1
|
Ko S, Ahn S, Kwak HH, Woo HM, Kim J. Establishing Joint Orientation Angles of the Limbs in Korean Raccoon Dogs ( Nyctereutes procyonoides koreensis) Using Computed Tomographic Imaging. Animals (Basel) 2024; 14:2827. [PMID: 39409776 PMCID: PMC11476340 DOI: 10.3390/ani14192827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Studies are being conducted on the anatomical structures of various wild animals. Despite the ecological importance of the Korean raccoon dog (Nyctereutes procyonoides koreensis), limited research has been conducted on its anatomical structure. This study is the first to establish a reference range for joint orientation angles in the limbs of the Korean raccoon dog. Joint orientation angles are an unexplored concept not only in Korean raccoon dogs but also in other wildlife. However, they are important in the examination of the skeletal anatomy of humans and companion animals, such as dogs and cats. Because this type of measurement is still emerging in wildlife research, we applied the methodology used in the domestic dog (Canis lupus familiaris). Angles were measured between the mechanical or anatomical axis and the joint orientation lines in the thoracic and pelvic limbs of Korean raccoon dogs. No significant differences were observed between the sexes or between the left and right sides. These findings are consistent with those observed in domestic dogs. Based on this study, a reference range of joint orientation angles could be established for Korean raccoon dogs.
Collapse
Affiliation(s)
- Seongju Ko
- Department of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea; (S.K.); (H.-H.K.); (H.-M.W.)
| | - Sangjin Ahn
- Gangwon Wildlife Medical Rescue Center, Chuncheon-si 24341, Gangwon-do, Republic of Korea;
| | - Ho-Hyun Kwak
- Department of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea; (S.K.); (H.-H.K.); (H.-M.W.)
| | - Heung-Myong Woo
- Department of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea; (S.K.); (H.-H.K.); (H.-M.W.)
| | - Junhyung Kim
- Department of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea; (S.K.); (H.-H.K.); (H.-M.W.)
| |
Collapse
|
2
|
Rupprecht CE, Buchanan T, Cliquet F, King R, Müller T, Yakobson B, Yang DK. A Global Perspective on Oral Vaccination of Wildlife against Rabies. J Wildl Dis 2024; 60:241-284. [PMID: 38381612 DOI: 10.7589/jwd-d-23-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024]
Abstract
The long-term mitigation of human-domestic animal-wildlife conflicts is complex and difficult. Over the last 50 yr, the primary biomedical concepts and actualized collaborative global field applications of oral rabies vaccination to wildlife serve as one dramatic example that revolutionized the field of infectious disease management of free-ranging animals. Oral vaccination of wildlife occurred in diverse locales within Africa, Eurasia, the Middle East, and North America. Although rabies is not a candidate for eradication, over a billion doses of vaccine-laden baits distributed strategically by hand, at baiting stations, or via aircraft, resulted in widespread disease prevention, control, or local disease elimination among mesocarnivores. Pure, potent, safe, and efficacious vaccines consisted of either modified-live, highly attenuated, or recombinant viruses contained within attractive, edible baits. Since the late 1970s, major free-ranging target species have included coyotes (Canis latrans), foxes (Urocyon cinereoargenteus; Vulpes vulpes), jackals (Canis aureus; Lupulella mesomelas), raccoons (Procyon lotor), raccoon dogs (Nyctereutes procyonoides), and skunks (Mephitis mephitis). Operational progress has occurred in all but the latter species. Programmatic evaluations of oral rabies vaccination success have included: demonstration of biomarkers incorporated within vaccine-laden baits in target species as representative of bait contact; serological measurement of the induction of specific rabies virus neutralizing antibodies, indicative of an immune response to vaccine; and most importantly, the decreasing detection of rabies virus antigens in the brains of collected animals via enhanced laboratory-based surveillance, as evidence of management impact. Although often conceived mistakenly as a panacea, such cost-effective technology applied to free-ranging wildlife represents a real-world, One Health application benefiting agriculture, conservation biology, and public health. Based upon lessons learned with oral rabies vaccination of mesocarnivores, opportunities for future extension to other taxa and additional diseases will have far-reaching, transdisciplinary benefits.
Collapse
Affiliation(s)
- Charles E Rupprecht
- College of Forestry, Wildlife and Environment, College of Veterinary Medicine, Auburn University, 602 Duncan Drive, Auburn, Alabama 36849, USA
| | - Tore Buchanan
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9L1Z8, Canada
| | - Florence Cliquet
- ANSES, Nancy Laboratory for Rabies and Wildlife, European Union Reference Laboratory for Rabies Serology, European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, WOAH Reference Laboratory for Rabies, Technopôle Agricole et Vétérinaire, Domaine de Pixérécourt, CS 40009 Malzeville, France
| | - Roni King
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, WHO Collaborating Centre for Rabies Surveillance and Research, WOAH Reference Laboratory for Rabies, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Boris Yakobson
- WOAH Reference Laboratory for Rabies, Kimron Veterinary Institute, Ministry of Agriculture, Derech HaMaccabim 62, Rishon Lezion, 50250, Israel
| | - Dong-Kun Yang
- Viral Disease Division, Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| |
Collapse
|
3
|
Yu X, Zhu H, Bo Y, Li Y, Zhang J, Jiang L, Chen G, Zhang X, Wen Y. Molecular evolutionary analysis reveals Arctic-like rabies viruses evolved and dispersed independently in North and South Asia. J Vet Sci 2021; 22:e5. [PMID: 33522157 PMCID: PMC7850786 DOI: 10.4142/jvs.2021.22.e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background Arctic-like (AL) lineages of rabies viruses (RABVs) remains endemic in some Arctic and Asia countries. However, their evolutionary dynamics are largely unappreciated. Objectives We attempted to estimate the evolutionary history, geographic origin and spread of the Arctic-related RABVs. Methods Full length or partial sequences of the N and G genes were used to infer the evolutionary aspects of AL RABVs by Bayesian evolutionary analysis. Results The most recent common ancestor (tMRCA) of the current Arctic and AL RABVs emerged in the 1830s and evolved independently after diversification. Population demographic analysis indicated that the viruses experienced gradual growth followed by a sudden decrease in its population size from the mid-1980s to approximately 2000. Genetic flow patterns among the regions reveal a high geographic correlation in AL RABVs transmission. Discrete phylogeography suggests that the geographic origin of the AL RABVs was in east Russia in approximately the 1830s. The ancestral AL RABV then diversified and immigrated to the countries in Northeast Asia, while the viruses in South Asia were dispersed to the neighboring regions from India. The N and G genes of RABVs in both clades sustained high levels of purifying selection, and the positive selection sites were mainly found on the C-terminus of the G gene. Conclusions The current AL RABVs circulating in South and North Asia evolved and dispersed independently.
Collapse
Affiliation(s)
- Xin Yu
- School of Life Sciences, Ludong University, Yantai 264025, China.,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji?nan 250022, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai 264025, China.,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji?nan 250022, China
| | - Yongheng Bo
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji?nan 250022, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji?nan 250022, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, China
| | - Guozhong Chen
- School of Life Sciences, Ludong University, Yantai 264025, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, China.
| | - Yongjun Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
4
|
Fischer S, Freuling CM, Müller T, Pfaff F, Bodenhofer U, Höper D, Fischer M, Marston DA, Fooks AR, Mettenleiter TC, Conraths FJ, Homeier-Bachmann T. Defining objective clusters for rabies virus sequences using affinity propagation clustering. PLoS Negl Trop Dis 2018; 12:e0006182. [PMID: 29357361 PMCID: PMC5794188 DOI: 10.1371/journal.pntd.0006182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/01/2018] [Accepted: 12/19/2017] [Indexed: 11/18/2022] Open
Abstract
Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. Rabies is one of the oldest known zoonoses, caused by lyssaviruses. In recent years, more than 21,000 nucleotide sequences for rabies viruses (RABV) have been deposited in public databases. In this study, a novel mathematical approach called affinity propagation (AP) clustering, a highly powerful tool, to verifiably divide full genome RABV sequences into genetic clusters, was used. A panel of existing and novel RABV full genome sequences was used to demonstrate the application of AP for RABV clustering. Using a combination of AP with established phylogenetic analyses is useful in resolving phylogenetic relationships between more objectively determined clusters and sequences. This workflow will help to substantiate a transparent cluster distribution, not only for RABV, but also for other comparative sequence analyses.
Collapse
Affiliation(s)
- Susanne Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Conrad M. Freuling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
- * E-mail:
| | - Florian Pfaff
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Ulrich Bodenhofer
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Mareike Fischer
- Institute of Mathematics and Computer Science, University Greifswald, Greifswald, Germany
| | - Denise A. Marston
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Characterization of Lyssaviruses, Weybridge, United Kingdom
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Characterization of Lyssaviruses, Weybridge, United Kingdom
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald-Insel Riems, Germany
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Sadeuh-Mba SA, Momo JB, Besong L, Loul S, Njouom R. Molecular characterization and phylogenetic relatedness of dog-derived Rabies Viruses circulating in Cameroon between 2010 and 2016. PLoS Negl Trop Dis 2017; 11:e0006041. [PMID: 29084223 PMCID: PMC5679643 DOI: 10.1371/journal.pntd.0006041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/09/2017] [Accepted: 10/15/2017] [Indexed: 12/25/2022] Open
Abstract
Rabies is enzootic among dog populations in some parts of Cameroon and the risk of human rabies is thought to be steadily high in these regions. However, the molecular epidemiology of circulating Rabies Virus (RABV) has been hardly considered in Cameroon as well as in most neighboring central African countries. To address this fundamental gap, 76 nucleoprotein (N) gene sequences of dog-derived RABV were obtained from 100 brain specimens sampled in Cameroon from 2010 to 2016. Studied sequences were subjected to molecular and phylogenetic analyses with reference strains retrieved from databases. The 71 studied Africa-1 isolates displayed 93.5–100% nucleotide (nt) and 98.3–100% amino-acid (aa) identities to each other while, the 5 studied Africa-2 isolates shared 99.4–99.7% sequence similarities at nt and aa levels. Maximum Likelihood based phylogenies inferred from nucleotide sequences confirmed all studied RABV isolates as members of the dog-related species 1 of the Lyssavirus genus. Individual isolates could be unambiguously assigned as either the Africa-1 subclade of the Cosmopolitan clade or the Africa 2 clade. The Africa-1 subclade appeared to be more prevalent and diversified. Indeed, 70 studied isolates segregated into 3 distinct circulating variants within Africa-1a lineage while a unique isolate was strikingly related to the Africa-1b lineage known to be prevalent in the neighboring Central African Republic and eastern Africa. Interestingly, all five Africa-2 isolates fell into the group-E lineage even though they appeared to be loosely related to databases available reference RABV; including those previously documented in Cameroon. This study uncovered the co-circulation of several Africa-1 and Africa-2 lineages in the southern regions of Cameroon. Striking phylogenetic outcasts to the geographic differentiation of RABV variants indicated that importation from close regions or neighboring countries apparently contributes to the sustainment of the enzootic cycle of domestic rabies in Cameroon. Rabies has been repeatedly reported among dog populations in Cameroon, especially in Yaounde, its capital city. However, the relative rates and genetic variability of Rabies Virus (RABV) variants circulating among dog populations in Cameroon are still to be documented. This study aimed to estimate the frequency and genetic diversity of RABV isolates originating from rabid dogs in the southern regions of Cameroon from 2010 to 2016. Overall, 76 of the 100 dog-derived RABV isolates sampled in Cameroon from 2010 to 2016 were successfully characterized. Our findings revealed that studied isolates belonged to the dog-related species 1 of the Lyssavirus genus, specifically 70 Africa-1a, 1 Africa-1b and 5 Africa-2 group-E lineages. The general phylogenetic pattern suggested an in-country geographic differentiation of the circulating RABV variants. This apparent geographic differentiation was contradicted by striking outcasts indicating importation from close or distant regions. Overall, this study uncovered the co-circulation of several Africa-1 and Africa-2 lineages in some southern regions of Cameroon, thus providing base-line molecular data that would be of interest for future stages of implementation of the rabies surveillance and control plan that is being setup in Cameroon.
Collapse
Affiliation(s)
- Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur du Cameroun, Yaounde, Centre region, Cameroon
- * E-mail: ,
| | - Jean Blaise Momo
- Virology Service, Centre Pasteur du Cameroun, Yaounde, Centre region, Cameroon
| | - Laura Besong
- Ministry of Livestock, Fisheries and Animal Industries (MINEPIA), Yaounde, Centre region, Cameroon
| | - Sévérin Loul
- Ministry of Livestock, Fisheries and Animal Industries (MINEPIA), Yaounde, Centre region, Cameroon
| | - Richard Njouom
- Virology Service, Centre Pasteur du Cameroun, Yaounde, Centre region, Cameroon
| |
Collapse
|
6
|
He W, Zhang H, Zhang Y, Wang R, Lu S, Ji Y, Liu C, Yuan P, Su S. Codon usage bias in the N gene of rabies virus. INFECTION GENETICS AND EVOLUTION 2017; 54:458-465. [PMID: 28818621 DOI: 10.1016/j.meegid.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/17/2022]
Abstract
Since its emergence, rabies virus (RABV) has been a major worldwide concern especially in developing countries. The nucleoprotein (N) of RABV is highly conserved and key for genetic typing, thus a better understanding of the N gene evolutionary trajectory can assist the development of control measures. We found that the N gene of RABV has a low codon usage bias with a mean effective number of codons (ENC) value of 56.33 influenced by both mutation pressure and natural selection. However, neutrality analysis indicated that natural selection dominates over mutation pressure. Additionally, we found that dinucleotide bias partly contributed to RABV codon usage bias. On the other hand, based on the clades of phylogenetic tree, we found that the evolutionary rate of the Africa 2 clade was the highest with a mean value of 3.75×10-3 substitutions per site per year. Above all, our results regarding N gene of RABV codon usage will serve future RABV evolution research.
Collapse
Affiliation(s)
- Wanting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuchen Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruyi Wang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sijia Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanjie Ji
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chang Liu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pengkun Yuan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
7
|
Establishment and Evaluation of a Loop-Mediated Isothermal Amplification Assay for Detection of Raccoon Dog in Meat Mixtures. J FOOD QUALITY 2017. [DOI: 10.1155/2017/9319035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Raccoon dog (Nyctereutes procyonoides) is an economically important animal used for fur production, but consuming its meat is injurious to human health. Currently, no rapid and sensitive method for detecting raccoon dog meat in meat mixtures is available. In this study, we developed an easily applicable, rapid, and economically feasible method for identifying the presence of raccoon dog in meat mixtures based on loop-mediated isothermal amplification (LAMP). Four sets of LAMP primers were tested at different temperatures, and the primers that worked best at 62°C (set 2) were determined. In the LAMP assay, there was no cross-reactivity with the meat procured from other species of animals and the detection limit of DNA concentration was 0.1 pg·μL−1, slightly higher than TaqMan real-time PCR (0.01 pg·μL−1), but sensitivity of 0.1 pg·μL−1 complies with most requirements of routine analysis. Moreover, by the LAMP method, the meat mixtures containing more than 0.5% of the raccoon dog component were directly detected (without DNA extraction) in the supernatant isolated from the meat mixtures after performing repeated cycles of thawing and freezing of minced meat mixtures. Our results show that LAMP assay is a valuable, straightforward, and sensitive detection tool for identification of raccoon dog meat in mixtures.
Collapse
|
8
|
Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bouchier C, Vignuzzi M, Duchene S, Holmes EC, Bourhy H. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts. PLoS Pathog 2016; 12:e1006041. [PMID: 27977811 PMCID: PMC5158080 DOI: 10.1371/journal.ppat.1006041] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022] Open
Abstract
The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics. Zoonoses account for most recently emerged infectious diseases of humans, although little is known about the evolutionary mechanisms involved in cross-species virus transmission. Understanding the evolutionary patterns and processes that underpin such cross-species transmission is of importance for predicting the spread of zoonotic infections, and hence to their ultimate control. We present a large-scale and detailed reconstruction of the evolutionary history of rabies virus (RABV) in domestic and wildlife animal species. RABV is of particular interest as it is capable of infecting many mammals but, paradoxically, is only maintained in distinct epidemiological cycles associated with animal species from the orders Carnivora and Chiroptera. We show that bat-related RABV and dog-related RABV have experienced very different evolutionary dynamics, and that host jumps are sometimes characterized by significant increases in evolutionary rate. Among Carnivora, the association between RABV and particular host species most likely arose from a combination of the historical human-mediated spread of the virus and jumps into new primary host species. In addition, we show that changes in host species are associated with multiple evolutionary pathways including the occurrence of host-specific parallel evolution. Overall, our data indicate that the establishment of dog-related RABV in new carnivore hosts may only require subtle adaptive evolution.
Collapse
Affiliation(s)
- Cécile Troupin
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Marion Tanguy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
- Institut Pasteur, Genomics Platform, Paris, France
| | - Claude Sabeta
- Agricultural Research Council, Onderstepoort Veterinary Institute, OIE Rabies Reference Laboratory, Pretoria, South Africa
| | - Hervé Blanc
- Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Viral Populations and Pathogenesis Unit, Paris, France
| | | | - Marco Vignuzzi
- Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Viral Populations and Pathogenesis Unit, Paris, France
| | - Sebastián Duchene
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
- * E-mail:
| |
Collapse
|