Collapse
|
17
|
Day JM, Gonder E, Jennings S, Rives D, Robbins K, Tilley B, Wooming B. Investigating turkey enteric coronavirus circulating in the Southeastern United States and Arkansas during 2012 and 2013. Avian Dis 2014; 58:313-7. [PMID: 25055640 DOI: 10.1637/10674-092313-resnote.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Periodic monitoring of poultry flocks in the United States via molecular diagnostic methods has revealed a number of potential enteric viral pathogens in continuous circulation in turkeys and chickens. Recently turkey integrators in the Southeastern United States and Arkansas experienced an outbreak of moderate to severe enteritis associated with turkey enteric coronavirus (TCoV), and numerous enteric samples collected from turkey flocks in these areas tested positive for TCoV via real-time reverse-transcriptase PCR (RRT-PCR). This report details the subsequent sequence and phylogenetic analysis of the TCoV spike glycoprotein and the comparison of outbreak-associated isolates to sequences in the public database. TCoVs investigated during the present outbreak grouped geographically based upon state of origin, and the RRT-PCR assay was a good indicator of subsequent seroconversion by TCoV-positive turkey flocks.
Collapse
|
18
|
Liao Q, Zheng L, Yuan Y, Shi J, Zhang D. Genomic characterization of a novel picornavirus in Pekin ducks. Vet Microbiol 2014; 172:78-91. [DOI: 10.1016/j.vetmic.2014.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/28/2014] [Accepted: 05/03/2014] [Indexed: 12/26/2022]
|
19
|
Lau SKP, Woo PCY, Yip CCY, Li KSM, Fan RYY, Bai R, Huang Y, Chan KH, Yuen KY. Chickens host diverse picornaviruses originated from potential interspecies transmission with recombination. J Gen Virol 2014; 95:1929-1944. [PMID: 24906980 DOI: 10.1099/vir.0.066597-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While chickens are an important reservoir for emerging pathogens such as avian influenza viruses, little is known about the diversity of picornaviruses in poultry. We discovered a previously unknown diversity of picornaviruses in chickens in Hong Kong. Picornaviruses were detected in 87 cloacal and 7 tracheal samples from 93 of 900 chickens by reverse transcription-PCR, with their partial 3D(pol) gene sequences forming five distinct clades (I to V) among known picornaviruses. Analysis of eight genomes from different clades revealed seven different picornaviruses, including six novel picornavirus species (ChPV1 from clade I, ChPV2 and ChPV3 from clade II, ChPV4 and ChPV5 from clade III, ChGV1 from clade IV) and one existing species (Avian encephalomyelitis virus from clade V). The six novel chicken picornavirus genomes exhibited distinct phylogenetic positions and genome features different from related picornaviruses, supporting their classification as separate species. Moreover, ChPV1 may potentially belong to a novel genus, with low sequence homologies to related picornaviruses, especially in the P1 and P2 regions, including the predicted L and 2A proteins. Nevertheless, these novel picornaviruses were most closely related to picornaviruses of other avian species (ChPV1 related to Passerivirus A, ChPV2 and ChPV3 to Avisivirus A and Duck hepatitis A virus, ChPV4 and ChPV5 to Melegrivirus A, ChGV1 to Gallivirus A). Furthermore, ChPV5 represented a potential recombinant picornavirus, with its P2 and P3 regions possibly originating from Melegrivirus A. Chickens are an important reservoir for diverse picornaviruses that may cross avian species barriers through mutation or recombination.
Collapse
Affiliation(s)
- Susanna K P Lau
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China
| | - Patrick C Y Woo
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Cyril C Y Yip
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kenneth S M Li
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Rachel Y Y Fan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Ru Bai
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Yi Huang
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Hung Chan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
20
|
Bullman S, Kearney K, O’Mahony M, Kelly L, Whyte P, Fanning S, Morgan JG. Identification and genetic characterization of a novel picornavirus from chickens. J Gen Virol 2014; 95:1094-1103. [DOI: 10.1099/vir.0.061085-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A novel picornavirus from commercial broiler chickens (Gallus gallus domesticus) has been identified and genetically characterized. The viral genome consists of a single-stranded, positive-sense RNA genome of >9243 nt excluding the poly(A) tail and as such represents one of the largest picornavirus genomes reported to date. The virus genome is GC-rich with a G+C content of 54.5 %. The genomic organization is similar to other picornaviruses: 5′ UTR–L–VP0–VP3–VP1–2A–2B–2C–3A–3B–3C–3D–3′ UTR. The partially characterized 5′ UTR of >373 nt appears to possess a type II internal ribosomal entry site (IRES), which is also found in members of the genera Aphthovirus and Cardiovirus. This IRES exhibits significant sequence similarity to turkey ‘gallivirus A’. The 3′ UTR of 278 nt contains the conserved 48 nt ‘barbell-like’ structure identified in ‘passerivirus’, ‘gallivirus’, Avihepatovirus and some Kobuvirus genus members. A predicted large open reading frame (ORF) of 8592 nt encodes a potential polyprotein precursor of 2864 amino acids. In addition, the virus contains a predicted large L protein of 462 amino acids. Pairwise sequence comparisons, along with phylogenetic analysis revealed the highest percentage identity to ‘Passerivirus A’ (formerly called turdivirus 1), forming a monophyletic group across the P1, P2 and P3 regions, with <40, <40 and <50 % amino acid identity respectively. Reduced identity was observed against ‘gallivirus A’ and members of the Kobuvirus genus. Quantitative PCR analysis estimated a range of 4×105 to 5×108 viral genome copies g-1 in 22 (73 %) of 30 PCR-positive faeces. Based on sequence and phylogenetic analysis, we propose that this virus is the first member of a potential novel genus within the family Picornaviridae. Further studies are required to investigate the pathogenic potential of this virus within the avian host.
Collapse
Affiliation(s)
- Susan Bullman
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Karen Kearney
- School of Microbiology, University College Cork, Cork, Ireland
| | - Michael O’Mahony
- Department of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Kelly
- Department of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Whyte
- Department of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Seamus Fanning
- Department of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John G. Morgan
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Comparative complete genome analysis of chicken and Turkey megriviruses (family picornaviridae): long 3' untranslated regions with a potential second open reading frame and evidence for possible recombination. J Virol 2014; 88:6434-43. [PMID: 24672039 DOI: 10.1128/jvi.03807-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Members of the family Picornaviridae consist of small positive-sense single-stranded RNA (+ssRNA) viruses capable of infecting various vertebrate species, including birds. One of the recently identified avian picornaviruses, with a remarkably long (>9,040-nucleotide) but still incompletely sequenced genome, is turkey hepatitis virus 1 (THV-1; species Melegrivirus A, genus Megrivirus), a virus associated with liver necrosis and enteritis in commercial turkeys (Meleagris gallopavo). This report presents the results of the genetic analysis of three complete genomes of megriviruses from fecal samples of chickens (chicken/B21-CHV/2012/HUN, GenBank accession no. KF961186, and chicken/CHK-IV-CHV/2013/HUN, GenBank accession no. KF961187) (Gallus gallus domesticus) and turkey (turkey/B407-THV/2011/HUN, GenBank accession no. KF961188) (Meleagris gallopavo) with the largest picornavirus genome (up to 9,739 nucleotides) so far described. The close phylogenetic relationship to THV-1 in the nonstructural protein-coding genome region and possession of the same internal ribosomal entry site type (IVB-like) suggest that the study strains belong to the genus Megrivirus. However, the genome comparisons revealed numerous unique variations (e.g., different numbers of potential 2A peptides, unusually long 3' genome parts with various lengths of a potential second open reading frame, and multiple repeating sequence motifs in the 3' untranslated region) and heterogeneous sequence relationships between the structural and nonstructural genome regions. These differences suggest the classification of chicken megrivirus-like viruses into a candidate novel species in the genus Megrivirus. Based on the different phylogenetic positions of chicken megrivirus-like viruses at the structural and nonstructural genome regions, the recombinant nature of these viruses is plausible. IMPORTANCE The comparative genome analysis of turkey and novel chicken megriviruses revealed numerous unique genome features, e.g., up to four potential 2A peptides, unusually long 3' genome parts with various lengths containing a potential second open reading frame, multiple repeating sequence motifs, and heterogeneous sequence relationships (possibly due to a recombination event) between the structural and nonstructural genome regions. Our results could help us to better understand the evolution and diversity (in terms of sequence and genome layout) of picornaviruses.
Collapse
|
22
|
Fichtner D, Philipps A, Groth M, Schmidt-Posthaus H, Granzow H, Dauber M, Platzer M, Bergmann SM, Schrudde D, Sauerbrei A, Zell R. Characterization of a novel picornavirus isolate from a diseased European eel (Anguilla anguilla). J Virol 2013; 87:10895-9. [PMID: 23885066 PMCID: PMC3807381 DOI: 10.1128/jvi.01094-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022] Open
Abstract
A novel picornavirus was isolated from specimens of a diseased European eel (Anguilla anguilla). This virus induced a cytopathic effect in eel embryonic kidney cells and high mortality in a controlled transmission study using elvers. Eel picornavirus has a genome of 7,496 nucleotides that encodes a polyprotein of 2,259 amino acids. It has a typical picornavirus genome layout, but its low similarity to known viral proteins suggests a novel species in the family Picornaviridae.
Collapse
Affiliation(s)
- Dieter Fichtner
- Institute of Infectology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anja Philipps
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marco Groth
- Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Harald Granzow
- Institute of Infectology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Malte Dauber
- Institute for Virus Diagnostics, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Sven M. Bergmann
- Institute of Infectology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Daniela Schrudde
- Institute of Infectology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Andreas Sauerbrei
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
23
|
|
24
|
Boros Á, Nemes C, Pankovics P, Kapusinszky B, Delwart E, Reuter G. Genetic characterization of a novel picornavirus in turkeys (Meleagris gallopavo) distinct from turkey galliviruses and megriviruses and distantly related to the members of the genus Avihepatovirus. J Gen Virol 2013; 94:1496-1509. [PMID: 23559479 DOI: 10.1099/vir.0.051797-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study reports the metagenomic detection and complete genome characterization of a novel turkey picornavirus from faecal samples of healthy (1/3) and affected (6/8) commercial turkeys with enteric and/or stunting syndrome in Hungary. The virus was detected at seven of the eight farms examined. The turkey/M176-TuASV/2011/HUN genome (KC465954) was genetically different from the currently known picornaviruses of turkey origin (megriviruses and galliviruses), and showed distant phylogenetic relationship and common genomic features (e.g. uncleaved VP0 and three predicted and unrelated 2A polypeptides) to duck hepatitis A virus (DHAV) of the genus Avihepatovirus. The complete genome analysis revealed multiple distinct genome features like the presence of two in-tandem aphthovirus 2A-like sequence repeats with DxExNPG/P 'ribosome-skipping' sites (76 %, 23/30 amino acids identical), with the first aphthovirus 2A-like sequence being located at the end of the VP1 capsid protein (VP1/2A1 'ribosome-skipping' site). The phylogenetic analyses, low sequence identity (33, 32 and 36 % amino acid identity in P1, P2 and P3 regions) to DHAV, and the type II-like internal ribosome entry site suggests that this turkey picornavirus is related to, but distinct from the genus Avihepatovirus and it could be the founding member of a novel Avihepatovirus sister-clade genus. This is the third, taxonomically highly distinct picornavirus clade identified from turkeys exhibiting varied symptoms.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Csaba Nemes
- Veterinary Diagnostic Directorate of the Central Agricultural Office, Kaposvár, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Eric Delwart
- University of California San Francisco, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| |
Collapse
|
25
|
Boros Á, Nemes C, Pankovics P, Kapusinszky B, Delwart E, Reuter G. Identification and complete genome characterization of a novel picornavirus in turkey (Meleagris gallopavo). J Gen Virol 2012; 93:2171-2182. [PMID: 22875254 DOI: 10.1099/vir.0.043224-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the family Picornaviridae are important pathogens of humans and animals, although compared with the thousands of known bird species (>10 000), only a few (n = 11) picornaviruses have been identified from avian sources. This study reports the metagenomic detection and complete genome characterization of a novel turkey picornavirus from faecal samples collected from eight turkey farms in Hungary. Using RT-PCR, both healthy (two of three) and affected (seven of eight) commercial turkeys with enteric and/or stunting syndrome were shown to be shedding viruses in seven (88 %) of the eight farms. The viral genome sequence (turkey/M176/2011/HUN; GenBank accession no. JQ691613) shows a high degree of amino acid sequence identity (96 %) to the partial P3 genome region of a picornavirus reported recently in turkey and chickens from the USA and probably belongs to the same species. In the P1 and P2 regions, turkey/M176/2011/HUN is related most closely to, but distinct from, the kobuviruses and turdivirus 1. Complete genome analysis revealed the presence of characteristic picornaviral amino acid motifs, a potential type II-like 5' UTR internal ribosome entry site (first identified among avian-origin picornaviruses) and a conserved, 48 nt long 'barbell-like' structure found at the 3' UTR of turkey/M176/2011/HUN and members of the picornavirus genera Avihepatovirus and Kobuvirus. The general presence of turkey picornavirus - a novel picornavirus species - in faecal samples from healthy and affected turkeys in Hungary and in the USA suggests the worldwide occurrence and endemic circulation of this virus in turkey farms. Further studies are needed to investigate the aetiological role and pathogenic potential of this picornavirus in food animals.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Csaba Nemes
- Veterinary Diagnostic Directorate of the Central Agricultural Office, Kaposvár, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Eric Delwart
- University of California San Francisco, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Blood Systems Research Institute, San Francisco, CA, USA.,Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| |
Collapse
|