1
|
Dawson LM, Alshawabkeh M, Schröer K, Arakrak F, Ehrhardt A, Zhang W. Role of homologous recombination/recombineering on human adenovirus genome engineering: Not the only but the most competent solution. ENGINEERING MICROBIOLOGY 2024; 4:100140. [PMID: 39628785 PMCID: PMC11611009 DOI: 10.1016/j.engmic.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 12/06/2024]
Abstract
Adenoviruses typically cause mild illnesses, but severe diseases may occur primarily in immunodeficient individuals, particularly children. Recently, adenoviruses have garnered significant interest as a versatile tool in gene therapy, tumor treatment, and vaccine vector development. Over the past two decades, the advent of recombineering, a method based on homologous recombination, has notably enhanced the utility of adenoviral vectors in therapeutic applications. This review summarizes recent advancements in the use of human adenoviral vectors in medicine and discusses the pivotal role of recombineering in the development of these vectors. Additionally, it highlights the current achievements and potential future impact of therapeutic adenoviral vectors.
Collapse
Affiliation(s)
| | | | | | - Fatima Arakrak
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| |
Collapse
|
2
|
White L, Erbay B, Blair GE. The Cajal body protein p80-coilin forms a complex with the adenovirus L4-22K protein and facilitates the nuclear export of adenovirus mRNA. mBio 2023; 14:e0145923. [PMID: 37795984 PMCID: PMC10653806 DOI: 10.1128/mbio.01459-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE The architecture of sub-nuclear structures of eucaryotic cells is often changed during the infectious cycle of many animal and plant viruses. Cajal bodies (CBs) form a major sub-nuclear structure whose functions may include the regulation of cellular RNA metabolism. During the lifecycle of human adenovirus 5 (Ad5), CBs are reorganized from their spherical-like structure into smaller clusters termed microfoci. The mechanism of this reorganization and its significance for virus replication has yet to be established. Here we show that the major CB protein, p80-coilin, facilitates the nuclear export of Ad5 transcripts. Depletion of p80-coilin by RNA interference led to lowered levels of viral proteins and infectious virus. p80-coilin was found to form a complex with the viral L4-22K protein in Ad5-infected cells and in some reorganized microfoci. These findings assign a new role for p80-coilin as a potential regulator of infection by a human DNA virus.
Collapse
Affiliation(s)
- Laura White
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - G. Eric Blair
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Li R, Li A, Zhang Y, Fu J. The emerging role of recombineering in microbiology. ENGINEERING MICROBIOLOGY 2023; 3:100097. [PMID: 39628926 PMCID: PMC11610958 DOI: 10.1016/j.engmic.2023.100097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 12/06/2024]
Abstract
Recombineering is a valuable technique for generating recombinant DNA in vivo, primarily in bacterial cells, and is based on homologous recombination using phage-encoded homologous recombinases, such as Redαβγ from the lambda phage and RecET from the Rac prophage. The recombineering technique can efficiently mediate homologous recombination using short homologous arms (∼50 bp) and is unlimited by the size of the DNA molecules or positions of restriction sites. In this review, we summarize characteristics of recombinases, mechanism of recombineering, and advances in recombineering for DNA manipulation in Escherichia coli and other bacteria. Furthermore, the broad applications of recombineering for mining new bioactive microbial natural products, and for viral mutagenesis, phage genome engineering, and understanding bacterial metabolism are also reviewed.
Collapse
Affiliation(s)
- Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Ozharovskaia TA, Popova O, Zubkova OV, Vavilova IV, Pochtovyy AA, Shcheblyakov DV, Gushchin VA, Logunov DY, Gintsburg AL. Development and characterization of a vector system based on the simian adenovirus type 25. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2023. [DOI: 10.24075/brsmu.2023.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Technological versatility and the humoral and cellular immune response induction capacity have conditioned wide spread of adenoviral vectors as vaccine and gene therapy drugs. However, vaccination with Sputnik V made a significant portion of the population immune to the types 5 and 26 (Ad5 and Ad26) recombinant human adenovirus vectors, which are some of the most frequently used bases for candidate vaccines. Today, vaccine designers tend to select alternative adenovirus serotypes as platforms to develop vaccines against new pathogens on. A good example is simian adenovirus type 25 (SAd25), which belongs to subgroup E. It is genetically distant from Ad5 and exhibits extremely low seroprevalence in human beings, which makes it an appealing alternative vaccine vector. The purpose of this work was to design and study a new vaccine platform based on simian adenovirus type 25. We relied on the advanced methods of molecular biology and virology to construct and make recombinant adenoviruses; the phylogenetic analysis in the context of this study was enabled with bioinformatic methods. The resulting recombinant adenoviral vector can effectively replicate itself in the HEK293 cell line (human embryonic kidney cells). This work substantiates the expediency of further investigation into the SAd25 vector as a platform for development of the prevention vaccines against various infectious diseases.
Collapse
Affiliation(s)
- TA Ozharovskaia
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - O Popova
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - OV Zubkova
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - IV Vavilova
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - AA Pochtovyy
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - DV Shcheblyakov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - VA Gushchin
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - DYu Logunov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - AL Gintsburg
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Sallard E, Zhang W, Aydin M, Schröer K, Ehrhardt A. The Adenovirus Vector Platform: Novel Insights into Rational Vector Design and Lessons Learned from the COVID-19 Vaccine. Viruses 2023; 15:204. [PMID: 36680244 PMCID: PMC9862123 DOI: 10.3390/v15010204] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
The adenovirus vector platform remains one of the most efficient toolboxes for generation of transfer vehicles used in gene therapy and virotherapy to treat tumors, as well as vaccines to protect from infectious diseases. The adenovirus genome and capsids can be modified using highly efficient techniques, and vectors can be produced at high titers, which facilitates their rapid adaptation to current needs and disease applications. Over recent years, the adenovirus vector platform has been in the center of attention for vaccine development against the ongoing coronavirus SARS-CoV-2/COVID-19 pandemic. The worldwide deployment of these vaccines has greatly deepened the knowledge on virus-host interactions and highlighted the need to further improve the effectiveness and safety not only of adenovirus-based vaccines but also of gene therapy and oncolytic virotherapy vectors. Based on the current evidence, we discuss here how adenoviral vectors can be further improved by intelligent molecular design. This review covers the full spectrum of state-of-the-art strategies to avoid vector-induced side effects ranging from the vectorization of non-canonical adenovirus types to novel genome engineering techniques.
Collapse
Affiliation(s)
- Erwan Sallard
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Katrin Schröer
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| |
Collapse
|
6
|
HEHR: Homing Endonuclease-Mediated Homologous Recombination for Efficient Adenovirus Genome Engineering. Genes (Basel) 2022; 13:genes13112129. [DOI: 10.3390/genes13112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Adenoviruses are non-enveloped linear double-stranded DNA viruses with over 100 types in humans. Adenovirus vectors have gained tremendous attention as gene delivery vehicles, as vaccine vectors and as oncolytic viruses. Although various methods have been used to generate adenoviral vectors, the vector-producing process remains technically challenging regarding efficacious genome modification. Based on our previously reported adenoviral genome modification streamline via linear–circular homologous recombination, we further develop an HEHR (combining Homing Endonucleases and Homologous Recombination) method to engineer adenoviral genomes more efficiently. I-PpoI, a rare endonuclease encoded by a group I intron, was introduced into the previously described ccdB counter-selection marker. We found that the I-PpoI pre-treatment of counter-selection containing parental plasmid increased the homologous recombination efficiency up to 100%. The flanking of the counter-selection marker with either single or double I-PpoI sites showed enhanced efficacy. In addition, we constructed a third counter-selection marker flanked by an alternative restriction enzyme: AbsI, which could be applied in case the I-PpoI site already existed in the transgene cassette that was previously inserted in the adenovirus genome. Together, HEHR can be applied for seamless sequence replacements, deletions and insertions. The advantages of HEHR in seamless mutagenesis will facilitate rational design of adenoviral vectors for diverse purposes.
Collapse
|
7
|
Mese K, Bunz O, Volkwein W, Vemulapalli SPB, Zhang W, Schellhorn S, Heenemann K, Rueckner A, Sing A, Vahlenkamp TW, Severing AL, Gao J, Aydin M, Jung D, Bachmann HS, Zänker KS, Busch U, Baiker A, Griesinger C, Ehrhardt A. Enhanced Antiviral Function of Magnesium Chloride-Modified Heparin on a Broad Spectrum of Viruses. Int J Mol Sci 2021; 22:10075. [PMID: 34576237 PMCID: PMC8466540 DOI: 10.3390/ijms221810075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.
Collapse
Affiliation(s)
- Kemal Mese
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Oskar Bunz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
- Department of Prosthodontics, School of Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Wolfram Volkwein
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Sahithya P. B. Vemulapalli
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Kristin Heenemann
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Antje Rueckner
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Andreas Sing
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Thomas W. Vahlenkamp
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Anna-Lena Severing
- Centre for Biomedical Education and Research (ZBAF), Institute for Translational Wound Research, Witten/Herdecke University, 58453 Witten, Germany;
| | - Jian Gao
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Malik Aydin
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Dominik Jung
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Hagen S. Bachmann
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Kurt S. Zänker
- Center for Biomedical Education and Research (ZBAF), Institute of Immunology, Witten/Herdecke University, 58453 Witten, Germany;
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Armin Baiker
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Christian Griesinger
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| |
Collapse
|
8
|
High-Throughput Cloning and Characterization of Emerging Adenovirus Types 70, 73, 74, and 75. Int J Mol Sci 2020; 21:ijms21176370. [PMID: 32887347 PMCID: PMC7504450 DOI: 10.3390/ijms21176370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Recently an increasing number of new adenovirus types associated with type-dependent pathogenicity have been identified. However, identification of these clinical isolates represents the very first step to characterize novel pathogens. For deeper analyses, these adenoviruses need to be further characterized in basic virology experiments or they could be applied in translational research. To achieve this goal, it is essential to get genetic access and to enable genetic modification of these novel adenovirus genomes (deletion, insertion, and mutation). Here we demonstrate a high-throughput approach to get genetic access to new adenoviruses via homologous recombination. We first defined the cloning conditions regarding homology arm-length and input adenoviral genome amounts. Then we cloned four naturally occurring adenoviruses (Ad70, Ad73, Ad74, and Ad75) into easy-to-manipulate plasmids and genetically modified them by reporter gene insertion. Three recombinant adenoviruses (Ad70, Ad73, and Ad74) containing a reporter cassette were successfully reconstituted. These novel reporter-labeled adenoviruses were further characterized using the inserted luciferase reporter with respect to receptor usage, presence of anti-adenovirus antibodies, and tropism in vitro. The identified receptor usage, the relatively low prevalence of anti-adenovirus antibodies, and the various cancer cell line transduction pattern are important features of these new pathogens providing essential information for their therapeutic application.
Collapse
|
9
|
Adenoviral Vectors Armed with PAPILLOMAVIRUs Oncogene Specific CRISPR/Cas9 Kill Human-Papillomavirus-Induced Cervical Cancer Cells. Cancers (Basel) 2020; 12:cancers12071934. [PMID: 32708897 PMCID: PMC7409089 DOI: 10.3390/cancers12071934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses (HPV) cause malignant epithelial cancers including cervical carcinoma, non-melanoma skin and head and neck cancer. They drive tumor development through the expression of their oncoproteins E6 and E7. Designer nucleases were shown to be efficient to specifically destroy HPV16 and HPV18 oncogenes to induce cell cycle arrest and apoptosis. Here, we used high-capacity adenoviral vectors (HCAdVs) expressing the complete CRISPR/Cas9 machinery specific for HPV18-E6 or HPV16-E6. Cervical cancer cell lines SiHa and CaSki containing HPV16 and HeLa cells containing HPV18 genomes integrated into the cellular genome, as well as HPV-negative cancer cells were transduced with HPV-type-specific CRISPR-HCAdV. Upon adenoviral delivery, the expression of HPV-type-specific CRISPR/Cas9 resulted in decreased cell viability of HPV-positive cervical cancer cell lines, whereas HPV-negative cells were unaffected. Transduced cervical cancer cells showed increased apoptosis induction and decreased proliferation compared to untreated or HPV negative control cells. This suggests that HCAdV can serve as HPV-specific cancer gene therapeutic agents when armed with HPV-type-specific CRISPR/Cas9. Based on the versatility of the CRISPR/Cas9 system, we anticipate that our approach can contribute to personalized treatment options specific for the respective HPV type present in each individual tumor.
Collapse
|
10
|
Mese K, Bunz O, Schellhorn S, Volkwein W, Jung D, Gao J, Zhang W, Baiker A, Ehrhardt A. Identification of novel human adenovirus candidates using the coxsackievirus and adenovirus receptor for cell entry. Virol J 2020; 17:52. [PMID: 32272960 PMCID: PMC7146880 DOI: 10.1186/s12985-020-01318-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background There are over 100 known human adenovirus (HAdV) types, which are able to cause a broad variety of different self-limiting but also lethal diseases especially in immunocompromised patients. Only limited information about the pathogenesis and biology of the majority of these virus types is available. In the present study, we performed a systematic screen for coxsackievirus and adenovirus receptor (CAR)-usage of a large spectrum of HAdV types. Methods To study receptor usage we utilized a recombinant HAdV library containing HAdV genomes tagged with a luciferase and GFP encoding transgene. We infected CHO-CAR cells stably expressing the CAR receptor and to much information with tagged viruses (HAdV3, 14, 16, 50, 10, 24, 27, 37 and 69) and measured luciferase expression levels 26 and for some viruses (AdV10, − 24 and − 27) 52 h post-infection. As positive control, we applied human adenovirus type 5 (HAdV5) known to use the CAR receptor for cell entry. For viruses replication studies on genome level we applied digital PCR. Results Infection of CHO-CAR and CHO-K1 cells at various virus particle numbers per cell (vpc) revealed that HAdV10, 24, and 27 showed similar or decreased luciferase expression levels in the presence of CAR. In contrast, HAdV3, 14, 16, 50, 37 and 69 resulted in increased luciferase expression levels in our initial screening experiments. CAR usage of HAdV3, 14, 50, and 69 was not studied before, and therefore we experimentally confirmed CAR usage for these HAdV as novel viruses utilizing CAR as a receptor. To rule out that replication of HAdV in transduced CHO cells is responsible for increased transduction rates we performed replication assays on virus genome level, which revealed that there is no HAdV replication. Conclusion In the present study, we screened a HAdV library and identified novel human HAdV using the CAR receptor. To our knowledge, this is the first description of CAR usage for HAdV 3, 14, 50, and 69.
Collapse
Affiliation(s)
- Kemal Mese
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453, Witten, Germany
| | - Oskar Bunz
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453, Witten, Germany
| | - Sebastian Schellhorn
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453, Witten, Germany
| | - Wolfram Volkwein
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Dominik Jung
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453, Witten, Germany
| | - Jian Gao
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453, Witten, Germany
| | - Wenli Zhang
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453, Witten, Germany
| | - Armin Baiker
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Anja Ehrhardt
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453, Witten, Germany.
| |
Collapse
|
11
|
Gao J, Mese K, Bunz O, Ehrhardt A. State‐of‐the‐art human adenovirus vectorology for therapeutic approaches. FEBS Lett 2019; 593:3609-3622. [DOI: 10.1002/1873-3468.13691] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Gao
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Kemal Mese
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Oskar Bunz
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Anja Ehrhardt
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| |
Collapse
|
12
|
Guo X, Mei L, Yan B, Zou X, Hung T, Lu Z. Site-directed modification of adenoviral vector with combined DNA assembly and restriction-ligation cloning. J Biotechnol 2019; 307:193-201. [PMID: 31751597 DOI: 10.1016/j.jbiotec.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 01/08/2023]
Abstract
Commonly used and well accepted approaches are lacking for site-directed modification of adenoviral vectors. Here, we attempt to introduce an easy-to-implement strategy for such purpose with an example of establishing a replication competent adenoviral vector system from pKAd5 plasmid, an infectious clone of human adenovirus 5 (HAdV-5). PCR products of GFP expression cassette and plasmid backbone were fused with the EcoRI/NdeI-digested fragment of pKAd5 to generate a modified intermediate plasmid pMDXE3GA by DNA assembly. NdeI-digested fragment of pMDXE3GA was brought back to pKAd5 to form the adenoviral plasmid pKAd5XE3GA by restriction-ligation cloning. Recombinant adenovirus HAdV5-XE3GA was rescued, amplified and purified. The expression of GFP and the propagation of virus in adherent HEp-2 and suspension K562 cells were investigated. Expression of target gene was significantly enhanced in both cell lines infected with HAdV5-XE3GA due to virus replication. However, propagation of virus could not sustain in culture of K562 cells. Shuttle plasmid pSh5RC-GFP was constructed to facilitate exchange of transgene. In summary, the strategy of combined DNA assembly and restriction-ligation cloning is functional, cost-effective and suitable for genetic modification of adenovirus.
Collapse
Affiliation(s)
- Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Lingling Mei
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; School of Public Health and Management, Weifang Medical University, Weifang, 261053, China
| | - Bingyu Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Tao Hung
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Chinese Center for Disease Control and Prevention-Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Wuhan, 430071, China.
| |
Collapse
|
13
|
Liu H, Lu Z, Zhang X, Guo X, Mei L, Zou X, Zhong Y, Wang M, Hung T. Single Plasmid-Based, Upgradable, and Backward-Compatible Adenoviral Vector Systems. Hum Gene Ther 2019; 30:777-791. [DOI: 10.1089/hum.2018.258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hongyan Liu
- State Key Laboratory of Toxicology and Medical Counter Measures, Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| | - Zhuozhuang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Xin Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
- School of Public Health and Management, Weifang Medical University, Weifang, P.R. China
| | - Xiaojuan Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Lingling Mei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
- School of Public Health and Management, Weifang Medical University, Weifang, P.R. China
| | - Xiaohui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Counter Measures, Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China
| | - Min Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Tao Hung
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
14
|
del Rio D, Beucher B, Lavigne M, Wehbi A, Gonzalez Dopeso-Reyes I, Saggio I, Kremer EJ. CAV-2 Vector Development and Gene Transfer in the Central and Peripheral Nervous Systems. Front Mol Neurosci 2019; 12:71. [PMID: 30983967 PMCID: PMC6449469 DOI: 10.3389/fnmol.2019.00071] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
The options available for genetic modification of cells of the central nervous system (CNS) have greatly increased in the last decade. The current panoply of viral and nonviral vectors provides multifunctional platforms to deliver expression cassettes to many structures and nuclei. These cassettes can replace defective genes, modify a given pathway perturbed by diseases, or express proteins that can be selectively activated by drugs or light to extinguish or excite neurons. This review focuses on the use of canine adenovirus type 2 (CAV-2) vectors for gene transfer to neurons in the brain, spinal cord, and peripheral nervous system. We discuss (1) recent advances in vector production, (2) why CAV-2 vectors preferentially transduce neurons, (3) the mechanism underlying their widespread distribution via retrograde axonal transport, (4) how CAV-2 vectors have been used to address structure/function, and (5) their therapeutic applications.
Collapse
Affiliation(s)
- Danila del Rio
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Bertrand Beucher
- PVM, BioCampus, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Marina Lavigne
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Amani Wehbi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | - Isabella Saggio
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
15
|
Zhang W, Huang L. Genome Analysis of A Novel Recombinant Human Adenovirus Type 1 in China. Sci Rep 2019; 9:4298. [PMID: 30862832 PMCID: PMC6414723 DOI: 10.1038/s41598-018-37756-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/13/2018] [Indexed: 11/23/2022] Open
Abstract
Human adenovirus (HAdV) group C are the common etiologic in infants with severe acute respiratory infections (SARI). In the study, we report that a novel recombinant HAdV-C group strain (SH2016) was isolated from an infant with SARI in Shanghai in Feb. 4, 2016. The whole-genome sequence of SH2016 strain was generated and compared to other HAdV genomes publicly available. The strain SH2016 genome contains 35,946 nucleotides and coded 40 putative proteins, which was divided into 11 regions. RDP and phylogenetic analyses of the complete genome showed that the SH2016 strain was arranged into a novel subtype and might be recombined with HAdV-1 and HAdV-2. Our finding indicated that the frequent recombination among the HAdV-C group played an important role in driving force for polymorphism of human HAdV-C group prevalent in Shanghai, China. Further epidemiological surveillance of HAdV-C group is necessary to explore whether the novel HAdV-C group will maintain long-term stability. And the pathogenicity and clinical characteristics of the novel HAdV-C group member should be done more.
Collapse
Affiliation(s)
- Wanju Zhang
- Shanghai Public Health Clinical Center, Fudan university, Shanghai, 201508, China.
| | - Lisu Huang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
16
|
Bunz O, Mese K, Zhang W, Piwowarczyk A, Ehrhardt A. Effect of cold atmospheric plasma (CAP) on human adenoviruses is adenovirus type-dependent. PLoS One 2018; 13:e0202352. [PMID: 30365500 PMCID: PMC6203248 DOI: 10.1371/journal.pone.0202352] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
More than 70 human adenovirus types were identified divided into 7 different species (A-G). Diseases caused by human adenoviruses are type-dependent and can range from mild to severe respiratory infections, gastrointestinal infections or eye infections such as epidemic keratoconjunctivitis. Unfortunately there is no specific anti-adenovirus therapy available. Here we addressed the question whether treatment with cold atmospheric plasma (CAP) for anti-adenoviral therapy such as virus-mediated ulcerations may be feasible. CAP has already been explored for the treatment of dermatological diseases such as chronic wounds. To investigate whether CAP is an effective antiviral tool, purified human adenovirus types derived from different human adenovirus species (HAdV -4, -5, -20, -35, -37, -50) tagged with luciferase were treated with defined dosages of plasma. The CAP treatment was varied by incrementally increasing the time span of CAP treatment. After CAP treatment, the virus containing solution was added to eukaryotic cells and the viral load was determined by measurement of luciferase expression levels. Through the plasma treatment the adenovirus driven luciferase expression directly correlating with adenovirus transduction efficiencies could be reduced for HAdV-5 and HAdV-37. Plasma treatment had no influence on adenovirus derived luciferase expression levels for HAdV-4 and HAdV-50 and it even had a positive effect on luciferase expression levels for HAdV-20 and HAdV-35. These results suggest that CAP has a type dependent effect on adenoviruses and that infectivity can be even increased for certain adenovirus types. Further studies should address the mechanisms behind this phenomenon. In summary we demonstrate that CAP may represent an interesting option for antiviral treatment in a virus type dependent manner.
Collapse
Affiliation(s)
- Oskar Bunz
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- Department of Prosthodontics, School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Kemal Mese
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Andree Piwowarczyk
- Department of Prosthodontics, School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), School of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
- * E-mail:
| |
Collapse
|
17
|
Stepanenko AA, Chekhonin VP. A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene 2018; 679:11-18. [PMID: 30171937 DOI: 10.1016/j.gene.2018.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/23/2022]
Abstract
In this review, we specifically focus on genetic modifications of oncolytic adenovirus 5 (Ad5)-based vectors that enhance replication, oncolysis/spread, and virus-mediated tumor immunosurveillance. The finding of negative regulation of minor core protein V by SUMOylation led to the identification of amino acid residues, which when mutated increase adenovirus replication and progeny yield. Suppression of Dicer and/or RNAi pathway with shRNA or p19 tomato bushy stunt protein also results in significant enhancement of adenovirus replication and progeny yield. Truncation mutations in E3-19K or i-leader sequence or overexpression of adenovirus death protein (ADP) potently increase adenovirus progeny release and spread without affecting virus yield. Moreover, E3-19K protein, which was found to inhibit both major histocompatibility complex I (MHCI) and MHC-I chain-related A and B proteins (MICA/MICB) expression on the cell surface, protecting infected cells from T-lymphocyte and natural killer (NK) cell attack, may be tailored to selectively target only MHCI or MICA/MICB, or to lose the ability to downregulate both. At last, E3-19K protein may be exploited to deliver tumor-associated epitopes directly to the endoplasmic reticulum for loading MHCI in the transporter associated with antigen processing (TAP)-deregulated cells.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia
| |
Collapse
|
18
|
Stepanenko AA, Chekhonin VP. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: Focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 2018; 257:40-51. [PMID: 30125593 DOI: 10.1016/j.virusres.2018.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/09/2023]
Abstract
The cellular internalization (infection of cells) of adenovirus 5 (Ad5) is mediated by the initial attachment of the globular knob domain of the capsid fiber protein to the cell surface coxsackievirus and adenovirus receptor (CAR), then followed by the interaction of the virus penton base proteins with cellular integrins. In tumors, there is a substantial intra- and intertumoral variability in CAR expression. The CAR-negative cells generally exhibit very low infectability. Since the fiber knob is a primary mediator of Ad5 binding to the cell surface, improved infectivity of Ad5-based vectors as oncolytic agents may be achieved via genetic modifications of this domain. The strategies to modify or broaden tropism and increase transduction efficiency of Ad5-based vectors include: 1) an incorporation of a targeting peptide into the fiber knob domain (the HI loop and/or C-terminus); 2) fiber knob serotype switching, or pseudotyping, by constructing chimeric fibers consisting of the knob domain derived from an alternate serotype (e.g., Ad5/3 or Ad5/35 chimeras), which binds to receptor(s) other than CAR (e.g., desmoglein 2/DSG2 and/or CD46); 3) "fiber complex mosaicism", an approach of combining serotype chimerism with peptide ligand(s) incorporation (e.g., Ad5/3-RGD); 4) "dual fiber mosaicism" by expressing two separate fibers with distinct receptor-binding capabilities on the same viral particle (e.g., Ad5-5/3 or Ad5-5/σ1); 5) fiber xenotyping by replacing the knob and shaft domains of wild-type Ad5 fiber protein with fibritin trimerization domain of T4 bacteriophage or σ1 attachment protein of reovirus. Other genetic approaches to increase the CAR-independent transduction efficiency include insertion of a targeting peptide into the hypervariable region of the capsid protein hexon or fusion to the C-terminus of pIX. Finally, we consider a yet unsolved molecular mechanism of liver targeting by Ad5-based vectors (CAR-, integrin-, fiber shaft KKTK motif-, and hepatic heparan sulfate glycosaminoglycans-independent, but fiber-, hexon- and blood factor X-dependent).
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
19
|
Construction and Characterization of Adenovirus Vectors Encoding Aspartate- β-Hydroxylase to Preliminary Application in Immunotherapy of Hepatocellular Carcinoma. J Immunol Res 2018; 2018:9832467. [PMID: 30116759 PMCID: PMC6079451 DOI: 10.1155/2018/9832467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/30/2018] [Indexed: 01/28/2023] Open
Abstract
Dendritic cells (DCs) harboring tumor-associated antigen are supposed to be a potential immunotherapy for hepatocellular carcinoma (HCC). Aspartate-β-hydroxylase (AAH), an overexpressed tumor-associated cell surface protein, is considered as a promising biomarker and therapeutic target for HCC. In this study, we constructed adenovirus vector encoding AAH gene by gateway recombinant cloning technology and preliminarily explored the antitumor effects of DC vaccines harboring AAH. Firstly, the total AAH mRNA was extracted from human HCC tissues; the cDNA was amplified by RT-PCR, verified, and sequenced after TA cloning. Gateway technology was used and the obtained 18T-AAH was used as a substrate, to yield the final expression vector Ad-AAH-IRES2-EGFP. Secondly, bone marrow-derived DCs were infected by Ad-AAH-IRES2-EGFP to yield AAH-DC vaccines. Matured DCs were demonstrated by increased expression of CD11c, CD80, and MHC-II costimulatory molecules. A dramatically cell-killing effect of T lymphocytes coculturing with AAH-DCs on HepG2 HCC cell line was demonstrated by CCK-8 and FCM assays in vitro. More importantly, in an animal experiment, the lysis effect of cytotoxic T lymphocytes (CTLs) on HepG2 cells in the AAH-DC group was stronger than that in the control groups. In conclusion, the gateway recombinant cloning technology is a powerful method of constructing adenovirus vector, and the product Ad-AAH-IRES2-EGFP may present as a potential candidate for DC-based immunotherapy of HCC.
Collapse
|
20
|
Lasswitz L, Chandra N, Arnberg N, Gerold G. Glycomics and Proteomics Approaches to Investigate Early Adenovirus-Host Cell Interactions. J Mol Biol 2018; 430:1863-1882. [PMID: 29746851 PMCID: PMC7094377 DOI: 10.1016/j.jmb.2018.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Adenoviruses as most viruses rely on glycan and protein interactions to attach to and enter susceptible host cells. The Adenoviridae family comprises more than 80 human types and they differ in their attachment factor and receptor usage, which likely contributes to the diverse tropism of the different types. In the past years, methods to systematically identify glycan and protein interactions have advanced. In particular sensitivity, speed and coverage of mass spectrometric analyses allow for high-throughput identification of glycans and peptides separated by liquid chromatography. Also, developments in glycan microarray technologies have led to targeted, high-throughput screening and identification of glycan-based receptors. The mapping of cell surface interactions of the diverse adenovirus types has implications for cell, tissue, and species tropism as well as drug development. Here we review known adenovirus interactions with glycan- and protein-based receptors, as well as glycomics and proteomics strategies to identify yet elusive virus receptors and attachment factors. We finally discuss challenges, bottlenecks, and future research directions in the field of non-enveloped virus entry into host cells.
Collapse
Affiliation(s)
- Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Naresh Chandra
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden
| | - Niklas Arnberg
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden.
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umea, Sweden.
| |
Collapse
|
21
|
Zhang W, Fu J, Ehrhardt A. Novel Vector Construction Based on Alternative Adenovirus Types via Homologous Recombination. Hum Gene Ther Methods 2018; 29:124-134. [PMID: 29756505 DOI: 10.1089/hgtb.2018.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenoviral vector (AdV) is one of the most used vectors in gene therapy clinical trials. However the therapeutic effect of AdV is limited due to preexisting immunity to the currently used human adenovirus type 5 and pre-decided vector tropism. It is highly demanded to develop novel AdVs originated from other types than adenovirus type 5. Here, we describe a method for direct cloning of adenovirus utilizing linear-linear homologous recombination, followed by rapid adenoviral genome modification via linear-circular homologous recombination. A plasmid bearing chosen adenoviral genome with the desired modification is generated in three weeks, from which a novel AdV can be reconstituted.
Collapse
Affiliation(s)
- Wenli Zhang
- 1 Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| | - Jun Fu
- 2 Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University , Qingdao, China
| | - Anja Ehrhardt
- 1 Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University , Witten, Germany
| |
Collapse
|
22
|
Kreppel F, Ehrhardt A. From Virus to vector to medicine: Foreword by guest editors. Virus Genes 2017; 53:673-674. [PMID: 28921483 DOI: 10.1007/s11262-017-1503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Florian Kreppel
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany.
| | - Anja Ehrhardt
- Chair for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany.
| |
Collapse
|